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Abstract
We introduce and develop a general paradigm for combining information across diverse data sources.
In broad terms, suppose φ is a parameter of interest, built up via components ψ1, . . . , ψk from data
sources 1, . . . , k. The proposed scheme has three steps. First, the Independent Inspection (II) step
amounts to investigating each separate data source, translating statistical information to a confidence
distribution Cj(ψj) for the relevant focus parameter ψj associated with data source j. Second, Con-
fidence Conversion (CC) techniques are used to translate the confidence distributions to confidence
log-likelihood functions, say `c,j(ψj). Finally, the Focused Fusion (FF) step uses relevant and
context-driven techniques to construct a confidence distribution for the primary focus parameter
φ = φ(ψ1, . . . , ψk), acting on the combined confidence log-likelihood. In simpler setups, the II-
CC-FF strategy amounts to versions of meta-analysis, but its potential lies in applications to harder
problems. Illustrations are presented, related to actual applications.

Key Words: combining information, confidence distributions, confidence likelihoods, focused
fusion, meta-analysis

1. Combining Information and the II-CC-FF Scheme

Our paper concerns the statistical task of combining information across different and per-
haps very diverse data sources. This is of course a long-standing theme in statistics, with
papers going back to Karl Pearson (cf. Simpson & Pearson (1904)); see Schweder & Hjort
(2016, Ch. 13) for background, a general discussion of themes traditionally sorted under
the bag-word meta-analysis, along with further basic references. The present paper aims at
proposing and developing a certain paradigm, which we call the II-CC-FF method, meant
to be powerfully applicable for ranges of situations far beyond the usual simpler setups. We
will explain the role and nature of the Independent Inspection (II), Confidence Conversion
(CC), Focused Fusion (FF) steps below.

A special case worth considering first is the textbook setup where y1, . . . , yk are inde-
pendent estimators of the same quantity ψ, and where yj ∼ N(ψ, σ2j ), with known standard
deviations σj . An easy exercise in minimising variances shows that the optimally balanced
overall estimator is

ψ̂ =

∑k
j=1 yj/σ

2
j∑k

j=1 1/σ2j
∼ N

(
ψ,
( k∑
j=1

1/σ2j

)−1)
. (1)

A natural extension, though harder to analyse to full satisfaction, is when yj ∼ N(ψj , σ
2
j ),

with the individual means ψj differing according to a N(ψ0, τ
2). Here one wishes clear

inference strategies for both overall mean ψ0 and level of variation τ . We return to this
particular problem in Section 5.1.

Many problems of modern statistics involving combining information are much more
complicated than the situations sketched above, however. Sometimes one needs to combine
‘hard’ data, with clear measurements from controlled experiments, etc., with ‘soft’ data,
associated with information more loosely connected to the parameters of primary interest,
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perhaps via measurement errors or surrogate variables. In addition there might be prior
distributions available, via subject matter experts, but only for some of the parameters at
play, not enough to make it into a clear Bayesian analysis.

In reasonably general terms, assume there is a parameter φ of clear interest, related to
parameters ψ1, . . . , ψk via a function φ = φ(ψ1, . . . , ψk). Suppose further that data source
yj provides information pertaining to ψj . Our II-CC-FF approach for reaching inference
statements for the overall focus parameter φ can then be schematically set up as follows:

� II, Independent Inspection: Data source yj is used, via appropriate models and anal-
yses, to yield a confidence distribution Cj(ψj) for the main interest parameter asso-
ciated with study j.

� CC, Confidence Conversion: The confidence distribution is converted into a log-
likelihood function for this main parameter of interest for study j, say `c,j(ψj).

� FF, Focused Fusion: The combined confidence log-likelihood function `∗(ψ1, . . . ,
ψk) =

∑k
j=1 `c,j(ψj) is used to reach focused fusion inference for φ = φ(ψ1, . . . , ψk).

The extent to which some or all of these steps will be relatively straightforward or
rather complicated to carry out depends to a high degree on the special features of the
given source combination problem. The steps are not ‘isolated’ or fully separated, but often
related. In situations where the statistician has all the raw data and the particular models
used for analysing the different sources of information, the CC step is in a conceptual
sense not difficult, as the required profile log-likelihood parts may be worked out from
first principles. In various situations confronting the modern statistician this is rather more
difficult, however, as one might be content to base one’s analysis on summary measures,
directly or indirectly given via other people’s work, reports and publications. In such cases
the II-CC-FF paradigm looks fruitful.

We start in Section 2 with a brief review of confidence distributions, which are essential
for the Independent Inspection (II) part of the programme. We then proceed with giving
details related to the basics of Confidence Conversion (CC) in Section 3 and Focused Fusion
(FF) in Section 4. The three-step machinery is then seen in action through four applications
laid out in Section 5, followed by a brief discussion section rounding off our article.

