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Abstract

In this paper we propose estimation via bias corrected least squares after model
selection for estimation and variable selection in high dimensional linear regression
models with measurement error or missing covariates. We show that separating model
selection and estimation leads to an improved rate of convergence of the `2 error com-
pared to the rate

√
s log p/n achieved by simultaneous estimation and variable selection

methods such as `1 penalized corrected least squares. If the correct model is selected
with high probability then the `2 rate of convergence for the proposed method is indeed
the oracle rate of

√
s/n. Here s, p, n are the number of nonzero parameters, model

dimension and sample size respectively. Under general model selection criteria, the
proposed method is computationally simpler and statistically at least as efficient as
the `1 penalized corrected least squares method, performs model selection without the
availability of the bias correction matrix, and is able to provide estimates with only a
small sub-block of the bias correction covariance matrix of order s × s in comparison
to the p × p correction matrix required for computation of the `1 penalized version.
Furthermore we show that the model selection requirements are met by a correlation
screening type method and the `1 penalized corrected least squares method. Also,
the proposed methodology when applied to the estimation of precision matrices with
missing observations, is seen to perform at least as well as existing `1 penalty based
methods. All results are supported empirically by a simulation study.

Keywords: High Dimension, Measurement Error, Missing Data.

1 Introduction

Linear regression models with noisy or missing covariates are abound in variety of scientific
fields including econometrics, epidemiology and finance. Particular examples of such data
include the human microbiome expression data measuring relative abundances of bacteria
in the human body, which is often observed only partially, i.e., with several missing obser-
vations and gene expression data that are often corrupted with noise or missing values. It is
well known that ignoring this measurement error or missing-ness leads to biased parameter
estimates, see, e.g., Carroll, Ruppert, Stefansky and Crainiceanu (2006) and Fuller (1987).
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In the high dimensional setting where the number of parameters may vastly exceed the
sample size, several authors including Liang and Li (2009), Loh and Wainwright (2012),
Sørensen, Thoresen and Frigessi (2014), and Kaul and Koul (2015), have studied estimators
for these models. The common thread of these papers being minimization of an appropriate
bias corrected loss function penalized by the `1 norm of the parameter vector of interest.
This approach provides consistent estimates that are also computationally efficient. However,
defining the bias corrected loss function in fact requires a bias correction matrix which is
typically estimated from data. This matrix being itself high dimensional makes its estimation
and thus the implementation of existing methods challenging, if not infeasible.

In this paper we propose a two step estimator for these models and analyse its efficiency
in model selection and the rate of `2 error in estimation. By separating model selection and
estimation, it is possible to improve upon the rate of `2 error in estimation, compared to `1

penalized methods. Furthermore, our methodology requires only a small sub-block of the
bias correction matrix. Thus providing more accurate estimates with lesser information input
in comparison to `1 penalized methods. It is important to note that our error bounds include
the uncertainty due to model selection, i.e., although the model selection and estimation are
performed in separate steps however the final error bounds remain valid with an associated
probability that includes the uncertainty due to model selection.

Loh and Wainwright (2012) show that `1 penalized corrected least squares method
achieves the rate

√
s log p/n of the `2 estimation error, under appropriate conditions. They

also empirically show that this rate is optimal. Here p is the dimension of the parameter
vector, s represents the number of non zero mean parameters in the model and n is the sam-
ple size. In comparison, our two stage methodology enjoys three major advantages. First,
the possibility of performing model selection without the availability of the bias correction
matrix. Second, being able to provide estimates with only a small sub-block of the bias cor-
rection matrix. Lastly, provided one has a reasonable control on the number of incorrectly
identified regressors (m̂), i.e., provided m̂ = OP (s), the proposed method performs at least
as well as `1- penalized methods. In addition, if the correct model is selected from the first
step with probability (w.p.) converging to 1, then the rate of convergence of the `2-error
for the proposed method is shown to be indeed the optimal rate of

√
s/n. We also apply

the methodology developed to the problem of precision matrix estimation with observations 
corrupted with missing values and similarly show that the estimates thus obtained are more 
efficient in comparison to its `1 penalized counterpart.

To the best of our knowledge, such two stage refitting procedures were first introduced 
by Candes and Tao (2007) in the context of Dantzig selector for high dimensional classi-
cal linear regression where X is fully observed, and have been investigated by Belloni and 
Chernuzhokov (2013) with least squares loss again in the linear regression setup without mea-
surement error. In particular, the latter provide a rigorous analysis of the rate of convergence 
of the `2 error for the two stage refitting procedure.

Finally, we perform a series of simulated experiments to confirm our theoretical findings. 
We show empirically that in addition to having higher efficiency in estimation, our method-
ology provides more accurate model identification compared to the `1 penalized counterpart 
and is also computationally faster for larger data sets.
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The rest of this paper is organized as follows. Section 2 describes the model under
consideration and introduces the notation required for the analysis. Section 3 describes the
first step model selection procedure and investigates some theoretical properties of the two
possible methods, which can be used to achieve this goal consistently. Section 4 provides some
theoretical properties of the second step estimation procedure and describes the associated
rates of convergence of estimation error. We then provide an algorithm for precision matrix
estimation with observations corrupted with missing data. Section 5 provides a series of
simulated experiments. All proofs are relegated to the appendix.

2 Model Setup

We begin by describing the models under consideration. Let xi = (xi1, · · · , xip)′, i = 1, · · · , n,
be vectors of random design variables, where for any vector a, a′ denotes its transpose. Let
yi’s denote the responses, which are related to xi’s by the relations

yi = x′iβ0 + εi, for some β0 = (β01, ..., β0p)
′ ∈ Rp, 1 ≤ i ≤ n.(2.1)

Here β0 is the parameter vector of interest, and ε = (ε1, ..., εn)′ is an n−dimensional vector
whose components are i.i.d. Gaussian random variables (r.v.’s) with variance σ2

ε , i.e., εi ∼i.i.d
N (0, σ2

ε), 1 ≤ i ≤ n. Furthermore, the design variables xi’s are not observed directly. Instead,
we observe surrogates zi, 1 ≤ i ≤ n, obeying one of the following two models.

Additive noise:

zi = xi + wi, 1 ≤ i ≤ n.(2.2)

The covariate noise vectors wi = (wi1, .., wip)
′, 1 ≤ i ≤ n, are assumed to be i.i.d. r.v.’s.

Furthermore, wi, xi, and εi, 1 ≤ i ≤ n, are assumed to be mutually independent.

Missing covariates:

zi = xi ⊕ wi, 1 ≤ i ≤ n.(2.3)

Here ⊕ represents componentwise product and wi = (wi1, ..., wip)
′, with the components

{wij, 1 ≤ i ≤ n} ∼i.i.d. Bernoulli(1− ρj), 1 ≤ j ≤ p.

Let X = (x1, ..., xn)′ be the unobserved n×p design matrix and similarly define the n×p
matrices Z, W with the corresponding vectors. For the case of additive noise, the random
matrices X and W are assumed to be sub-Gaussian as defined by Loh and Wainwright
(2012). This definition is restated below for the convenience of the reader.

Definition 2.1 (sub-Gaussian matrices) We say that a random matrix X ∈ Rn×p is
sub-Gaussian with parameters (Σx, σ

2
x) if the following two conditions hold.

1. Each row x′i ∈ Rp of X is sampled independently from a zero-mean distribution with
covariance Σx, 1 ≤ i ≤ n.
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2. For any unit vector δ ∈ Rp the random variable δ′xi is sub-Gaussian in the usual
univariate sense with parameter at most σ2

x, 1 ≤ i ≤ n.

Remark 2.1 An elementary property of sub-Gaussianity and X and W being sub-Gaussian
imply that in the case of additive noise, Z is also sub-Gaussian. Also, Loh and Wainwright
(2012) show as part of the proof of Lemma 4 of their supplement that for the case of missing
covariates, the random matrix Z is also sub-Gaussian with parameter σ2

x, i.e., with the same
parameter as for the unobserved sub-Gaussian random matrix X.

3 Notation, Assumptions and Conventions

The parameters p and s are assumed to diverge with the sample size n, however this depen-
dence is suppressed for clarity of the exposition. For the same reason we do not exhibit the
dependence of the arrays of xi’s and zi’s on n. For any vector δ ∈ Rp, define the support
of δ as supp(δ) =

{
j ∈ {1, 2, ..., p}; δj 6= 0.

