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Abstract

Bruce Lindsay’s approach to many problems in inference was very geometric. This gave him
great insight into the structure of models, although it was sometimes hard for the rest of us to keep
up. In this talk I will consider a few of his many contributions to the theory of likelihood inference,
with a view to highlighting how his insight informed work that followed.
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1. Introduction

Bruce Lindsay and I started our careers just one year apart, unbeknownst to me at the
time. I met him quite serendipitously; having arrived as a new Assistant Professor at the
University of British Columbia in 1980, I quickly realized that the faculty there created a
lively collaborative environment by inviting visitors to the department during the summer
months. Soon after that I came across Bruce’s paper (Lindsay, 1982), and thought “there’s
someone I could talk to!”, and proceeded to prepare a ‘cold-call’ invitation. It turned out,
as these things often do, that my choice of paper, and author, was less accidental than I
thought. Bruce had spent the year 1978-1979 at Imperial College, London, where I spent
1979-1980 as a postdoctoral fellow, so we were clearly moulded by the same environment.

Even luckier, Bruce had been planning in any case to be on the West Coast in the
summer of 1984, and had signed up, with a college friend, for a guided trip to the summit
of Mount Rainier in Washington State. He graciously asked me if I would be interested in
joining them for this trip, and I spent the weeks between accepting, and the climb itself,
trying to get fit enough to manage it. Certainly for me, and Laura tells me for Bruce as
well, this was a very memorable experience, and loomed large in our personal histories.

While we didn’t end up writing any papers together, we had close and overlapping
interests in many aspects of statistical theory throughout our careers. As other speakers
in the memorial session noted, Bruce had a low-key personal manner, and a stubbornly
independent streak. As a result he was highly unimpressed with the fashion of the day
in research, and had a succinct way of keeping me grounded. For example, when I won
the Presidents’ Award, and was very naturally feeling quite pleased with myself, he wrote
simply “Congratulations. Don’t let it go to your head”.

I chose for the presentation at the Joint Statistical Meetings to describe briefly three of
Bruce’s papers. They were selected from a very long list of important contributions partly
because they interested me, but also because they give some flavour of the range of his
ideas, his continual emphasis on geometric thinking, and in my opinion some of the very
interesting ideas in statistical theory that emerged during our careers. We were both very
fortunate to be part of a remarkable period of advance and excitement in what used to be
called “mathematical statistics”; the theory and foundations of statistical inference, and its
importance for statistical practice.
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2. Conditional Score Functions

Lindsay (1982) is a key contribution to the development of conditional inference, which
was being much discussed at the time. Conditional inference is important in the theory of
statistics in ensuring that inferences are relevant to the data that has been observed, and
is intimately connected to notions of both sufficiency and ancillarity. Bruce’s work in this
paper considers conditional inference from the point of view of estimating equations and
score functions. He particularly focusses on what are now called “Neyman-Scott prob-
lems”, which assumes the data are independent vectors Xi ∼ f(x; θ, ϕi), i = 1, . . . , N .
Each additional vector observation brings in a new nuisance parameter, but the parameter
of interest θ is common to all the data. He considers how to improve on the usual estimating
function for θ:

ΣÛi(θ) = 0,

where Ûi(θ) = Ui{θ, ϕ̂(θ)}, Ui(θ, ϕi) = (∂/∂θ) log f(xi; θ, ϕi) and ϕ̂(θ) is typically
the constrained maximum likelihood estimate of ϕ = (ϕ1, . . . , ϕN ). He suggests instead
replacing the ith estimated score function by the conditional score function

Wi(θ) ≡ Ui(θ, ϕi)− Eθ(Ui | Si),

where it is assumed that we have available a statistic Si which is sufficient for ϕi, when θ
is fixed, thus ensuring that Wi only depends on θ. Importantly he considers the case that
Si is a function only of the data, such as in inference for the canonical parameter in an
exponential family model, and the case that Si is a function of θ, which is more delicate.
In this latter case Wi(θ) = ϕ[S′θ)−E{S′(θ) | S(θ)}]; this arises for example in inference
for the ratio of two canonical parameters of an exponential family model.

To study the structure of these conditional score functions Bruce goes on to consider
some general properties of estimating functions, and these have become part of the standard
literature of inference. An estimating function is used to estimate θ via the equation

H(θ; y) = 0,

where y represents the totality of the observed data; in the notation above, the set of N
vectors xi. This estimating function is unbiased if E{H(θ;Y )} = 0, and is information
unbiased if

E{H ′(θ) +H2(θ)} = 0.