2. Independent Inspection: Confidence Distributions

Suppose Y denotes a set of random observations, stemming from a model with parameter
θ, typically multidimensional, and with ψ = ψ(θ) a one-dimensional focus parameter.
A confidence distribution C(ψ, y) for this focus parameter has the properties (i) it is a
cumulative distribution function (c.d.f.) in ψ, for each y, and (ii) at the true value θ0, with
associated true value ψ0 = ψ(θ0), the distribution of C(ψ0, Y ) is uniform on the unit
interval. From this follows, under the standard continuity and monotonicity assumptions,
that

Prθ0{C−1(0.05, Y ) ≤ ψ0 ≤ C−1(0.95, Y )} = 0.90,

etc., i.e. [C−1(0.05, yobs), C
−1(0.95, yobs)] is a 90% confidence interval for ψ, where yobs

denotes the observed dataset. Thus the confidence distribution C(ψ, yobs), qua random
c.d.f., is a compact and convenient representation of confidence intervals at all levels, and
indeed a powerful inference summary. A close relative is the confidence curve, which
we tend to prefer as a post-data graphical summary of information for focus parameters,
defined as

cc(ψ, yobs) = |1− 2C(ψ, yobs)|. (2)
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It points to its cusp point, the median confidence point estimate ψ̂0.50 = C−1(12 , yobs), and
the two roots of the equation C(ψ, yobs) = α form a confidence interval with this confi-
dence level. Degrees of asymmetry are easier to spot and to convey using the confidence
curve than with the cumulative confidence distribution itself; cf. illustrations in Section 5.
We also note that the random cc(ψ, Y ) has a uniform distribution, at the true position in the
parameter space, since |1− 2U | is uniform when U is. Indeed

Prθ0{cc(ψ0, Y ) ≤ α} = α, for each α, (3)

at the true parameters of the model. The confidence curve is arguably a more fundamental
concept than the confidence distribution, as there are cases where a natural cc(ψ, Y ) may be
constructed, with a valid (3), even when confidence regions are formed by disjoint intervals
(as with multimodal log-likelihood functions).

For an extensive treatment of confidence distributions, their constructions in different
types of setup, properties and uses, see Schweder & Hjort (2016), and the review paper Xie
& Singh (2013), with ensuing discussion contributions. The scope and broad applicability
of confidence distributions are also demonstrated in a collection of papers published in the
special issue Inference With Confidence of the journal Journal of Statistical Planning and
Inference, 2017. Here we shall merely point to two important and broadly useful ways
of constructing a confidence distribution, for a focus parameter ψ, based on data from
a model with a multidimensional parameter θ. The first is to rely on an approximately
normally distributed estimator, if available, say ψ̂ ∼ N(ψ, κ2), and with standard deviation
well estimated with an appropriate κ̂. Then, with Φ(·) as usual denoting the c.d.f. of the
standard normal,

C(ψ, y) = Φ((ψ − ψ̂)/κ̂) (4)

is an approximately correct confidence distribution, first-order large-sample correct under
weak regularity conditions. In particular the estimator used can be the maximum likelihood
one, say ψ̂ml, but other estimators are allowed too in this simple construction. The second
is based on the profiled log-likelihood function `prof(ψ) = max{`(θ):ψ(θ) = ψ}, which
leads to the deviance function

D(ψ) = 2{`prof(ψ̂ml)− `prof(ψ)} = 2{`prof,max − `prof(ψ)}. (5)

As laid out in Schweder & Hjort (2016, Chs. 2, 3), the Wilks theorem with variations then
lead naturally to

cc(ψ, y) = Γ1(D(ψ)), (6)

with Γν(·) denoting the c.d.f. of a χ2 with degrees of freedom ν.
Typically, the second method (6) leads to a better calibrated confidence curve than the

the first method (4). Further fine-tuning methods are developed, illustrated and discussed
in Schweder & Hjort (2016, Chs. 7, 8).

3. Confidence Conversion: From Confidence to Likelihoods

Several well-explored methods, with appropriate variations and amendments, lead from
likelihood functions to confidence distributions and confidence curves; cf. again several
chapters of Schweder & Hjort (2016). Sometimes the CC step comes almost for free,
in cases where the statistician can compute say log-likelihood profiles from raw data and
given models. But in general the CC step of the II-CC-FF paradigm requires methods for
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going the other way, from confidence distributions or confidence curves to log-likelihood
information, and this is more involved. Among the complications is that different experi-
mental protocols, with ensuing different confidence distributions, might be having the same
log-likelihood functions, so the link between confidence and likelihood is not one-to-one.