}
. The `2 norm of δ is denoted by ‖ · ‖2 and |δ|

shall denote the componentwise absolute value vector. For any two collection of indices S
and S̃, we represent S̃ − S as the collection of indices in S̃ but not in S. The cardinality of
an index set S will be denoted by either card(S), and ‖δ‖0 := card

(
supp(δ)

)
. For any two

sequences {an} and {bn} of real numbers, an � bn means that for some constant 0 < c0 <∞,
an ≤ c0bn, for n large enough. Similarly, an �P bn shall denote that an � bn in probabil-
ity. For matrices M1 and M2 we denote M1 ⊕ M2 and M1 	 M2 as the component wise
product and division, respectively. For a subset A ⊆ {1, 2, · · · , p}, bA denote the vector of
components of b with indices in A. Also, all limits are taken as n → ∞, unless mentioned
otherwise. Lastly, 0 < c0, c1, c2 < ∞, and 0 < c3 < 1 shall denote generic constants that
may be different in different contexts.

In the above setup we shall consider the model (2.1) in the high dimensional setting where
the dimension p of β0 is allowed to grow exponentially with n. In addition β0 is assumed to
be sparse, i.e., only a small proportion of the parameters are assumed to be non zero. In the
sequel,

T = supp(β0), T c denote its compliment set.

By definition, card(T ) = s.
Decompose β0 =

(
β′0T , β

′
0T c

)′
into its non zero and zero components, and similarly

partition n × p matrices X and Z into columns corresponding to the indices of β0, i.e.,
X =

(
XT , XT c

)
, Z =

(
ZT , ZT c

)
. Also a p× p matrix Σ is partitioned as

Σ =

(
ΣTT ΣTT c

ΣT cT ΣT cT c

)
.(3.1)

Throughout, the parameters s, p and n are assumed to satisfy

s log p/n = o(1).
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Define

γ̂add = n−1Z ′y and γ̂miss = n−1Z ′y 	 (1− ρ),(3.2)

where 1 is a p-dimensional vector of ones and ρ = (ρ1, .., ρp)
′. The entities γ̂add and γ̂miss

serve as measures of correlation between X and y in the additive error and missing covariates
cases, respectively. Also define,

Γadd = n−1Z ′Z − Σw, and Γmiss = n−1Z ′Z 	M,(3.3)

for the additive error and missing covariate cases, respectively. Here, M =
[
Mij

]
i,j=1,...,p

is a

p× p matrix with

Mi,j =

{
(1− ρi)(1− ρj) ; i 6= j

(1− ρi) ; i = j.
(3.4)

Next, we state the needed assumptions.

Assumptions:
(A1) Additive errors: In the model (2.2), the measurement error matrixW = (w1, ..., wn)′

is assumed to be sub-Gaussian as defined in (2.1) and wi, xi and εi are assumed to be mu-
tually independent for all 1 ≤ i ≤ n.

(A2) Missing covariates: The components of the vector wi in the model (2.3) are such
that {wij, 1 ≤ i ≤ n} are i.i.d. Bernoulli(1 − ρj), 1 ≤ j ≤ p. Also assume that 0 ≤ ρmax :=
max{ρj ; 1 ≤ j ≤ p} < 1. Furthermore wi’s are mutually independent of xi and εi, for all
1 ≤ i ≤ n.

Unobserved design variables X:

(A3) Assume that the covariance matrix of X satisfies the following conditions, where part
(i) is for additive errors and part (ii) is for missing covariates, and where ρmax is as in (A2).

(i) max |Σx
T cTβ

0
T |+ 2

σz
c0

(σε + σx‖β0‖2)

√
c1 log p

n
< min |Σx

TTβ
0
T |.

(ii) max |Σx
T cTβ

0
T |+ 2

σx
c0(1− ρmax)

(σε + σx‖β0‖2)

√
c1 log p

n

< min |Σx
TTβ

0
T |.

This assumption is similar to Condition F of Genovese et al. (2012) and is also reminiscent of
the ‘faithfulness condition’ of Bühlmann, Kalisch and Maathuis (2009). In the noiseless set-
ting, it is necessary and sufficient for exact recovery of the support of β0, (Thm. 2, Genovese
et al. 2012).

Random matrices Γadd and Γmiss:

RE: A matrix Γ is said to satisfy the lower restricted eigenvalue condition with curvature
α1 > 0 and tolerance τ > 0 if

for all δ ∈ Rp.(3.5) δ′Γδ ≥ α1‖δ‖2
2 − τ‖δ‖2

1, 
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RSE(kn): For any m ≤ kn, a matrix Γ is said to satisfy a lower and upper restricted sparse
eigenvalue condition with constants κ(m), φ(m) > 0, respectively, if

κ(m) := inf
‖δTc‖0≤m, δ 6=0

δ′Γδ

‖δ‖2
2

> 0, φ(m) := sup
‖δTc‖0≤m, δ 6=0

δ′Γδ

‖δ‖2
2

<∞.(3.6)

Assumption RE was introduced by Loh and Wainwright (2012). They prove that this

condition holds for Γadd and Γmiss, with asymptotic probability 1 with appropriate choices
of α1 and τ.

Assumption RSE controls the minimum and maximum eigenvalues of certain sub-blocks

of the matrix Γ. Lemma 3.1 below shows that this condition is satisfied by the matrices Γadd

and Γmiss with asymptotic probability 1.

(A4) Parameter vector β0: The minimum magnitude of the components of β0 satisfies
minj∈T |β0j| � ‖β0‖2 s log p/n.

The following lemma shows that the random matrices Γadd and Γmiss satisfy the con-
dition RSE with asymptotic probability 1, under suitable assumptions. Let

κx(m) := inf
‖δTc‖0≤m, δ 6=0

δ′Σxδ

‖δ‖2
2

, φx(m) := sup
‖δTc‖0≤m, δ 6=0

δ′Σxδ

‖δ‖2
2

.

Lemma 3.1 (Plausibility of RSE). Let kn be any positive sequence satisfying kn log p =
o(n). Suppose condition (A1) for the additive error model or condition (A2) for the missing
covariate model hold. Also assume that some constants κx and φx,

0 < κx ≤ κx(m) ≤ φx(m) ≤ φx <∞, for all m ≤ kn.(3.7)

Then, with Γ = Γadd or Γ = Γmiss, the following conditions

κ(m) := inf
‖δTc‖0≤m, δ 6=0

δ′Γδ

‖δ‖2
2

> 0, φ(m) := sup
‖δTc‖0≤m, δ 6=0

δ′Γδ

‖δ‖2
2

<∞,

hold uniformly over any m ≤ kn with κ(m) ≥ κx/2 and φ(m) ≤ 2φx, w.p. at least 1 −
2c3 exp(−s)/(1− 1/e), for all sufficiently large n.

This lemma shows that for any positive sequence kn satisfying kn log p = o(n), condition

RSE(kn) is satisfied by Γadd and Γmiss, with the lower and upper restricted eigenvalues 
κ(m) and φ(m) being bounded below and above, respectively, for large n, with high proba-
bility. This lemma shall play a useful role in the development of the methodology to follow.

4 Step 1: Model Selection

The objective of this first step is to recover the support T of the parameter vector β0 from 
the observed variables Z and y. In the sequel T̂  denotes the estimate of the support T of β0
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given by the model selection procedure and m̂ denotes the number of noise variables selected,
i.e.,

m̂ = card(T̂ − T ).

We propose the following two possible methods for selecting T̂ .

CS Screen the corrected absolute correlation vector
∣∣γ̂add∣∣ or

∣∣γ̂miss∣∣ to select a certain
number of indices that are largest in magnitude. The intuition behind this is the same
as that of the sure independence screening proposed by Fan and Lv (2008). To see this
equivalence for the additive error case notice that Z ′y = X ′y + W ′y. Now, by assumption
W is independent of y, thus the correlation structure of n−1Z ′y will asymptotically be the
same as that of n−1X ′y. These ideas are made rigorous below.

`1-CLS Use `1 penalized bias corrected least squares as proposed by Loh and Wainwright
(2012) to select the indices of the non zero estimates. This estimator is defined as

β̂ = arg min
‖β‖1≤b0

√
s

{
Q̂n(β) + λn‖β‖1

}
, λn > 0.(4.1)

where b0 is a suitably chosen constant and

Q̂n(β) :=
1

2
β′Γβ − γ̂′β,(4.2)

where Γ and γ̂ are chosen as the corresponding versions in the additive errors or the missing
covariates cases. The selected model is T̂ = supp(β̂).

We begin with the analysis of the CS method. Consider the absolute value of the
correlation vector |γ̂| := (|γ̂1|, ..., |γ̂p|)′ defined in (3.2) between the observed variable Z
and y, and let r(γ̂) = (r1(|γ̂|), ..., rp(|γ̂|))′ denote the vector of descending ranks of the
components of the vector γ̂, where rank one signifies the highest magnitude. Then the CS
method estimates the set of non zero indices by

T̂ (an) = T̂ (an, Z, y, p) = {j ; rj(γ̂) ≤ an, 1 ≤ j ≤ p},(4.3)

where an is a known sequence of positive numbers such that an/s ≤ c, for some constant c ≥
1. The following theorem shows that this procedure identifies the support of the parameter
vector along with providing a reasonable control on the false positives.

