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Abstract
We give a brief review of dynamic factor models and their financial and econometric applications.

We then describe new methods to address some long-standing difficulties in choosing the factors or
more targeted predictors and modeling their dynamics in high-dimensional time series.
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1. Introduction

Factor models are widely used for multivariate econometric and financial time series data.
In finance, factor models are widely used for stock returns following the Capital Asset Pric-
ing Model (CAPM) introduced by Sharpe (1964) and the Arbitrage Pricing Theory (APT)
introduced by Ross (1976). Section 2 describes some important developments, particularly
time series models of these factors and their applications to forecasting portfolio returns
involving a large number of stocks. In econometrics, factor models have a long tradition in
macroeconomics, dating back to Burns and Mitchell (1947) and subsequent developments
of economic indicators at the National Bureau of Economic Research. Section 3 gives a
review of dynamic factor models in macroeconomics, culminating in developments in the
big data era of the past decade in which the increasing computational power has enabled
one to evaluate a large number of variables that summarize macroeconomic activities and
to extract from them a much smaller number of factors for time series modeling and pre-
diction. Section 4 describes an alternative approach that uses more targeted predictors than
dynamic factors. Further discussion and concluding remarks are given in Section 5.

2. Dynamic Factor Models of Asset Returns

Lai and Xing (2008, Section 3.3 and 3.4) give an overview of CAPM and APT and the un-
derlying financial theory and statistical methods – linear regression and factor (or principal
component) analysis. Chamberlain and Rothschild (1983) point out that Ross (1976) has
only presented a heuristic justification of APT that claims the absence of arbitrage in a mar-
ket with a very large number of assets to imply that “asset prices are approximately linear
functions of factor loadings." They use a Hilbert space with the mean-square inner product
to formulate (a) the prices of assets and their portfolios and (b) conditions for lack of arbi-
trage opportunities. In this framework they define a strict K-factor structure for the returns
of the first N assets by ΣN = BNBT

N +DN , where ΣN is the covariance matrix of these
returns, BN is N×K and DN is a diagonal matrix whose elements are uniformly bounded
by some constant ρ. They also define an approximate K-factor structure if DN is replaced
by a nonnegative definite matrix RN such that supN λmax(RN ) < ∞. They prove that an
approximate K-factor structure is sufficient for Ross’s theory. Moreover, they also ahow
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that if ΣN has only K unbounded eigenvalues, then an approximate K-factor structure
exists and is unique, and that the corresponding K unit-length eigenvectors converge and
play the role of factor loadings.

Under the classical assumption of i.i.d. returns, factor models as elucidated by Cham-
berlain and Rothschild have played a very important role in dimension reduction and es-
timation of the covariance matrix ΣN . However, stylized facts about asset returns have
shown clear deviations from i.i.d. model, especialy for the volatilities of the returns; see
Chapter 6 of Lai and Xing (2008). Hence time series models of the factors and the idiosyn-
cratic (asset-specific) residuals have been proposed for various financial applications. One
such model is given in Lai et al. (2011). Section 5.3.2 and Section 9.4.2 of Lai and Xing
(2008) have also given other examples of such models.

3. Dynamic Factor Models in Macroeconomics

Stock and Watson (2011) give a survey (up to 2010) of dynamic factor models (DFMs)
in macroeconomics following the seminal works by Sargent and Sius (1977) and Geweke
(1977), toward a dynamic generalization of classical factor analysis models by using fre-
quency domain methods to identify a dynamic factor structure which, however, could not
be used for forecasting. They describe the works of Engle and Watson (1981, 1983) and
Sargent (1989) as the first generation of time-domain DFMs for forecasting, expressing
the DFM as a linear Gaussian state-space model and using maximum likelihood (via the
EM algorithm) to estimate the parameters of the state-space model and the Kalman filter to
estimate the latent state vectors whose components are factors. Specially, the state-space
model is

Φ(L)ft = ηt, Xt = Cft + εt, t = 1, . . . , T, (1)

where Φ(L) = I+A1L+ . . .+AkL
k is a matrix polynomial in the lag operation L, ft is

the latest state vector consisting of the factors ft1, . . . , ftq at time t and ηt are i.i.d. random
errors with mean 0 and diagonal covariance matrix so that the first equation of (1) is the
state equation and the second equation relates the state to the observation vector Xt ∈ Rp

and the i.i.d. random error εt with mean 0 and covariance matrix Σ. The basic idea is that
the number q of factors is manageably small for time series modeling. However, because
of the large number p of time series in Xt, estimation of C by EM “was prohibitive in large
system."