Schweder & Hjort (2016, Ch. 10) develop and discuss this topic at some length. For
the present purposes we shall be content with what we call the chi-squared inversion, asso-
ciated with (6) above. It consists in using

`c(ψ) = −1
2Γ−11 (cc(ψ, y)) (7)

as the profiled confidence log-likelihood contribution associated with a given confidence
curve. When the confidence curve is constructed via cc(ψ, y) = |1 − 2C(ψ, y)|, this is
also equivalent to the normal conversion `c(ψ) = −1

2{Φ
−1(C(ψ, y))}2. A relevant point

here is that one often constructs a confidence curve cc(ψ, y) directly, not always via (2),
making (7) a more versatile tool. The normal conversion confidence likelihood is also what
Efron (1993) proposed, for coming from confidence to likelihood, via different arguments
and for different purposes; see also Efron & Hastie (2016, Ch. 11).

One may work through various examples, to see how well the chi-squared inversion
method (7) manages to approximate the real profiled log-likelihood. Both are guaranteed
to be close to the negative quadratic−1

2(ψ− ψ̂ml)
2/κ̂2, for the appropriate κ̂, by arguments

associated with large-sample calculus – including asymptotic normality of the maximum
likelihood estimator and indeed the Wilks theorem, see Schweder & Hjort (2016, Ch. 2 and
Appendix). The results are typically good and promising also when the data information
volume is small, as long as the underlying models are smooth in their parameters.

4. Focused Fusion: From Full Likelihood to Focus Parameter

In this section we outline how the Focused Fusion step typically may be carried out, via
profiling of the combined confidence log-likelihood. We first discuss a method for com-
bining confidence distributions developed and used by Singh et al. (2005) and others, valid
when all confidence components relate to a common focus parameter. We then point out
that there are sometimes more powerful methods, using a machinery for loss and risk func-
tions developed in Schweder & Hjort (2016, Chs. 5, 7, 8), before we tend to the focused
profiling.

4.1 The back-and-forth linear combination transformation method

Suppose now that independent information sources y1, . . . , yk give rise to confidence dis-
tributions for the same parameter, say C1(ψ, y1), . . . , Ck(ψ, yk). A general way of com-
bining these into a single overall confidence distribution has been proposed and worked
with by Singh et al. (2005), later on applied in various contexts by Xie & Singh (2013),
Liu et al. (2014, 2015), and others. The starting point is that under the true state of af-
fairs, the Φ−1(Cj(ψ, Yj)) are independent standard normals, from the basic properties of
confidence distributions; here Φ(·) as usual denotes the c.d.f. for the standard normal.
Hence

∑k
j=1wjΦ

−1(Cj(ψ, Yj)) is also standard normal, when the weights wj are such
that

∑k
j=1w

2
j = 1. This again implies that

C̄(ψ, y) = Φ
( k∑
j=1

wjΦ
−1(Cj(ψ, yj))

)
(8)
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is a confidence distribution for ψ, using the combined dataset y = (y1, . . . , yk). The idea
generalises to other basic distributions than the normal, but then the required convolutions
become less tractable.

For the prototype situation associated with (1), the individual confidence distributions
take the form Cj(ψ, yj) = Φ((ψ − yj)/σj), and the general (8) recipe yields

C̄(ψ, y) = Φ
( k∑
j=1

wj(ψ − yj)/σj
)
.

Some considerations then lead to the best of these linear combinations, with weights wj
proportional to 1/σj and

∑k
j=1w

2
j = 1. This indeed agrees with the standard method (8).

Recipe (8) requires nonrandom weights wj , and these could in various cases be fruit-
fully taken as proportional to 1/

√
mj , with mj the sample size associated with data source

yj . In many other situations the balance is more delicate, however, perhaps demanding
nonrandom weights, of the type ŵj estimating an underlying optimal but not observable
wj,0. Problems worked with in Liu et al. (2014, 2015) are of this type. In such cases recipe
(8) is not entirely appropriate and is rather to be seen as an approximation, associated with
confidence intervals with approximate levels of confidence. A better strategy would often
be to work with the actual distribution, say H , of

Z∗ =
k∑
j=1

ŵjZj , with Zj = Φ−1(Cj(ψ, Yj)).

The appropriate generalisation of the recipe above is then

C̄(ψ, y) = H
( k∑
j=1

ŵjΦ
−1(Cj(ψ, yj))

)
, (9)

perhaps with H evaluated or estimated via simulations. In situations with increasing data
volume the estimated weights ŵj would come close in probability to the underlying wj,0,
and H would tend in distribution to Φ, hence with (9) leading back to (8). In yet other
words, method (8) remains correct to the first-order large-sample degree, even though more
careful versions of (9) would tend to work better for smaller samples.