The information in H is defined as

iH = {E(H ′)}2/{E(H2)}.

All expectations are taken under the model f(·; θ, ϕ). Bruce then shows that the conditional
score function ΣWi(θ) is information unbiased, at the true value of the parameter (θ0, ϕ0),
and develops conditions under which, among all unbiased estimating functions, ΣWi(θ)
maximizes iH , relating this to the score function from the partial likelihood of Cox (1975).

Bruce then turns to the challenge of dealing with the nuisance parameter, as W will
depend on this if the conditioning statistic S is a function of the parameter of interest θ.
Replacing ϕ by an estimate ϕ̃, and writing

W̃ (θ) = ΣWi(θ, ϕ̃),

he notes that optimality, in the sense of minimizing iH , cannot be attained in most settings.
He defines a class of such estimated estimating equations by imposing a form of conditional
information unbiasedness, finds the optimal solution in this restricted class, and notes:
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Since the solution depends on parameter c, an entire class of estimated con-
ditional scores exists. In the following examples elementary considerations ...
and statistical good sense [my emphasis] seem to point to a single value of c.

You can see the influence of the “Imperial College school of statistics” in this phrase!
The paper concludes with short sections that have a number of intriguing suggestions

and results. It is noted that, for example,

iF (θ) = iW (θ) + E{(...)2},

where iF (θ) is the Fisher information, known by results of Godambe (196x) to be the max-
imal information in an estimating function, and iW (θ) is the information in the conditional
score function. About the positive term added to that Bruce writes that it is “inherently
plausible” that it would converge to 0.

He also suggests applying the results of the paper to the model

L(θ, τ) =
N∏
i=1

∫
f(xi; θ, ϕ)dQτ (ϕ),

which is the mixture model that formed such a large part of Bruce’s work, and for which
he obtained quite remarkable and detailed inferential results.

Lindsay (1982) has become part of the canon in the literature on conditional and marginal
inference, and Bruce followed up on this in several different directions, including Water-
man and Lindsay (1996a, 1996b, 1999), Li et al. (2003), Lindsay and Qu (2003), Hui and
Lindsay (2010).

3. Estimating the Number of Classes

As with the paper in the previous section, I had several personal reasons for selecting
Mao and Lindsay (2004): first, it was published in the journal of the Statistical Society
of Canada. Second, in Joe and Reid (1985) we addressed a simpler, but related, problem
of estimating the number of faults in a reliability system, and there was a lot of interest
throughout the 1980s in the estimation of the “sizes” of things: the number of species in
a region (Efron and Thisted, 1976), the size of an ecological population (Raftery, 1988)
and so on. The inference problem is difficult because the usual regularity conditions do not
apply: the parameter space is discrete, and the log-likelihood function is often monotone
increasing or decreasing. Even when the likelihood function is unimodal, the confidence
intervals obtained using the usual inferential theory tend to be either much too narrow or
much too wide. The fact that Bruce found new insights into this class of problems as
late as 2004 illustrates his originality, and his interest in pursuing problems that are, often
only temporarily, ‘out of fashion’. Estimating the number of classes is again appearing in
important applications to clustering.

The formulation in this paper is fairly general, considering that there are m popula-
tions of individuals, and within all these m populations there are an unknown number c
of classes. Letting i = 1, . . . , c index classes, and k = 1, . . . ,m index populations, Yik
denotes the number of individuals in population k observed to be in class i. The particular
application mentioned in this paper arises in ecology, where the classes are species, and the
populations are actually different methods of identifying species.

The frequency vector for the ith class is Yi = (Yi1, . . . , Yim)′, and the complete sample
is the matrix with rows Yi, with the complication that rows of all 0s are not observed, so
that the matrix actually has n rows, not c.
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The model that is developed in this paper assumes

Yik ∼ Poisson(λik),

where the vector of rate parameters λi = (λi1, . . . , λim)′ ranges over [0,∞)m, with the
constraint that the zero-vector is excluded. Dependence among the populations is captured
by dependence in the components of λi, leading to the semi-parametric mixture model

Y ∼
c∏

i=1

gP (yi),

where

gP (yi) =

∫ m∏
k=1

e−λikλyik
ik

yik!
dP (λi).

and λi ∼ P (·).
The likelihood function for this semi-parametric model can be factored as