Stock and Watson (2011) describe factor estimation by cross-sectional weighted aver-
aging of Xt, using a p × r matrix W such that WTW/p = I to weight Xt via WTXt,
which has been proposed by Stock and Watson (2002a,b) and Bai and Ng (2002) and fur-
ther developed by Forni et al. (2004,2005) and Bai and Ng (2006), as the second generation
of DFMs. The key assumptions are limp→∞ p−1CTC = D for some positive definite r×r
matrix and supp≥1 λmax(Σ) < ∞. One such estimator of ft is the principal components
estimator that chooses W to be the matrix of unit-length eigenvectors associated with the r
largest eigenvalues of the sample covariance matrix T−1ΣT

t=1XtX
T . The third generation

of DFMs “merges the statistical efficiency of the state-space approach with the robustness
and convenience of the principal components approach" in the works of Giannone et al.
(2008) and Reiss and Watson (2010); Section 2.3 of Stock and Watson (2011).

The preceding discussion has focused on estimation of the factors when the number
r of factors is known. Moreover, we have assumed for simplicity that all factors are dy-
namic. Section 3 of Stock and Watson (2011) reviews developements in the problem of
determining the number of factors and allows in addition the inclusion of static factors
whose number s is also to be determined. It describes the frequency-domain procedure of

JSM 2016 - International Chinese Statistical Association

132



Hallin and Liska (2007) for estimating r and the information criterion used by Bai and Ng
(2002) and Amengual and Watson (2007). It also describes the use of scree plots in princi-
pal component analysis and random matrix theory for the asymptotic distribution theory of
scree plots as T → ∞ and p → ∞, developed by Onatski (2008,2009) for visual diagnostic
and formal tests concerning s. Lai and Tsang (2016) have recently developed an alternative
approach to determination of the number of factors, which will be discussed in Section 4.

4. Targeted Predictors and Reduced Rank Regression

Section 4.1 of Stock and Watson (2011) reviews the application of dynamic factors to
“second-stage regression" for multi-step ahead forecasts of key macroeconomic variables
for the development and evaluation of monetary and other economic policies. Because
multi-step ahead forecasts are involved in the analysis and prediction of the effect of a
policy innovation on the economy, vector autoregression (VAR) has been widely used to
provide such forecasting models since the seminal works of Bernanke and Blinder (1992)
and Sims (1992). However, Bernanke, Boivin and Eliasz (2005) have pointed out that
“to converse degrees of freedom, standard VARs rarely employ more than siz to eight vari-
ables," leading to at least three problems with the forecasts thus constructed. The first is the
“price puzzle" that predicts an increase (instead of the anticipated decrease) in price level
following a contradictionary monetary policy shock. The second is that “it requires taking
a stand on specific observable measures" in the sparse information sets in VAR analysis
(e.g. industrial production or real GPD as representative measure of economic activity).
The third is that “impulse responses can only be observed for the included variables, which
generally constitute only a small subset of variables that the researcher and policy-makers
care about" but does not consider how the effect of policy shocks on other variables may in
turn impact on the included variables. They therefore introduce a factor-augmented vector
autoregression (FAVAR) approach that “combines the standard VAR analysis with factor
analysis," for which the methods of Stock and Watson (2002a) can be used. The factor
or principal component analysis, which basically relates to the covariance matrix of the
vector xt of macroeconomic indicators, in the FAVAR approach is used to determine pre-
dictors that augment the vector yt of basic economic variables in the VAR analysis. Since
the goal is to forecast future values of ys, we have recently developed a more efficient
alternative to factor analysis by using reduced rank regression and pathwise variable se-
lection methods to find the vector ft of additional predictors. Pathwise variable selection
methods such as LASSO and Elastic Net in statistical machine learning have been used by
Bai and Ng (2008) to find “targeted predictors" before applying PCA to them to find more
efficient factors for prediction. Instead of carrying out separately these machine learning
methods that have been developed for i.i.d. samples and PCA for the selected variables, our
alternative approach uses the high-dimensional multivariate stochastic regression modeling
approach, developed by Lai and Tsang (2016), which consists of (a) orthogonal matching
pursuit (which is a simplified version of forward stepwise inclusion of regressors) to ex-
ploit the “coefficient sparsity" (referring to mostly very small regression coefficients) and
(b) reduced rank regression to exploit the inherent low-rank approximations (similar to the
relatively small number of factors if PCA is used). To use (b) effectively in conjunction
with (a), Lai and Tsang (2016) in fact apply a group orthogonal greedy algorithm (GOGA)
similar to group LASSO to obtain the estimator B̂GOGA.