4.2 Confidence power and optimal methods

Strategies (8)–(9) are not always the most powerful, however. For situations where there
are competing confidence distribution strategies for the same parameter, Schweder & Hjort
(2016, Ch. 5) have developed a theory for loss and risk functions for these. Suppose again
that ψ is the focus parameter and that the log-likelihood function at work, based on infor-
mation sources y1, . . . , yk, can be written in the form

`(ψ, γ1, . . . , γm) = ψA+ γ1B1 + · · ·+ γmBm − d(ψ, γ1, . . . , γm) + h(y1, . . . , yk), (10)

where A and B1, . . . , Bm are statistics, i.e. functions of the data collection, with observed
values Aobs and B1,obs, . . . , Bm,obs, and with m often bigger than k. Then, under mild
regularity conditions, there is an overall most powerful confidence distribution, namely

C∗(ψ, y) = Prψ{A ≥ Aobs |B1 = B1,obs, . . . , Bm = Bm,obs}.

That this C∗(ψ, y) indeed depends on ψ but not on the γj parameters is part of the result
and the construction. Confidence power is measured via the risk function

r(C,ψ, γ) = Eψ,γ

∫
Γ(ψcd − ψ) dC(ψcd, Y ), (11)
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for any convex nonnegative Γ(·) with Γ(0) = 0. The random mechanism involved in the
expectation here is a two-stage operation – first data y, governed by the (ψ, γ) held fixed,
are used to generate the confidence distribution C(ψ, y), and then ψcd is a random draw
from this distribution.

Example. Suppose we are observing independent gamma distributed variables Yj ∼
Gam(aj , θ) for j = 1, . . . , k, with densities proportional to yaj−1j exp(−θyj), with known
shape parameters aj and unknown scale parameter θ. The canonical confidence distribution
for data source yj alone is

Cj(θ, yj,obs) = Prθ{Yj ≤ yj,obs} = G(θyj,obs, aj , 1),

with G(·, aj , 1) denoting the c.d.f. of the Gam(aj , 1) distribution. This is indeed seen to
be the optimal confidence distribution, based on yj , by applying the theory of Schweder &
Hjort (2016, Ch. 5), The (8) recipe leads to

C̄(θ, y) = Φ
( k∑
j=1

wjΦ
−1(G(θyj , aj , 1))

)
,

with appropriate weights; in particular, if the shape parameters aj are the same, one ought
to take wj = 1/

√
k.

There is a better method, however. The log-likelihood function is `(θ) =
∑k
j=1(aj log θ−

θyj), with y∗ =
∑k
j=1 yj as sufficient statistic. From Y ∗ ∼ Gam(

∑k
j=1 aj , θ), its natural

associated confidence distribution is

C∗(θ, y) = G
(
θ

k∑
j=1

yj ,
k∑
j=1

aj , 1
)
.

This may also be seen as coming out of the II-CC-FF schema. By the optimality theorem
briefly explained above, the C∗ method outperforms C̄ and all other competitors, in terms
of all risk functions of the indicated type. With Γ(u) = |u| in (11), for example, so that
performance is measured by the smallness of Eθ|θcd − θ|, the improvement over the back-
and-forth transformation method can amount to e.g. 20%, for smaller values of the aj . For
larger values of these aj the risk difference is small.

4.3 Focused fusion via profiling

Suppose now that the II and CC steps have been successfully carried out, leading to con-
fidence log-likelihood contributions `c,j(ψj) from information sources j = 1, . . . , k. As-
suming or taking these to be independent, the overall confidence log-likelihood function
is

`∗c(ψ1, . . . , ψk) =
k∑
j=1

`c,j(ψj).

When focused inference is wished for, for a focus parameter φ = φ(ψ1, . . . , ψk), the natural
way forward is, again, via profiling:

`∗c,prof(φ) = max{`∗c(ψ1, . . . , ψk):φ(ψ1, . . . , ψk) = φ}.

By the Wilks theorem directly, or by variations of the arguments and details used to prove
such theorems (cf. Schweder & Hjort (2016, Appendix)), the overall deviance function

D∗(φ) = 2{max `∗c,prof(φ)− `∗c,prof(φ)}
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tends to a χ2
1 with increasing information volume, at the true parameter values. Hence

cc∗(φ) = Γ1(D
∗(φ))

is the outcome of the three-step II-CC-FF machine, a confidence curve for the focus pa-
rameter. Various fine-tuning techniques may be applied to improve on this first-order ap-
proximation method; cf. Schweder & Hjort (2016, Chs. 7, 8). In situations where the ψj
represent the same focus parameter, common across sources, the scheme above simplifies.

5. Applications

Below we illustrate the capacity for the II-CC-FF paradigm to solve problems in rather
different application settings. We emphasise that its scope of applicability is broader, also
when it comes to combining ‘hard’ with ‘soft’ data and with partial expert opinions, and
aim at demonstrating this in an upcoming journal paper.