Theorem 4.1 If either conditions (A1) and (A3i) hold for the case of additive errors
(2.2) or conditions (A2) and (A3ii) hold for the case of missing covariates (2.3), then the
estimated set of non zero indices T̂ (an) of (4.3) satisfies the following.

(i) T ⊆ T̂ (an), (ii) m̂ � s,

w.p. at least 1− c1 exp(−c2 log p), for all sufficiently large n.

Remark 4.1 A closer look at the proof of Theorem 4.1 shows that if the cardinality of the
set T is known and we let an → s in (4.3), then P

(
T̂ = T

)
→ 1.
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In view of Theorem 4.1, choosing an appropriately leads to identification of the support
of the parameter vector along with a control on the false positives. However, the choice of
this thresholding level an is determined by the number of non-zero components s, which in
practice is unknown. Thus, as is the case with `1 penalized methods, we shall treat an as a
tuning parameter and provide a data based strategy to optimally choose this parameter in
Section 6.

As stated earlier, the implementation of this method does not require the knowledge
of the matrix Σw or M . This is especially useful in the case of additive errors where Σw

is unknown, since we by-pass estimating a p dimensional Σw from a very low number or
typically available replicates of Z. In addition, this method comes at a cheap computational
cost.

Next, we proceed to the `1 − CLS method for model selection. Before proceeding, a
point of caution here is that this method is not useful for the case of additive errors due
to the unavailability of Σw. On the other hand, for the case of missing covariates we can
estimate ρj for all 1 ≤ j ≤ p by the empirical average of the number of observed entries per
column of Z. This in turn enables us to estimate the matrix M and to implement `1-penalized
bias corrected least squares in this case. Thus, the analysis to follow shall focus on model
selection by `1-CLS method only for the case of missing covariates.

Another technical reason for not using `1-CLS in the case of additive errors is the non
convexity of the loss function Q̂n(β). In comparison, Q̂n(β) is convex in the case of miss-
ing covariates, which plays a key role proving the desired model selection property of this
methodology.

We begin with the following additional assumption. For some r > 0,

‖Γmissβ0 − γ̂miss‖∞ ≤ r‖β0‖2

√
log p/

√
n.(4.4)

Then we have the following model selection result.

Theorem 4.2 In addition to (2.1), (2.3), and (A4), suppose the conditions lower-RE and

(4.4) hold for Γmiss and γ̂miss. Then for the method `1-CLS with λn ≥ 4r‖β0‖2

√
log p/

√
n

in (4.1), where r is as in (4.4), we have, with T̂ = supp(β̂),

(i) T ⊆ T̂ , (ii)
√
m̂ ≤ c0φ(m̂)

√
s/α1.

Remark 4.2 The result of Theorem 4.2 is not accompanied by a probabilistic statement
since this result follows by deterministic arguments on the event where the required as-
sumptions hold. In addition Loh and Wainwright (2012) (Theorem 1 and Corollary 2) show

that that the conditions lower-RE and (4.4) hold for Γmiss and the pair (Γmiss, γ̂miss),
respectively, w.p. at least 1− c1 exp(−c2 log p), with

α1 = λmin(Σx)/2 and r = c0
σx

1− ρmax

(
σε +

σx
1− ρmax

)
,

where λmin(Σx) represents the minimum eigenvalue of the matrix Σx.
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Remark 4.3 Recall that for the case of missing covariates, Q̂n(β) is convex, and hence, by
standard results via first order optimality conditions, m̂ ≤ n, see, e.g., Lemma 5 of Tibshirani
(2013). Thus Theorem 4.2 immediately implies that with high probability, m̂ � φ(n)s.
However, this bound is not sharp since φ(n) may diverge with n. From here, following the
strategy of Belloni and Chernozhukov (2013), we extend the result to obtain the bound
m̂ � s under an additional assumption. This will be implied by the following lemma.

Lemma 4.1 Under the conditions of Theorem 4.2,

m̂ ≤ c0

α1

s
[

min
m∈M

φ(m ∧ n)
]
,(4.5)

where M =
{
m ∈ N ; m > 2c0

α1
sφ
(
m ∧ n

)}
.

This lemma is a consequence of Theorem 4.2 and Lemma 2 of Belloni and Chernozhukov
(2013) and thus the short proof is omitted. For details see, page 14 of Belloni and Cher-
nozhukov (2013). As a consequence of this lemma, under the additional assumption

min
m∈M

φ(m ∧ n) ≤ c0,(4.6)

m̂ � s. This result, together with Theorem 4.2 and Remark 4.2, yields that for the case of
missing covariates, the model selected via `1 −CLS satisfies

T ⊆ T̂ , m̂ � s,(4.7)

w.p. at least 1− c1 exp(−c2 log p), for all sufficiently large n. This concludes this section on
the recovery of the support of β0. We now proceed to the estimation of β0.

5 Step 2: Estimation

This section shall investigate the estimation properties of the following estimator. With
Q̂n(· ) as in (4.2), define the post selection corrected least squares estimator of β0 as

β̃ = arg min
β∈Rp

Q̂n(β); βj = 0, for each j ∈ T̂ c.(5.1)

Notice that the support T̂ of the model selected from Step 1 is itself random. We shall show
that the estimator β̃ performs at least as well as `1 penalized corrected least squares in terms
of the rate of convergence of `2 estimation error, under suitable assumptions on model selec-
tion. More interestingly, β̃ has the potential to outperform `1 penalized methods, depending
on the first step model selection. In fact β̃ attains the oracle rate

√
s/n under perfect model

selection (w.p. → 1). Furthermore, the implementation of the proposed estimator requires
the knowledge of only a sub-block

(
O(s)-dimensional

)
of the bias correction matrices Σw or

M in the additive error or missing covariate cases, respectively.

JSM 2016 - Section on Nonparametric Statistics

109



For any constant 0 < c3 ≤ 1 and a universal constant D, let

en(m, c3) =

√
m log p

n
+

√
(m+ s) log(D)

n
+

√
m+ s+ log(1/c3)

n
.(5.2)

Consider the following assumption.

sup
‖δTc‖0≤m, ; ‖δ‖2>0

1

‖δ‖2

∣∣∣δ′Γβ0 − δ′γ̂
∣∣∣ ≤ c0r‖β0‖2en(m, c3).(5.3)

Here 0 < r <∞ is a suitably chosen constant depending on the two sources of noise W and
ε. Later in this section we show that this uniform bound holds with asymptotic probability

1 for both pairs
(
Γadd, γ̂add) and

(
Γmiss, γ̂miss). We now state the main result of this

section.

Theorem 5.1 Suppose model is selected by the CS method and assumptions of Theorem

4.1 hold. Furthermore, assume that the pairs (Γadd, γ̂add) for the additive error case or

(Γmiss, γ̂miss) for the missing covariate case satisfy the uniform deviation condition in (5.3)
and the condition lower-RSE(an) with an as in (4.3). Then there exists a universal positive
constant c0 such that

‖β̃ − β0‖2 ≤
1

κ(m̂)
c0r‖β0‖2en(m̂, c3),(5.4)

holds, w.p. at least 1− c1 exp(−c2 log p)−
(
6c3 exp(−s)

/
(1− 1/e)

)
, for all sufficiently large

n.

Corollary 5.1 Suppose the conditions of Theorem 5.1 hold, and that ‖β0‖2 ≤ b0, for some
constant b0 <∞. Then

‖β̃ − β0‖2 �P


√

s log p
n

; in general√
s
n

+
√

o(1)s log p
n

; if an/s→ 1+,√
s
n

; if an = s.

(5.5)

The proof of this corollary is a direct consequence of Theorem 5.1 and is thus omitted. An
immediate consequence of this corollary is that implementing the two stage corrected least
squares with the first stage model selection done via the CS method will result in estimates
that perform at least as well as `1 penalized counterparts. More importantly, the two stage
method has room for improvement for the rate of convergence. In contrast, `1 penalized
methods have a rate of

√
s log p/n which is empirically known to be optimal, see, e.g. Loh

and Wainwright (2012). In fact under perfect (w.p. → 1) model selection, β̃ achieves the√
s/n, which is the oracle rate of convergence.
The second useful aspect of this method is that implementing the second step estimation 

requires only an O(s) dimensional block of the p dimensional bias correction matrix Σw or M 
to be known or estimated. In comparison, the `1 penalized method for simultaneous model
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selection and estimation requires the entire p dimensional matrix. Keeping in mind that the
dimension p can be growing exponentially with n, estimating Σw from the low number of
typically available replicates of the design variables may be infeasible.

Next, we focus on the case of missing covariates where model selection is done via `1-
CLS method and estimation via (5.1). This shall again yield estimates that are at least as
efficient as the estimates based on `1 −CLS method and shall allow room for improvement
in its efficiency.