L(c, P ) = Lmarg(c, P | n)× Lcond{P | (nx)},

where nx is the set of the observed counts, excluding the rows of the Y matrix that are
identically 0, n is the number of observed classes, and c − n is the number of unobserved
classes. The marginal likelihood has a simple Binomial form,(

c

n

)
πc−n
P (1− πP )

n,

where the sample size c is the parameter of interest. The maximum likelihood estimate
from this marginal likelihood is

ĉP = n(1 +
πP

1− πP
),

depending only on the odds ratio θ(P ) = πP /(1− πP ).
The more difficult part is the conditional log-likelihood, which can be expressed us-

ing a standard mixture model after reparametrization from mixture density P to a related
mixture density Q, with the parameter of interest to be estimated now denoted θ(Q). The
authors show that the parameters in the model are identifiable, but the functional is ‘badly
discontinuous’ in the sense of Donoho (1988), which has the following implications for
inference:

• all estimates have either very high bias or very low variance

• we can only obtain lower confidence bounds

• upper confidence limits have very high probability of being infinite

These cautionary remarks serve as a counterpoint to the unthinking use of likelihood infer-
ence in applications, on the grounds that it usually works. Mao and Lindsay (2007) develop
the theory of this further.

A final reason I chose this paper is to highlight part of the acknowledgment: “Professor
Lockhart’s amazing input to improve the presentation is particularly noteworthy.” Richard
Lockhart was the editor of the journal at the time, and is indeed well-known as a careful
and helpful editor, but I also like to think of this as a tongue-in-cheek reference to the fact
that the first versions of Bruce’s papers are not always the clearest.
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4. Confidence Distribution Sampling

Kim and Lindsay (2011) is essentially an algorithmic paper, providing a means of sampling
in counterpoint to, for example, MCMC sampling from a posterior. I chose it again for
partly personal reasons: it appeared in Statistica Sinica in 2011, and in the same year Bruce,
Cristiano Varin, and I co-edited a special issue of that journal on composite likelihood that
was initiated by Kung-Yee after a very successful workshop at the University of Warwick.

There is renewed interest in confidence distributions recently, as part of an effort to
find common ground between Bayesian and non-Bayesian inference, and there were two
sessions at JSM 2016 on “BFF”: Bayes-fiducial-frequentist.

In this paper the authors assume that an inference function H(y; θ) is available that
provides a point estimate θ̂ and an estimate Vθ̂ of the covariance matrix of θ̂. Although the
notation H was used in Lindsay (1982) as an arbitrary estimating function, thus generaliz-
ing the score function, here it is a generalization of the log-likelihood function. Thus the
log-likelihood function itself is an inference function; other examples treated in the paper
are Owens (1988) empirical likelihood function, the quadratic inference function (Lindsay
and Qu, 2003; Qu et al., 2000), and the quadratic form given by Raos score test.

They assume that the inference function permits testing values of θ at arbitrary levels
α, via sets of the form

CH ≡ {θ : H(θ; y)−H(θ̂; y) ≤ cα},

and take as a definition of an asymptotic confidence distribution a function for which

PCD(θ ∈ CH | y) = 1− α.

The goal in the paper is to sample from this confidence distribution, in order to be able
to visualize it. Visualization is currently becoming a prominent aspect of the world of big
data.

The algorithm proposed has something of the flavour of indirect inference (cf. e.g.
Jiang and Turnbull, 2004). Given θ̂ and Vθ̂, obtained from the inference function H:

• simulate z ∼ Np(0, I) and compute α(z) = Pr(χ2
p ≥ z′z)

• solve for ϵ: H(θ̂ + ϵV 1/2z)−H(θ̂; y) = z′z

• θ(z) = θ̂ + ϵV 1/2z is in the confidence region, on a line towards the boundary

• repeat

Figure 1 in Kim and Lindsay (2011) illustrates the sampling and the visualization, and
describes visually their more sophisticated version of the algorithm that pushes the points
in the confidence region towards the boundary, i.e. ensuring that α(z) in step 2 of the
algorithm is closer to the desired 5% level, for example, so that less time is spent sampling
θ from the interior of the confidence set. Not surprisingly, one of the main illustrations of
the technology in the paper is to a mixture model!

5. Conclusion

This is a highly abbreviated look at just a tiny portion of Bruce’s many contributions to
statistical theory and practice. I am glad to have been able to count myself among his
friends, and I learned a great deal from reading his papers and talking to him about research.
As one of the leaders of our generation of statisticians he is much missed. And of course, I
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am forever grateful to him for creating the opportunity to spend the rest of my life reminding
myself and others that I managed to get up Mt. Rainier, back in the day. Not that Bruce
would be so easily impressed.
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