Table 1: Skulls: For each of the five time epochs, the table gives the estimate ψ̂ and its
estimated standard deviation σ̂. See Section 5.1 and Figure 1.

epoch ψ̂ σ̂
−4000 2.652 0.562
−3300 2.117 0.442
−1850 1.564 0.337
−200 2.914 0.621

150 1.764 0.374

5.1 Skullometrics

In their fascinating anthropometrical study of the inhabitants of Upper Egypt, from the
earliest prehistoric times to the Mohammedan Conquest, Thomson & Randall-Maciver
(1905) report on skull measurements for more than a thousand crania. A subset of their
data is reported on and analysed in Claeskens & Hjort (2008, Chs. 1 and 9), see in par-
ticular their Figures 1.1 and 9.1. This pertains to four cranium measurements, say y =
(y1, y2, y3, y4)

t, for 30 skulls, from each of five time Egyptian epochs, corresponding to
−4000,−3300,−1850,−200, 150 on our A.D. scale. We model these vectors as

Yt,j ∼ N4(ξt,Σt) for j = 1, . . . , nt,

for each of the five epochs t. There is a variety of parameters worth recording and analysing,
where the emphasis is on identifying the necessarily small changes over time; see also
Schweder & Hjort (2016, Example 3.10). One might add that such questions, pertaining
to the anthropometric evolution over millennia, also touching the demographic history of
emigration and immigration in ancient Egypt, do not touch the first or second waves of
controversy in the wake of Gould (1981). For the present illustration we choose to focus
on the variance matrices, not the means, and consider

ψ = {max eigen(Σ)}1/2/{min eigen(Σ)}1/2,

the ratio of the largest root-eigenvalue to the smallest root-eigenvalue of the variance ma-
trix of the four skull measurements. This is the ratio of the largest to the smallest standard
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deviations of linear combinations atY of the four skull measurements, normalised to have
coefficient vector length ‖a‖ = 1. This parameter is one of several natural measures of de-
gree to which the skull distribution is ‘stretched’. The question is whether the ψ parameter
has changed over time. We assess the degree of change, if any, via the spread parameter
τ in the natural model taking ψ1, . . . , ψ5 ∼ N(ψ0, τ

2). Rather than merely providing a
test of the implied hypothesis H0:ψ1 = · · · = ψ5, which is equivalent to τ = 0, with its
inevitable p-value and a yes-no answer as with a traditional one-way layout type test, we
aim at giving a full confidence distribution for τ , again applying the II-CC-FF scheme.

Table 1 gives point estimates

ψ̂t = {max eigen(Σ̂t)}1/2/{min eigen(Σ̂t)}1/2

for the five time epochs, along with estimated standard deviations σt for these estimators,
the latter obtained via bootstrapping from the estimated multinormal distributions. For our
present purposes the underlying distributions for the estimators are approximately normal,
with the standard deviations σt approximately known. Figure 1 displays point estimates
with 0.90 confidence intervals (left panel), for the five epochs. The log-likelihood for these
five estimates, under the implied N(ψ0, σ

2
j + τ2) model, writing k for the number of data

sources involved, is

`(ψ0, τ) = −1
2

k∑
t=1

{
log(σ2t + τ2) +

(ψ̂t − ψ0)
2

σ2t + τ2

}
.

The ensuing profiled log-likelihood is

`prof(τ) = −1
2

k∑
t=1

[
log(σ2t + τ2) +

{ψ̂t − ψ̃0(τ)}2

σ2t + τ2

]
, with ψ̃(τ) =

∑k
t=1 ψ̂t/(σ

2
t + τ2)∑k

t=1 1/(σ2t + τ2)
.

A confidence distribution for τ can be based on this, but a simpler and powerful alternative
is to use

Q(τ) =
k∑
t=1

{ψ̂t − ψ̃(τ)}2

σ2t + τ2
and C(τ) = 1− Γk−1(Q(τ)),

the point being thatQ(τ) for a given true value of τ has the χ2
k−1 distribution; see Schweder

& Hjort (2016, Ch. 13). This confidence distribution is shown in the right panel of Figure 1,
with a confidence point mass C(0) = 0.221 at zero. This is actually also a p-value for
the hypothesis of equal means, and here not small enough to warrant a claim that this
particular ψ parameter has changed over the four thousand years of Egyptian history – other
skullometric parameters have however changed; see Claeskens & Hjort (2008, Section 9.1)
and Schweder & Hjort (2016, Example 3.5). A 0.95 interval for τ , also indicated in the
figure, is [0, 1.266], and the median confidence estimate is 0.392.