Theorem 5.2 Suppose the model (2.1) and (2.3) holds, and let model selection be done via
`1-CLS method. Assume conditions of Theorem 4.2 and in addition assume that the pair(
Γmiss, γ̂miss) satisfies the uniform deviation condition (5.3) and the matrix Γmiss satisfies

condition lower-RSE(bn) and (4.6) for any bn = O(s). Then there exists a universal positive
constant c0 such that

‖β̃ − β0‖2 ≤
1

κ(m̂)
c0r‖β0‖2en(m̂, c3).

In particular, if ‖β0‖2 � 1, then the rate of convergence described here is at least

‖β̃ − β0‖2 �
√
s log p

n
.

The results of Theorem 5.2 are not accompanied by a probabilistic statement since this
result follows by deterministic arguments on the event where the required assumptions hold.
In view of Lemma 3.1 and Lemma 5.1, all assumptions made on random quantities made
here hold with asymptotic probability 1. Thus, the conclusions of this theorem hold with
asymptotic probability 1.

The proof of Theorem 5.2 essentially uses the property (4.7) from the first step model
selection and is similar to that of Theorem 5.1, hence omitted. This theorem may also be
extended easily to any model selection procedure satisfying (4.7).

The only remaining part is to now show that the uniform deviation assumption (5.3)
holds with high probability. This forms the content of the following lemma.

Lemma 5.1 Suppose the model (2.1) holds and that the covariate noise W satisfies condi-
tions (A1) and (A3) for additive error and missing covariate cases, respectively. Let

r =

{
σz(σw + σε) ; for additive error
σx

1−ρmax

(
σε + σx

1−ρmax

)
; for missing covariates.

Then, with Γ = Γadd, γ̂ = γ̂add or Γ = Γmiss, γ̂ = γ̂miss,

sup
‖δTc‖0≤m ; ‖δ‖2>0

1

‖δ‖2

∣∣∣δ′Γβ0 − δ′γ̂
∣∣∣ ≤ c0r‖β0‖2en(m, c3),

w.p. at least 1− 6c3e
−s/(1− 1/e), for all sufficiently large n.
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5.1 Application to estimation of precision matrices with missing
observations

Estimation of covariance and precision matrices plays an important role in several statistical
analyses including the principal component analysis, linear/quadratic discriminant analysis,
and graphical modeling. This problem has been extensively researched in the case where the
observations are i.i.d. vectors from a multivariate sub-Gaussian distribution, see, Meinhausen
and Bühlmann (2006), Friedman, Hastie and Tibshirani (2007) and Bickel and Levina (2008).
On the other hand, when the observed vector is corrupted by missing variables, Loh and
Wainwirght (2012) propose an algorithm based on the `1 penalized corrected least squares
estimator, which provides consistent estimates.

Suppose observations Xi ∈ Rp, 1 ≤ i ≤ n are i.i.d. N (0,Σ), where Σ is a positive
definite matrix. Then it is well known, see, e.g., Anderson (2003), that for each 1 ≤ j ≤ p,
the conditional distribution of the jth component Xj

i , given the rest X−ji , is again normal
distribution, i.e.,

Xj
i

∣∣∣X−ji ∼ N(Σj,−jΣ
−1
−j,−jX

−j
i , Σjj − Σj,−jΣ

−1
−j,−jΣ−j,j

)
.

This result can equivalently be written as the linear relation,

Xj
i = X−jTi θj + εj, 1 ≤ i ≤ n,(5.6)

where θj = Σ−1
−j,−jΣ−j,j is a p−1 dimensional vector and εj is a vector of i.i.d. Gaussian r.v.’s,

independent of X−j. Here Σ−j,−j represents the sub-block of Σ with the jth row and column
removed. The precision matrix Θ := Σ−1 can then be reconstructed from θj, 1 ≤ j ≤ p as
follows,

Θjj = dj, and Θ−j,j = −djθj, where dj := (Σjj − Σj,−jθ
j)−1.(5.7)

When Zi = Xi ⊕ Wi is observed in place of Xi, 1 ≤ i ≤ n with missing observations
as described in (2.3), we can use the methodology proposed in sections 4 and 5 above to
estimate the parameters θj of the model (5.6) for every 1 ≤ j ≤ p. Note that the response
and predictor variables both have missing observations in this case, however the proofs of
our results in the previous sections can be easily seen to hold under this setup.

For any matrix A = (aij)1≤i,j≤p, let ‖A‖2 = max1≤j≤p
(∑p

i=1 a
2
ij

)1/2
. Also define λmin,

λmax as the minimum and maximum eigenvalues of the covariance matrix of interest Σ.
Then we have the following algorithm.

Algorithm 1:

1. Let Σ̂ = n−1Z ′Z 	M with M as defined in (3.4). For each 1 ≤ j ≤ p, define

(Γj, γ̂j) =
(

Σ̂−j,−j, n
−1Z−jTZj 	 (1− ρ−j)(1− ρj)

)
,

and estimate the support of θj by the CS method for model selection, i.e., with the thresh-
olding level an = c0s, c0 > 1, let

T̂j(an) = {k ; rk(γ̂) ≤ an, 1 ≤ k ≤ (p− 1)}.
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2. Obtain estimates θ̂j by the following optimization,

θ̂j = arg min
‖θ‖1≤b0

√
s

Q̂j(θ) ; θk = 0, for each k ∈ T̂ cj .(5.8)

3. Substitute Σ̂ and θ̂j, to obtain d̂j = (Σ̂jj−Σ̂j,−j θ̂
j)−1 and complete the estimated precision

matrix Θ̃ with Θ̃−j,j = −d̂j θ̂j and Θ̃j,j = d̂j

4. Set Θ̂ = arg minΘ∈Sp‖Θ− Θ̃‖2, where Sp is the collection of symmetric matrices.

Note that we have placed an additional restriction on the parameter space in step 2 of
the algorithm, i.e., ‖θj‖1 ≤ b0

√
s, where s represents card(Tj). This additional restriction

does not influence the proofs of Section 4 and 5.
The choice of the thresholding level an = c0s is required for our proofs. However in

practice an is a data based tuning parameter as described earlier, see also Remark 6.1.
We now proceed to providing consistency in estimation of the above algorithm. The

assumptions required for this purpose are restated below in the present context.

Assumptions:

(G1) The vectors θj = Σ−1
−j,−jΣ−j,j are s-sparse, i.e., for all 1 ≤ j ≤ p, |Tj| ≤ s, where

Tj = Supp(θj). Furthermore, assume that ‖θj‖1 ≤ b0

√
s, 1 ≤ j ≤ p for some constant

b0 <∞.
(G2) The covariance matrix Σ has bounded maximum and minimum eigenvalues, i.e., 0 <
λmin(Σ) ≤ λmax(Σ) <∞, and satisfies the following relation for all 1 ≤ j ≤ p,

max |ΣT c
j Tj
−j,−jθ

j
Tj
|+ 2

σ

c0(1− ρmax)2
(σε + σx‖θj‖2)

√
c1 log p

n

< min |ΣTjTj
−j,−jθ

j
Tj
|.

Here Σ
TjTj
−j,−j, and Σ

T c
j Tj
−j,−j are a partitions of Σ−j,−j as described in (3.1).

(G3) The pairs (Γj, γ̂j), 1 ≤ j ≤ p, satisfy the following uniform deviation condition. For
each 1 ≤ j ≤ p, and for some constant r <∞.

sup
‖δTc

j
‖0≤m, ; ‖δ‖2>0

1

‖δ‖2

∣∣∣δ′Γjθj − δ′γ̂j∣∣∣ ≤ c0r‖θj‖2en(m, c3).(5.9)

Theorem 5.3 In addition to conditions (G1), (G2) and (G3), assume that the lower-
RSE(an) condition holds uniformly over the matrices Γj, and

∥∥Σ̂− Σ
∥∥
∞ ≤ c0σx

√
log p

n
.(5.10)

Then the estimated precision matrix Θ̂ provided by Algorithm 1 satisfies∥∥Θ̂−Θ
∥∥

2
≤ c0

(
C2

2 +
C2

1

λ2
min

+
λmax

λmin

C2

)1/2

en(an − s, c3),
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w.p. converging to 1, where

C1 = rλmax/λmin, C2 =
(
b0σx +

(
rλ2

max/λ
2
min

))/
λ2

min.

Remark 5.1 Assumption (5.10) is a standard assumption for high dimensional covariance
recovery. It can be shown to hold with asymptotic probability 1 with an appropriate choice
of constant c0, see Yuan (2010). The uniform bound of Assumption (G3) can be shown to
hold using the same arguments as in Lemma 5.1. Lastly, the condition lower-RSE can be
shown to hold uniformly over 1 ≤ j ≤ p with high probability by applying arguments of
Lemma 3.1 along with the observation that in this case uniformly over all 1 ≤ j ≤ p,

0 < λmin ≤ k−j,−j(m) ≤ φ−j,−j(m) ≤ λmax <∞,(5.11)

for any 1 ≤ m ≤ kn. Here κ−j,−j and φ−j,−j are as defined in (3.7) with Σx replaced by
Σ−j,−j.