Specifically let xt = (xt1, . . . , xtp)
T be a vector of observed variables (regressors) and

yt = (yt1, . . . , ytq)
T vector of basic variables whose multi-step ahead forecast are to be
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constructed. Consider the regression model

yt = BTxt + εt, (2)

in which xT includes 1 (for the intercept term) and B = (Bji)1≤j≤p,1≤i≤q is the coeffi-
cient matrix. It is assumed that xt is Ft−1-measurable and that the unobservable random
errors εt form a martingale difference sequence with respect to {Ft} (hence “stochastic
regression"), where Fs is the information set (σ-algebra) consisting of the observations up
to time s. The regression model (2) can be used to carry out one-step ahead forecasts of yt.
Macroeconomic forecasting typically involves not only much longer forecasting horizons
but also a range of future times t for which the effect of a policy innovation on yt has to
be considered. This is the motivation underlying the widespread use of VAR and FAVAR
models for macroeconomic forecasting. In particular, the FAVAR model of Bernanke et al.
(2005) is a VAR model for the factor-augmented time series

A(L)Tyt = B(L)T ft−1 + ηt, (3)

Φ(L)T ft = Ψ(L)Tyt−1 +wt, (4)

where A(L) = I −
∑d1

s=1AsL
s, B(L) =

∑d2
s=0BsL

s, Φ(L) = I −
∑d3

s=1ΦsL
s, and

Ψ(L) =
∑d4

s=0ΨsL
s. The major difference of our approach from that of Bernanke et al.

(2005) is that we use targeted predictors instead of factors to define ft. Specifically, define
the r̂ × 1 vector ft by fTt = xT

t B̂
GOGA(v1, . . . ,vr̂) for t = 1, . . . , T , where v1, . . . ,vr̂

are the r̂ right singular vectors of XB̂GOGA, and use it as the “targeted predictor" in lieu
of the original high-dimensional vector xt that covaries with the basic variables ys whose
future joint distribution is to be predicted.

To fit the multivariate regression model (2) under coefficient and rank sparsity, Lai
and Tsang (2016) use the following variable and rank selection procedure along the GOGA
path, which can be described as follows, letting X = (x1, · · · ,xT )

T , Y = (y1, · · · ,yT )
T ,

Xj be the jth column of X, XJ be submatrix of X consisting of columns {Xj : j ∈ J ⊂
{1, · · · , p}}, and ∥ · ∥F be the squared Frobenius norm of a matrix.

1. Initialize with U0 = Y, Î0 = ∅ and empty matrices Q0 and R0.
For k = 1 to m do:

2. Choose îk = argmin1≤i≤p

(
minβ∈Rq ||Uk−1 −Xiβ

T ||2F
)

3. Update Îk = Îk−1 ∪ {̂ik} and compute the QR decomposition

X
Îk

= [X
Îk−1

Xîk
] =

[
Qk−1 qk

] [ Rk−1
...

0 · · · 0 rk

]
= QkRk

4. Update Uk = Uk−1 − qkβ
T
k , where βT

k = qT
kU

k−1.

5. End for, with îkth row of B̂ ∈ Rp×q equal to the kth row of R−1
m [β1, · · · ,βm]T and

the other rows equal to 0T .

Let KT = O({T/ log(pT qT )}1/2) be a prescribed upper bound on the number of GOGA
iterations. Here subscripts of p and q are introduced to denote the dependence on series
length T . A “high-dimensional information criterion” is used to choose the number of
input variables along the GOGA path:

HDIC(k) = T log((TqT )
−1∥Uk∥2F ) + kwT log(pT qT ).
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In particular, for wT = log T , qTHDIC(k) corresponds to HDBIC. For wT = c, qTHDIC(k)
corresponds to HDAIC. After obtaining the selected subset of k̂T predictors, a BIC-type
criterion

IC(r) = Tq log σ̂2(r) + rc(T + q) log(
Tq

T + q
)

is used to choose the rank of B, where σ̂2(r) = ∥Y − XSB(r)∥2F /(Tq). Lai and Tsang
(2016) have shown that IC(r) gives consistent rank estimation for any choice of c under
rank sparsity.

Besides choice of r̂ for reduced rank regression, we also have to choose d1, d2, d3, d4
for the lag polynomials in (3) and (4). Instead of an information (or entropy-based) crite-
rion, we use a prediction-based criterion, which aims at getting optimal multi-step ahead
forecasting performance. Since we are making forecasts of future yt, performance involves
functionals of the joint distribution of yt. Choosing the functional appropriately can be cir-
cumvent the price puzzle mentioned earlier in this section. Details are presented elsewhere.

5. Conclusion

Factor models have played a major role in econometric and financial modeling. The factors
provide major dimension-reduction building blocks for time series modeling and forecast-
ing, particularly in the big data era that features a very large number of economic and
financial time series. It is still an active area of research and we have described some of our
ongoing work in this area.
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