5.2 Meta-analysis of two-by-two tables based on incomplete information

As mentioned earlier, the II-CC-FF paradigm covers many existing meta-analysis methods
as special cases. In the case of meta-analysis of 2 × 2 tables, Schweder & Hjort (2016,
Chs. 5, 13) provides optimal confidence distribution for inference about a fixed odds ra-
tio parameter, both when the event counts are modelled as binomial pairs and as Poisson
pairs. This partly involves the use of (10), via appropriate conditional distributions; see
also Schweder & Hjort (2013a) and Cunen & Hjort (2015) for more details and further dis-
cussion. These optimal solutions can indeed be presented within the II-CC-FF framework.
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Figure 1: Left panel: Point estimates ψ̂t with 90% confidence intervals, for the skull stretch
parameter ψ, across five time epochs. Right panel: Confidence distribution for
the variability parameter τ . See Section 5.1 and Table 1.

For the following application we will demonstrate that the II-CC-FF paradigm can pro-
vide a near-optimal solution, even if the analysis is only based on incomplete informa-
tion. Normand (1999) provides a medical dataset with six studies investigating death rates
among heart attack patients. The treatment group received the drug Lidocaine and the
control group did not, and the number of deaths recorded in each group. Thus there are
binomial pairs

yi,0 ∼ binom(mi,0, pi,0) and yi,1 ∼ binom(mi,1, pi,1),

with subscript ‘1’ indicating treatment and ‘0’ control, see Table 2. Since the probabilities
are small we work here with the Poisson rate model version, where the death counts are seen
as Poisson with rates ei,0λi,0 and ei,1λi,1, with exposure numbers ei,0 and ei,1 proportional
to (or equal to) sample sizes. Our model takes

yi,0 ∼ Pois(ei,0λi,0) and yi,1 ∼ Pois(ei,1λi,1), with λi,1 = γλi,0.

The model has k + 1 parameters, with k = 6 the number of studies being combined. Here
γ is the focus parameter of interest, associated with the potential risk factor, the degree to
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Table 2: Lidocaine data: Death rates for two groups of acute myocardial infarction patients,
in six independent studies; see Section 5.2 and Figure 2.

m1 m0 y1 y0
39 43 2 1
44 44 4 4
107 110 6 4
103 100 7 5
110 106 7 3
154 146 11 4

which Lidocaine leads to higher risk for this population of myocardial infarction patients.
Cunen & Hjort (2015) constructed the optimal confidence distribution for this common
odds ratio parameter γ. In the present demonstration of the II-CC-FF scheme, let us assume
that the data from the Lidocaine studies are not available and that we are only given the six
different confidence curves for the odds ratio parameters in each of the studies (the coloured
curves in Figure 2). We thus have incomplete information, since we behave as if we neither
have the raw data of Table 2, nor information on how the confidence curves were computed.
We will nonetheless use the II-CC-FF paradigm to combine the six confidence curves.
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Figure 2: The coloured curves are the confidence curves for the odds ratio from each of
the six studies. The thick black curve is the optimal combined confidence curve,
while the red dashed curve is the combined confidence curve based on incom-
plete information. See Section 5.2 and Table 2.

The first step, II, is already taken care of, as we have the six confidence curves. The CC
step is more interesting, however. Since we assume or pretend that we do not know how the
confidence curves were constructed, we need to obtain the confidence log-likelihoods by
approximate methods. Here we call on the chi-squared inversion method, as per Section 3,
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leading to

CC: `c,j(γ) = −1
2Γ−11 (ccj(γ)) for j = 1, . . . , k,

where ccj(γ) is the confidence curve from study j and Γ−11 is the quantile function of the
χ2
1 distribution. For the FF step, we sum the log-likelihoods, find the combined deviance

function and apply the Wilks theorem, as per Section 4:

FF: `∗c(γ) =
6∑
j=1

`c,j(γ),

D∗(γ) = 2{`∗c(γ̂)− `∗c(γ)},
cc∗(γ) = Γ1(D(γ)).

The resulting confidence curve closely matches the optimal confidence curve for γ that was
obtained in Cunen & Hjort (2015), as seen in Figure 2.

5.3 Abundance of humpback whales

The II-CC-FF paradigm readily lends itself to combination of information from published
sources, where we may not have access to the full data, but only summary measures. Paxton
et al. (2009) provide estimates of the abundance of humpback whales in the North Atlantic
in the years 1995 and 2001. The two estimates are based on different surveys and can be
considered independent. The authors also provide 95% confidence intervals, via a some-
what complicated model involving aggregation of line transect data from different areas
via spatial smoothing, and also involves bootstrapping. The available information is as pre-
sented in Table 3; note here that the natural 95% confidence interval is not at all symmetric
around the point estimate, with an implied skewness to the right.