6 Simulation Study

In this section we numerically analyse the performance of the methodology developed in
this paper. We implement our two step methodology with model selection done via method
(CS) and refer to these as the post selection estimates. In the following we shall compare the
post selection estimates with the `1 penalized corrected least squares estimates of Loh and
Wainwright (L&W) and the ordinary Lasso which disregards covariate noise or missing-ness.

Remark 6.1 Tuning Parameter: The model selection step in our post selection estimates
involves choosing an appropriate value of the thresholding level an. To choose this tuning
parameter, we employ standard cross validation logic, i.e., the CS method is used to select
models for a grid of values of an ∈ {1, 2, ..,min{p, (n/ log p)}} and corresponding estimates
β̃an are obtained via (5.1). These estimates are then used on an independent test set to
compute the corrected least squares loss

L(β̃an) =
1

2
β̃′anΓβ̃an − γ̂′β̃an .

The tuning parameter an is chosen as a minimizer of this criteria. Naturally, larger the grid 
chosen for an, more is the computation time necessary. To maintain fairness of comparisons 
the same cross validation approach is used to choose the tuning parameter λ of `1 penalized 
corrected least squares estimator. The tuning parameter for the ordinary Lasso is chosen 
via similar cross validation with the loss function chosen as ordinary least squares. In both 
cases λ is allowed to range from zero to one with increments of 0.05.

All simulations are performed in R, the estimates of ordinary Lasso are obtained using the 
package glmnet developed by Friedman et al. (2013). Post selection estimates β̃  and L&W 
estimates are obtained via the projected gradient descent algorithm, see, e.g. Agarwal, 
Neghban and Wainwright (2012) and Loh and Wainwright (2012).
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6.1 Simulation Setup and Results

We begin with the regression setting with additive error or missing covariates. Here, the
unobserved design variables {xij, 1 ≤ i ≤ n, 1 ≤ j ≤ p, } are chosen as i.i.d. r.v.’s from
a standard normal distribution. Components of the parameter vector β0 are generated
independently from a uniform distribution with support (−4,−1)∪ (1, 4). The model errors
εi, 1 ≤ i ≤ n are generated as i.i.d. N (0, σ2

ε) with σε = 0.25.
To evaluate performance of the estimators, two cases each are presented for additive

errors and missing covariates. An independent data set for every combination of the following
(n, p, s) settings is generated,

• Sample size n ranging from 100 to 500 with increments of 40. Model dimension p ranging
from 100 to 500 with increments of 65 and the number of non zero parameters s = 4, 8. Thus
leading to 154(11× 7× 2) independent models.

• p = 750, s = 4 and n ranging from 50 to 500 with increments of 5, thus leading to 91
independent models.

The three estimators to be compared are computed for each generated model and we
report the following measures for comparison, (1) relative estimation error, REE:=‖β −
β0‖2/‖β0‖2, (2) number of false positives, i.e., number of incorrectly identified zero compo-
nents, and (3) computation time (in seconds) required to obtain estimates.

Example 1. Regression Setting: Suppose the model (2.1) holds and consider the follow-
ing two cases.

•Additive Error: The covariate noise variablesWi, 1 ≤ i ≤ n are assumed to be i.i.d. Gaussian
with mean zero and covariance matrix Σw = cw

[
σwij
]
i,j=1,..,p

, where σwij = 0.5|i−j| and cw =

0.25. Simulation results are illustrated in Figure 1: Ad1-Ad4.

•Missing Covariates: The missing covariates are generated as described in assumption (A2)
where ρj, 1 ≤ j ≤ p are chosen independently from a uniform distribution over the support
(0.05, 0.75). Simulation results are illustrated in Figure 1: M1-M4.

Ad1 Ad2
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Ad3 Ad4

M1 M2

M3 M4

Figure 1: Ad1 & M1 plots REE against n/s log p, here n, p ∈ [100, 500], and s ∈ {4, 8} for the additive
error and missing covariate cases respectively. Ad2, Ad3, Ad4 & M2, M3, M4, plots REE, false positives,
and computation time at p=750, against n in the additive and missing cases respectively.

• Estimation accuracy: The empirical results support the theoretical findings. Consistency
in the `2 estimation error of the post selection estimator is clearly observed. In addition, the
post selection estimates nearly uniformly outperform the two other estimators, see Figure 1:
Ad1, Ad2, M1, M2. The L&W estimates perform marginally better at lower sample sizes
for the additive error case, see Figure 1: Ad1, Ad2.

• False positives: In both additive and missing covariate cases, the post selection estimates
are seen to provide a significant improvement in the control on false positives, see Figure 1:
Ad3, M3.

• Computation time: The computation time for post selection estimates is significantly
quicker in comparison to L&W estimates and comparable to Lasso at larger values of p and
a fixed sample size n. However the computation time for post selection estimates increases
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with n due to the increase in the grid size of an for cross validation. In comparison, the
computation time of L&W and Lasso estimates decrease as the grid size for cross validation
stays the same and numerical convergence becomes quicker with higher n, see Figure 1:
Ad4, M4.

Example 2. Graphical Models: In this example we examine the efficacy of the proposed
algorithm in estimating the precision matrices for two types of Gaussian graphical models,
namely band and cluster structured graphs. These precision matrices are generated by the
package ”fastclime” developed by Pang, Liu and Vanderbei (2014). For a p-dimensional
graph, around p/20 band width or clusters are assumed in the two cases, respectively. The
adjacency matrices of these graphs with p = 50 are illustrated below

Figure 2: Plots of adjacency matrices of banded and cluster precision matrices respectively.

The precision matrices are generated so that the corresponding covariance matrix Σ =
Ω−1 is normalized to have all diagonal components 1. For further details on the construction
of these matrices see, page 5 of Pang, Liu and Vanderbei (2014). Next, the unobserved
variables Xi, 1 ≤ i ≤ n, are generated as i.i.d. N (0, cxΣ) for cx = 1, 3. Missing-ness is then
induced as Zi = Xi ∗ Wi, 1 ≤ i ≤ n in accordance with (2.3), where ρj, 1 ≤ j ≤ p, are
chosen independently from a uniform distribution over the support (0.05, 0.75). For each
model, we compute estimates via the proposed Algorithm 1 and compare it to the estimates
based on the `1 penalized version of L&W. For performance comparison we report ‖Θ̂−Θ‖2,
in addition to false positives identified in the matrix and the computation time required to
compute corresponding estimates.

CG1 CG2
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CG3 CG4

BG1 BG2

BG3 BG4

Figure 3: CG1 & BG1 plots ‖Θ̂−Θ‖2 against n/ log p, here n, p ∈ [50, 300], for the cluster and banded
graph cases respectively. CG2, CG3, CG4 & BG2, BG3, BG4, plots ‖Θ̂ − Θ‖2, false positives, and
computation time at p=100 against n in the cluster and banded graph cases respectively. Also, cx = 3, 1 in
the cluster and banded graph cases respectively.

• Estimation accuracy : Post selection estimates provide consistent estimates of Θ. In addi-
tion, they are uniformly superior in the case of the cluster graph and perform about as well
as L&W estimates in the banded graph case, see Figure 3: CG1, CG2 & BG1, BG2.
This is due to the constant cx which is 3 in the latter and 1 in the banded graph case. It is
seen that the post selection estimates become uniformly superior as cx is increased.

• Computation time : Although the computation time for L&W estimates in the settings pre-
sented here is significantly faster when n increases, however it is also observed that increasing
the dimension p significantly favors post selection estimates in terms of computational effi-
ciency.

Note: In Figures 1 and 3, three colors of each dot represent a performance measure corre-
sponding to an independently generated model for the three estimates being compared. To
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measure the average performance over the independently simulated models, non parametric
regression lines and corresponding confidence bands are drawn, these are made via the Loess
method with its smoothing parameter set as 0.75.

7 Appendix

7.1 Proofs for Section 3

The proofs to follow require a probability bound for centered sum of squares of independent
sub-Gaussian r.v.’s. This is facilitated by Lemma 14 of Loh and Wainwright (2012) supple-
ment which is restated below for completeness. This lemma in turn is a direct corollary of
Lemma 14 of Vershynin (2012).

Lemma 7.1 If X ∈ Rn×p1 is any zero mean sub-Gaussian matrix with parameters (Σx, σ
2
x),

then for any fixed unit vector v ∈ Rp1 and t > 0,

P
(∣∣∣‖Xv‖2

2 − E‖Xv‖2
2

∣∣∣ ≥ nt
)
≤ 2 exp

(
− 1

c0

nmin
{ t2
σ4
x

,
t

σ2
x

})
,(7.1)

where c0 > 0 is a universal constant. Moreover, if Y ∈ Rn×p2 is a zero mean sub-Gaussian
matrix with parameters (Σy, σ

2
y) then for every t > 0,

P
(∥∥∥n−1Y ′X − Cov(yi, xi)

∥∥∥
∞
≥ t
)

(7.2)

≤ 6p1p2 exp
(
− c0nmin

{ t2

σ2
xσ

2
y

,
t

σxσy

})
.

Here yi and xi represent the ith rows of Y and X, respectively.

To state the next lemma we need to define

B(m) = {δ ∈ Rp, ; ‖δT c‖0 ≤ m}, B1(m) = {δ ∈ B(m), ; ‖δ‖2 ≤ 1}.

Lemma 7.2 Let X ∈ Rn×p be a sub-Gaussian matrix with parameters (Σx, σ
2
x). For a c3 ∈

(0, 1), let

rn = rn(m, c3) =
σ2
x

3c0

en(m, c3),

where en(m, c3) is as in (5.2). Then, for all sufficiently large n,

P

(
sup

δ∈B1(m)

∣∣∣‖Xδ‖2
2

n
− E ‖Xδ‖

2
2

n

∣∣∣ ≥ rn, for all m ≤ n

)
≤ 2c3e

−s/(1− 1/e).

JSM 2016 - Section on Nonparametric Statistics

119



Proof of Lemma 7.2. For every U ⊆ {1, ..., p} with card(U − T ) ≤ m, define SU := {δ ∈
Rp; ‖δ‖2 ≤ 1; supp(δ) ⊆ U} and note that B1(m) = ∪card(U−T )≤mSU . Let A = {u1, ..., uk}
be a 1/10 cover of a fixed SU , i.e., for each δ ∈ SU there exists ui ∈ A such that ‖δ −
ui‖2 ≤ 1/10. It is known from Ledoux and Talagrand (1991) or Loh and Wainwright (2012)
(Supplementary materials, pg.17), that one can construct A such that card(A) ≤ 100(m+s).
Let ψ(δ1, δ2) = δ′1

(
X′X
n
− Σx

)
δ2. Then by elementary algebra,

ψ(δ, δ) = ψ(ui, ui) + 2ψ(δ − ui, ui) + ψ(δ − ui, δ − ui)(7.3)

Note that by construction, there exists ui ∈ A such that 10(δ − ui) ∈ SU and thus 2ψ(δ −
ui, ui) = 2

10
ψ(δ1, ui), for δ1 := 10(δ − ui) ∈ SU .

Now expressing the second term on the r.h.s. of (7.3) as,

2

10
ψ(δ1, ui) =

1

10
ψ(δ1, δ1) +

1

10
ψ(ui, ui)−

1

10
ψ(δ1 − ui, δ1 − ui)

≤ 1

10
max
i
|ψ(ui, ui)|+

5

10
sup
δ∈SU

|ψ(δ, δ)|,

where the last inequality follows since for any δ1, δ2 ∈ SU we also have 1
2
(δ1 − δ2) ∈ SU .

Replacing this inequality in (7.3) we obtain

sup
δ∈SU

|ψ(δ, δ)| ≤ 11

10
max
i
|ψ(ui, ui)|+

51

100
sup
δ∈SU

|ψ(δ, δ)|, or

sup
δ∈SU

|ψ(δ, δ)| ≤ 3 max
i
|ψ(ui, ui)|.

Applying (7.1) of Lemma 7.1 to each ψ(ui, ui) and taking a union bound over the 100m+s

such possibilities we obtain,

P

(
sup
δ∈SU

∣∣∣‖Xδ‖2
2

n
− E ‖Xδ‖

2
2

n

∣∣∣ ≥ 3t

)
≤ 2 100m+s exp

[
− c0nmin

( t2
σ4
x

,
t

σ2
x

)]
.

Again taking the union bound over all
(
p
m

)
≤ pm possibilities of U we obtain

P

(
sup

δ∈B1(m)

∣∣∣‖Xδ‖2
2

n
− E ‖Xδ‖

2
2

n

∣∣∣ ≥ 3t

)
≤ 2 100m+s pm exp

[
− c0nmin

( t2
σ4
x

,
t

σ2
x

)]
.

Choose t such that

c0

√
nt/σ2

x =
√
m log p+

√
(m+ s) log 100 +

√
(m+ s) + log(1/c3).

Then for n large enough t2 < t and we obtain

P

(
sup

δ∈B1(m)

∣∣∣‖Xδ‖2
2

n
− E ‖Xδ‖

2
2

n

∣∣∣ ≥ rn

)
≤ 2c3 exp[−m− s].
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Summing over all m both sides of this bound in turn yields

P

(
sup

δ∈B1(m)

∣∣∣‖Xδ‖2
2

n
− E ‖Xδ‖

2
2

n

∣∣∣ ≥ rn, for allm ≤ n

)

≤ 2c3

∞∑
m=0

exp[−m− s] = 2c3e
−s/(1− 1/e).

This completes the proof of the lemma �

Proof of Lemma 3.1. Case 1: Additive Error: Apply Lemma 7.2 to the sub-Gaussian
matrix Z to obtain w.p. at least 1− 2c3 exp(−s)/(1− 1/e), for any δ ∈ B1(m), m ≤ kn,∣∣∣δ′[n−1Z ′Z − Σz

]
δ
∣∣∣ ≤ rn(m, c3).

Now substitute the relation Σz = Σx + Σw in this inequality to obtain

δ′Σxδ − rn(m, c3) ≤ δ′Γaddδ ≤ δ′Σxδ + rn(m, c3).(7.4)

Notice that since kn log p = o(n) by assumption, rn → 0. Hence (7.4) and the assump-

tion (3.7) imply that the condition RSE(kn) holds for the matrix Γadd w.p. at least
1− 2c3 exp(−s)/(1− 1/e), for all n large.

Case 2: Missing Covariates: Observe that for any δ ∈ Rp we have∣∣∣δ′(Γmiss − Σx)δ
∣∣∣ =

∣∣∣δ′((n−1Z ′Z − Σz

)
	M

)
δ
∣∣∣

≤ 1

(1− ρmax)2

∣∣∣δ′(n−1Z ′Z − Σz

)
δ
∣∣∣.

Since Z is sub-Gaussian by Remark 2.1, applying Lemma 7.2 we obtain w.p. at least 1 −
2c3 exp(−s)/(1− 1/e) that ∣∣∣δ′(Γmiss − Σx)δ

∣∣∣ ≤ rn(m, c3)

(1− ρmax)2
.

The fact 0 ≤ ρmax < 1 and the assumption (3.7) imply that the condition RSE(kn) holds

for the matrix Γmiss, w.p. at least 1− 2c3 exp(−s)/(1− 1/e), for large enough n. �

7.2 Proofs for Section 4

Proof of Theorem 4.1. Part (ii) of this theorem follows by construction of T̂ (an). We
prove part (i) separately for the two cases of additive errors and missing covariates.

Case 1: Additive Error: It suffices to show that except on a set with asymptotic proba-
bility zero,

max |Z ′T cy| < min |Z ′Ty|.(7.5)
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Consider ∥∥γ̂ − Σxβ0

∥∥
∞ =

∥∥n−1Z ′y − Σxβ0

∥∥
∞(7.6)

≤
∥∥n−1Z ′Xβ0 − Σxβ0

∥∥
∞ +

∥∥n−1Z ′ε
∥∥
∞.

Let

t1 = c0σzσε
√

(log p)/n.(7.7)

Use (7.2) of Lemma 7.1 with t = t1, to obtain that

P
(
n−1‖Z ′ε‖∞ ≥ t1

)
≤ 6p exp

(
− cnmin

{ t21
σ2
zσ

2
ε

,
t1
σzσε

})
(7.8)

≤ c1 exp
(
− c2 log p

)
.

Similarly, upon choosing t2 = c0σzσx‖β0‖2

√
(log p)/n we obtain

P
(
n−1‖Z ′Xβ0 − Σxβ0‖ ≥ t2

)
≤ c1 exp

(
− c2 log p

)
.(7.9)

Using inequalities (7.8) and (7.9) in (7.6), we obtain w.p. at least 1− c1 exp(−c2 log p),∥∥γ̂ − Σxβ0

∥∥
∞ ≤ t1 + t2,

for all sufficiently large n. The proof of (7.5) is now completed upon combining this bound
with assumption (A3i). This concludes the proof for additive errors.