Table 3: Abundance assessment of a humpback population, from 1995 and 2001, sum-
marised as 2.5%, 50%, 97.5% confidence quantiles; from Paxton et al. (2009).
See Section 5.3 and Figure 3.

2.5% 50% 97.5%
1995 3439 9810 21457
2001 6651 11319 21214

For this illustration we shall assume that the underlying true abundance underlying
these two studies has remained constant, with population size ψ. Under this assumption
we wish to combine the two surveys in order to get a more precise point estimate, along
with confidence statements. The first step, Independent Inspection, requires us to construct
confidence distributions for ψ from each of the two surveys. In Schweder & Hjort (2016,
Ch. 10), certain methods are proposed and developed for constructing confidence distribu-
tions based only on an estimate and a confidence interval. With a positive parameter, like
abundance, one may use

II: C(ψ, y) = Φ
(h(ψ)− h(ψ̂)

s

)
with a power transformation h(ψ, a) = sgn(a)ψa; see also Schweder & Hjort (2013b)
for some more discussion of this approach (along with a different application, essentially
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also using the II-CC-FF paradigm). In order to estimate the power a and the scale s the
following two equations must be solved,

ψa1 − ψ̂a = −1.96 s and ψa2 − ψ̂a = 1.96 s,

where [ψ1, ψ2] is the 95% confidence interval and ψ̂ the median confidence point estimate.
For the whale abundance, we find (a, s) equal to (0.321, 2.798) for 1995 and (0.019, 0.007)
for 2001 (a small value of a indicates that the transformation is nearly logarithmic). The
corresponding confidence curves are shown in Figure 3. In this case the confidence log-
likelihoods in the Confidence Conversion step are easily obtained. For year j,

CC: `c,j(ψ) = −1
2{hj(ψ)− hj(ψ̂)}2/s2j .

In the final Focused Fusion step, we sum the two confidence log-likelihoods, find the com-
bined deviance function and construct an approximative combined confidence curve by the
Wilks theorem, as per Section 2:

FF: `∗c(ψ) = `c,1(ψ) + `c,2(ψ), D(ψ) = 2{`∗c(ψ̂c)− `∗c(ψ)}, cc(ψ) = Γ1(D(ψ)),

where ψ̂c is the combined maximum likelihood estimate. Here we obtain the red curve in
Figure 3, with ψ̂c = 10847 and a 95% confidence interval [6692, 17156].

For this illustration our parameter of interest was ψ, the assumed common abundance
assessed and estimated in the two surveys. Alternatively we could consider the two surveys
as aiming for different parameters ψ1 and ψ2 and then define our parameter of interest to be
for example the difference or the ratio between the two abundances. This is not a difficult
exercise, using the general II-CC-FF schema, but we do not pursue this here. Instead we
point to the following illustration, where the II-CC-FF is used for a similar problem.

5.4 Ratio of standard deviations

The application discussed above illustrates that we can combine information from different
sources concerned with estimating a common parameter ψ. The II-CC-FF paradigm also
lends itself to combination across information sources in a broader sense, where the differ-
ent sources inform about different parameters ψ1, . . . , ψk and where we are interested in
a function of these parameters, say φ = φ(ψ1, . . . , ψk). For the following illustration the
parameter of interest is ρ = σ2/σ1, the ratio between two standard deviations, where one
study informs us about σ1 and another about σ2.

Our II-CC-FF setup is very general, and can be applied with appropriate work and fine-
tuning to handle various variations over the same theme, such as more difficult background
information and more complex models behind the two assessments of σ1 and σ2. It might
e.g. be the case that one of the estimates is more precise than the other, that one of them
stems from simple direct data and the other from data more indirectly and less clearly
yielding confidence for the relevant parameter. For the present illustration we are content
to show how the story pans out in a simple enough setting, where the first source is an
independent normal sample with n1 = 4 and empirical standard deviation σ̂1 = 0.50,
and the second source is a similar sample but with n2 = 10 and σ̂2 = 3.00. With such
i.i.d. normal data the confidence curve for the standard deviation from data source j is
based on the natural pivot σ̂2j /σ

2
j ∼ χ2

νj/νj , which leads to

II: Cj(σj) = 1− Γνj (νj σ̂
2
j /σ

2
j ),

where νj = nj − 1 and Γνj is the c.d.f. of the χ2 with νj degrees of freedom. See the two
confidence curves for the standard deviations in the left panel of Figure 4. In general, for
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Figure 3: Confidence curves for ψ, the abundance of humpback whales in the North At-
lantic. The two black curves represent the inference from each of the two surveys
we consider (one in 1995 and another in 2001), while the red curve is the com-
bined confidence curve (under the assumption of a constant abundance). See
Section 5.3 and Table 3.

a confidence distribution based on a pivot, say piv(y, ψ) with density f , the corresponding
confidence likelihood is given as Lc(ψ, y) = f(piv(y, ψ)) |∂piv(y, ψ)/∂y| (Schweder &
Hjort, 2016, Ch. 10). In this case we get

CC: `c,j(σj) = 1
2νj{log(σ̂2j /σ

2
j )− σ̂2j /σ2j }.