Case 2: Missing Covariates: Here, it suffices to show that except on a set with asymptotic
probability zero we have,

max |Z ′T cy 	 (1− ρ)| < min |Z ′Ty 	 (1− ρ)|.(7.10)

For this purpose consider∥∥γ̂ − Σxβ0

∥∥
∞(7.11)

=
∥∥∥n−1Z ′y 	 (1− ρ)− Σxβ0‖∞

∥∥∥
∞

≤ 1

1− ρmax

(∥∥n−1Z ′Xβ0 − cov(zi, xi)β0

∥∥
∞ + ‖n−1Z ′ε‖

)
.

Recall as stated in Remark 2.1, Z is a sub-Gaussian matrix with parameter σx. Hence, argue
as for (7.8) and (7.9), with t1 as in (7.7) and t2 = c0σ

2
x‖β0‖2

√
(log p)/n, to obtain that

P
(
n−1‖Z ′ε‖∞ ≥ t1

)
≤ c1 exp(−c2 log p),

P
(
n−1‖Z ′Xβ0 − Σxβ0‖ ≥ t2

)
≤ c1 exp(−c2 log p).
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These bounds together with the inequality (7.11) imply that, w.p. at least 1−c1 exp(−c2 log p),

‖γ̂ − Σxβ0‖∞ ≤
1

1− ρmax

[t1 + t2],

for all sufficiently large n. The claim (7.10) now follows from this bound, assumption (A3ii)
and the assumption (A2) that ensures 0 ≤ ρmax < 1. �

Proof of Theorem 4.2. Recall that this theorem pertains only to the case of missing
covariates. Part (i) of this theorem is a consequence of Theorem 1 of Loh and Wainwright
(2012), who show that under the assumed conditions, ‖β̂ − β‖2 ≤ λnc0

√
s/α1, w.p. at least

1−c1 exp(−c2 log p), where α1 is as in assumption RE. This result together with assumption
(A4) implies that T ⊆ T̂ , with the same probability, for all sufficiently large n.

To prove part (ii) notice that by the first order optimality conditions
(

Γβ̂ − γ̂
)
T̂

= λn,√
card(T̂ )λn ≤

∥∥∥(Γβ̂ − γ̂
)
T̂

∥∥∥
2

(7.12)

≤
√

card(T̂ )
(∥∥Γβ0 − γ̂

∥∥
∞

)
+
∥∥∥(Γ(β̂ − β0)

)
T̂

∥∥∥
2

= (I) + (II), (say).

Let v be a unit vector such that β̂−β0 = ‖β̂−β0‖2v and note that ‖vT c‖0 ≤ m̂. Consider
the term (II) on the r.h.s of (7.12).∥∥∥(Γ(β̂ − β0)

)
T̂

∥∥∥
2

(7.13)

≤ ‖β̂ − β0‖2 sup
‖δTc‖0≤m̂,‖δ‖2≤1

∣∣δ′Γv∣∣
≤ 3‖β̂ − β0‖2 sup

‖δTc‖0≤m̂,‖δ‖2≤1

∣∣δ′Γδ∣∣ ≤ 3φ(m̂)‖β̂ − β0‖2.

Now consider term (I) of (7.12) for the case of missing covariates.∥∥Γβ0 − γ̂
∥∥
∞ ≤ ‖Γβ0 − Σxβ0‖∞ + ‖γ̂ − Σxβ0‖∞

≤
∥∥((n−1Z ′Z − Σz

)
	M

)
β0

∥∥
∞

+
1

1− ρmax

(∥∥n−1Z ′Xβ0 − Σxβ0

∥∥
∞ +

∥∥n−1Z ′ε
∥∥
∞

)
≤ c0

σx
1− ρmax

(
σε +

σx
1− ρmax

)
‖β0‖2

√
log p

n
≤ λn/2.

Here the second inequality follows by basic algebra. The third inequality holds w.p. at least
1− c1 exp(−c2 log p) which follows by applying (7.2) of Lemma 7.1 separately on each of the
three terms. The final inequality follows from the choice of λn under the missing covariate
case. Combine this result with (7.13) and (7.12) to obtain√

card(T̂ )λn[1− 2−1] ≤ 3φ(m̂)‖β̂ − β0‖2 .
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On the other hand by part (i), ‖β̂ − β0‖2 ≤ λnc0

√
s/α1, w.p. at least 1− c1 exp(−c2 log p),

for all sufficiently large n. These facts together with the fact m̂ ≤ card(T̂ ) readily imply√
m̂ ≤ 4φ(m̂)c0

√
s/α1, w.p. at least 1 − c1 exp(−c2 log p), for all sufficiently large n. This

completes the proof of the Theorem 4.2. �

7.3 Proofs for Section 5

The proofs for this section shall require the following series of three lemmas. To proceed
further we need to define

r =

{
σzσε ; for additive errors

σxσε ; for missing covariates.
(7.14)

The structure of the proof of the following two lemma’s is similar to the proof of Lemma
7.2. All three results provide uniform bounds that hold in probability on different random
quantities, for all sufficiently large n.

Lemma 7.3 Let r be as in (7.14). Then, uniformly over all m ≤ n and for any c3 ∈ (0, 1)
and some universal constant D,

sup
δ∈B(m), ‖δ‖2>0

∣∣∣ δ′Z ′ε
n‖δ‖2

∣∣∣ ≤ c0
3r

2
en(m, c3),

w.p. at least 1− 2c3e
−s/(1− 1/e), for all sufficiently large n.

Proof of Lemma 7.3 For every U ⊆ {1, ..., p} with card(U − T ) ≤ m, define SU := {δ ∈
Rp; ‖δ‖2 ≤ 1; supp(δ) ⊆ U} and note that B1(m) = ∪card(U−T )≤mSU . Let A = {u1, ..., uk}
be a 1/3 cover of a fixed SU , i.e., ∀δ ∈ SU ∃ ui ∈ A such that ‖δ − ui‖2 ≤ 1/3. It is known
from Ledoux and Talagrand (1991) or Loh and Wainwright (2012) (Supplementary materials,
pg.17), that we can construct A such that card(A) ≤ 9(m+s). Then by elementary algebra,

n−1δ′Z ′ε = n−1u′iZ
′ε+ n−1(δ − ui)′Z ′ε(7.15)

By construction of A, 3(δ − ui) ∈ SU and using (7.15) we obtain,

sup
δ∈SU

∣∣n−1δ′Z ′ε
∣∣ ≤ max

i

∣∣n−1u′iZ
′ε
∣∣+ sup

δ∈SU

∣∣ 1

3n
δ′Z ′ε

∣∣.
Hence supδ∈SU

∣∣n−1δ′Z ′ε
∣∣ ≤ maxi

∣∣ 3
2n
u′iZ

′ε
∣∣. Now applying Lemma 7.1, 9m+s times, once for

each n−1u′iZ
′ε and taking a union bound over all such possibilities we obtain,

P

(
sup
δ∈SU

∣∣∣n−1δ′Z ′ε
∣∣∣ ≥ 3t

2

)
≤ 2· 9m+s· exp

[
− 1

c0

nmin
( t2

(σzσε)2
,

t

σzσε

)]
.

Again taking the union bound over all
(
p
m

)
≤ pm possibilities of U we obtain

P

(
sup

δ∈B1(m)

∣∣∣n−1δ′Z ′ε
∣∣∣ ≥ 3t

2

)
≤ 2· 9m+s · pm· exp

[
− 1

c0

nmin
( t2

(σzσε)2
,

t

σzσε

)]
.
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Choose t = ren(m, c3) to obtain,

P

(
sup

δ∈B1(m)

∣∣∣n−1δ′Z ′ε
∣∣∣ ≥ 3t

2

)
≤ 2c3 exp[−m− s].

and thus

P

(
sup

δ∈B1(m)

∣∣∣n−1δ′Z ′ε
∣∣∣ ≥ 3t

2
, for any m

)
≤ 2c3

∞∑
m=0

exp[−m− s]

= 2c3 exp(−s)/(1− 1/e),

thereby completing the proof of the lemma. �

Lemma 7.4 Let r be as in (7.14). Then uniformly over all m ≤ n and for any c3 ∈ (0, 1)
and some universal constant D we have,

sup
δ∈B(m), ‖δ‖2>0

1

‖δ‖2

∣∣∣δ′[Z ′W
n
− Σx

]
β0

∣∣∣ ≤ c0
3r

2
‖β0‖2en(m, c3),(7.16)

w.p. at least 1− 2c3e
−s/(1− 1/e), for all sufficiently large n.

Proof of Lemma 7.4. Following the same idea as in the proof of Lemma 7.3, construct an

1/3 cover A of SU for each U and let
∣∣∣δ′[Z′W

n
− Σw

]
β0

∣∣∣ = ψzw(δ, β0). Then

ψzw(δ, β0) = ψzw(ui, β0) + ψzw(δ − ui, β0).