The final FF step requires the profile log-likelihood for ρ, and again the approximate χ2
1

distribution of the deviance function, as per Section 3,

FF: `∗c,prof(ρ) = max{`c,1(σ1) + `c,2(σ2):σ2/σ1 = ρ} = max
σ1
{`c,1(σ1) + `c,2(σ1ρ)},

D∗(ρ) = 2{`prof(ρ̂)− `prof(ρ)},
cc∗(ρ) = Γ1(D

∗(ρ)).

The confidence curve for the ratio ρ is displayed as the black full curve in the right panel
of Figure 4.

In some cases there may exist some expert knowledge pertaining to at least the focus
parameter under study, here ρ = σ2/σ1, though not necessarily for the full parameter vector
of the combined models, here (σ1, σ2). A proper Bayesian analysis requires the statistician
to have such a prior for (σ1, σ2) – without this ingredient, there is no Bayes theorem lead-
ing to a posterior distribution for the model parameters, or indeed for ρ. The II-CC-FF
scheme allows however incorporation of such partial prior information, i.e. a prior for ρ
without a prior for (σ1, σ2). For this illustration we assume that experts provide a Gamma
prior with expectation equal to 14.0 and variance 6.02. The prior can be represented as a
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Figure 4: Left panel: confidence curves for σ1 and σ2. Right panel: the confidence curve
for ρ = σ2/σ1 based on the two studies (black curve); the confidence curve
based on prior information alone (red dotted curve); and the confidence curve
combining the studies and the prior information (red full-drawn curve). See
Section 5.4.

confidence curve, supplementing the confidence curve based on the two studies. In order
to fuse the prior knowledge and the data we simply add the prior log-likelihood `B(ρ) to
the confidence log-likelihoods, in the following way,

FF: `∗prof,B(ρ) = max{`c,1(σ1) + `c,2(σ2) + `B(ρ):σ2/σ1 = ρ}
= max

σ1
{`c,1(σ1) + `c,2(σ2):σ2/σ1 = ρ}+ `B(ρ)

= `∗c,prof(ρ) + `B(ρ).

We use ‘B’ as subscript to indicate the in this instance partial and perhaps lazy Bayesian,
who does not give a full prior for the model parameters, but contributes a component,
namely where it matters the most, about the focus parameter. Of course the log-prior `B(ρ)
employed here could have been obtained in the more careful and proper Bayesian way of
having started with a full prior for (σ1, σ2), and then a transformation, but we do suggest
that expert knowledge concerning focus parameters is more often put forward directly, not
via the full parameter vector in the fullest model.
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Importantly, this extended deviance function does still have an approximate χ2
1 distri-

bution, by the general approximation arguments involved in the Wilks theorem, unless the
log-prior `B(ρ) is sharp and distinctly non-normal. One may conceptually and sometimes
practically interpret the log-prior as having resulted from real data in previous experiences,
in which case the `B(ρ) would be a genuine profiled log-profile likelihood function from
such an information source. Also, as the sample sizes of the studies increase the informa-
tion from the two studies will dominate the prior and we can safely continue to use the
Wilks theorem. As expected, the confidence curve fusing the prior information and the
information from the two studies lies between the original confidence curve and the prior
confidence curve (see Figure 4). It is also somewhat narrower than both.

6. Discussion

We have proposed, developed and demonstrated the broad usefulness of the II-CC-FF
paradigm for combining information across diverse sources. We intend to develop cer-
tain types of applications further, in situations where some of the three analysis steps are
harder, and shall report on this in future publications.

We note that versions of the II-CC-FF scheme, though not necessarily in three full
steps, have been used earlier, in various guises. Generally speaking, a fair portion of meta-
analyses can be cast in II-CC-FF terms, as indicated in our introduction, and in Schweder
& Hjort (2016, Ch. 13). The challenge is to exploit and employ the general line of thinking
in more complicated situations. An early demonstration is in the field of whale abundance
assessment, in Schweder & Hjort (1996), where other methods, including those pertaining
to Bayesian melding, were shown to have pitfalls; see also Schweder & Hjort (2002).

There is manoeuvring room for variations, fine-tuning and improvement inside the II-
CC-FF scheme, as is also clear from the four applications discussed above. Since several
substeps must be decided on by the context of the given problem, we do not yet foresee a
general automated II-CC-FF package, though making certain specialised versions could be
contemplated. This will also be considered in work to come.
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