This in turn implies that

sup
δ∈SU

∣∣ψzw(δ, β0)
∣∣ ≤ max

i

∣∣ψzw(ui, β0)
∣∣+

1

3
sup
δ∈SU

∣∣ψzw(δ, β0)
∣∣, or

sup
δ∈SU

∣∣ψzw(δ, β0)
∣∣ ≤ 3

2
max
i

∣∣ψzw(ui, β0)
∣∣.

Now, use Lemma 7.1 to obtain

P

(
sup
δ∈B1

∣∣ψzw(δ, β0)
∣∣ > 3t

2

)
≤ 2 9m+s pm exp

[
− c0nmin

( t2

(σzσw)2
,

t

σzσw

)]
.

Choosing t = c0
3r
2
en(m, c3) we obtain,

P

(
sup

δ∈B1(m)

∣∣ψzw(δ, β0)
∣∣ > 3t

2
, for anym ≤ n

)
≤ 2c3

∞∑
m=0

exp[−m− s]

= 2c3e
−s/(1− 1/e).(7.17)
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Thus we obtain uniformly over any δ ∈ B1(m) and m ≤ n,∣∣∣δ′[Z ′W
n
− cov(zi, wi)

]
β0

∣∣∣ ≤ c0
3r

2
‖β0‖2en(m, c3),(7.18)

w.p. at least 1− 2c3e
−s/(1− 1/e), for all sufficiently large n, thereby completing the proof.

�

Proof of Lemma 5.1. Case 1: Additive error: We have∣∣∣δ′(Γaddβ0 − γ̂add)
∣∣∣ ≤ ∣∣∣δ′Z ′ε

n

∣∣∣+
∣∣∣δ′[Z ′W

n
− Σw

]
β0

∣∣∣.(7.19)

Apply Lemmas 7.3 and 7.4 to the two terms on the r.h.s. of this bound and substitute back
in (7.19) to obtain the desired result.

Case 2: Missing Covariates: Proceeding as in Case 2 of the proof of Theorem 4.2, we
obtain ∣∣δ′Γmissβ0 − γ̂miss∣∣ ≤ ∣∣δ′[Γmiss − Σx

]
β0

∣∣+
∣∣δ′(γ̂miss − Σxβ0

)∣∣
≤ 1

(1− ρmax)2

∣∣∣δ′(n−1Z ′Z − Σz

)
β0

∣∣
+

1

1− ρmax

(∣∣∣δ′(Z ′Xβ0

n
− Σxβ0

)∣∣∣+
∣∣δ′n−1Z ′ε

∣∣) .
The claim of the lemma again follows by applying Lemmas 7.3 and 7.4 to the last expression.
�

Lemma 7.5 Let

r =

{
σz(σw + σε) ; for additive error
σx

1−ρmax

(
σε + σx

1−ρmax

)
; for missing covariates,

(7.20)

Then uniformly over all δ ∈ B(m), m ≤ n and for any c3 ∈ (0, 1) and some universal
constant D we have,

∣∣Q̂n(β0 + δ)− Q̂n(β0)− δ′Γδ/2
∣∣ ≤ c0‖δ‖2‖β0‖2ren(m, c3),

w.p. at least 1− 6c3e
−s/(1− 1/e).

Proof of Lemma 7.5. This lemma is a straightforward consequence of Lemma 5.1. Using
the definition of Q̂n(· ) we obtain,∣∣Q̂(β0 + δ)− Q̂(β0)− δ′Γδ/2

∣∣ =
∣∣δ′(Γβ0 − γ̂)

∣∣
Lemma 5.1 applied to the r.h.s. of this equation yields the desired result. �
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Proof of Theorem 5.1. Let δ̃ = β̃ − β0, then by Lemma 7.5, w.p. at least 1 −
6c3 exp(−s)/(1− 1/e),∣∣Q̂(β0 + δ̃)− Q̂(β0)− δ̃′Γδ̃/2

∣∣ ≤ c0r‖δ̃‖2‖β0‖2en(m, c3).

Also by the model selection step, T ⊆ T̂ w.p. at least 1 − c1 exp(−c2 log p). Hence, on this
set, by the definition of the second step estimator, Q̂(β̃) − Q̂(β0) ≤ 0. This in turn implies
that w.p. at least 1− 6c3 exp(−s)/(1− 1/e)− c1 exp(−c2 log p),

−δ̃′Γδ̃/2 ≥ −c0r‖δ̃‖2‖β0‖2en(m, c3).(7.21)

An application of condition RSE(m̂) in the inequality (7.21) yields

‖δ̃‖2 ≤
c0r

κx(m̂)
‖β0‖2en(m, c3),(7.22)

w.p. at least 1− 6c3 exp(−s)/(1− 1/e)− c1 exp(−c2 log p). This completes the proof of this
Theorem. �

The Proof of Theorem 5.3 shall rely on the following two results. First is Lemma 6 of
the supplement of Loh and Wainwright (2012), which is restated below for the convenience
of the reader.

Lemma 7.6 For each 1 ≤ j ≤ p,

1

λmax(Σ)
≤ |dj| ≤

1

λmin(Σ)
and ‖θj‖2 ≤ λmax(Σ)/λmin(Σ)

Lemma 7.7 Under the conditions of Theorem 5.3 the following hold.

(i) |d̂j − dj| ≤ c0C2en(an − s, c3),

(ii) ‖Θ̃·j −Θ·j‖2 ≤ c0

(
C2

2 +
C2

1

λ2
min(Σ)

+
λmax(Σ)

λmin(Σ)
C2

)1/2

en(an − s, c3),

for all 1 ≤ j ≤ p, w.p. converging to 1.

Proof of Lemma 7.7 Let m̂ = an−s and observe that in view of Theorem 4.1 and Theorem
5.1 we have for all 1 ≤ j ≤ p,

‖θ̂j − θj‖2 ≤
1

κ(m̂)
c0r‖θj‖2en(m̂, c3) := c0C1en(m̂, c3),(7.23)

w.p. converging to 1. Also, note that by the additional parameter space restriction in the
construction of (5.8), ‖θ̂j‖1 ≤ b0

√
s. Consider

|d̂−1
j − d−1

j | =
∣∣∣(Σ̂jj − Σ̂j,−j θ̂

j
)
−
(
Σjj − Σj,−jθ

j
)∣∣∣

≤
∣∣Σ̂jj − Σjj

∣∣+
∣∣Σ̂j,−j θ̂

j − Σj,−jθ
j
∣∣ := (I) + (II), (say).(7.24)
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By assumption we have that (I) ≤ c0σx
√

log p/n. Now consider the term (II) on the r.h.s
of (7.24),

(II) ≤
∣∣∣(Σ̂j,−j − Σj,−j

)
θ̂j
∣∣∣+
∣∣∣Σj,−j

(
θ̂j − θj

)∣∣∣
≤ ‖Σ̂− Σ‖∞‖θ̂j‖1 + ‖Σj,−j‖2‖θ̂j − θj‖2

≤ c0

(
b0σx +

λmax

λmin

r‖θj‖2

)
en(m̂, c3).(7.25)

Combining the bounds for terms (I) and (II) we obtain for all 1 ≤ j ≤ p,

|d̂−1
j − d−1

j | ≤ c0

(
b0σx +

λmax

λmin

r‖θj‖2

)
en(m̂, c3).

Thus applying Lemma 7.6 we obtain,∣∣∣dj
d̂j
− 1
∣∣∣ ≤ |dj||d̂−1

j − d−1
j | ≤ c0

1

λmin

(
b0σx +

λmax

λmin

r‖θj‖2

)
en(m̂, c3).

This in turn implies that |d̂j| ≤ 2|dj| for n sufficiently large, and hence

|d̂j − dj| ≤ |d̂j|
∣∣∣dj
d̂j
− 1
∣∣∣ ≤ c0

1

λ2
min

(
b0σx +

λmax

λmin

r‖θj‖2

)
en(m̂, c3),

:= c0C2en(m̂, c3),

for n sufficiently large. This proves part (i) of this lemma. To prove (ii) consider,

‖Θ̃·j −Θ·j‖2
2 = |d̂j − dj|2 + ‖d̂j θ̂j − djθj‖2

2

≤ |d̂j − dj|2 + 2|dj|2‖θ̂j − θj‖2
2 + 2|d̂j − dj|2‖θ̂j‖2

2

≤ c2
0

(
C2

2 +
C2

1

λ2
min(Σ)

+
λmax

λmin

C2

)
e2
n(m̂, c3)

This completes the proof of the lemma. �
Proof of Theorem 5.3 This proof is a direct consequence of Lemma 7.7 by observing that

‖Θ̂−Θ‖2
2 ≤ 2‖Θ̂− Θ̃‖2

2 + 2‖Θ̃−Θ‖2
2 ≤ 4 max

j
‖Θ̃·j −Θ·j‖2

2. �
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