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Abstract
Currently a substantial initiative is taken at the National Statistical Offices to make full

use of administrative data in statistical production. For example, several studies have
previously been carried out at the United Kingdom Office of National Statistics (ONS),
such as forecasting value-added-tax (VAT) turnover at the unit-level, adjusting VAT register
totals towards the existing Monthly Business Survey (MBS) -based turnover estimates etc.
The VAT data are said to be progressive in the sense that VAT reports (or observations) of
a particular time period t of interest may arrive at various points long after t. For timely
prediction of the VAT turnover total before all the data have arrived, a critical issue is
when the timeliness of VAT reporting is related to VAT turnover i.e. informative reporting.
In this work we develop new approaches for handling informative reporting, drawing on
the relevant techniques for informative sampling and informative nonresponse. We study
approaches to modelling the potential informative report, methods for estimation, including
maximum likelihood and estimation equations, and illustrate the methodology.

Key Words: Progressive data; existent population; reporting population; reporting prob-
ability; informative reporting; estimating equations.

1. Introduction

For some decades now, alongside survey sampling and population census, admin-
istrative registers have been an important data source for official statistics. They
provide frames and valuable auxiliary information for sample surveys and censuses.
Systems of inter-linked statistical registers (i.e. registers for statistical uses) have
been developed on the basis of various available administrative registers to pro-
duce a wide range of purely register-based statistics, see Statistics-Denmark (1995);
Statistics-Finland (2004); Wallgren and Wallgren (2007) for detail.

There is currently a considerable drive at the National Statistical Offices to
exploit the potentials of administrative data in statistical production. For instance,
several investigations have previously been carried out at ONS, such as forecasting
VAT turnover at the unit-level, adjusting VAT register totals towards the existing
MBS-based turnover estimates etc.

1.1 Progressive Data

Many administrative data sources, unlike sample surveys and censuses, do not al-
ways have a closing date, after which the data become static and can only be altered
in editing. Reporting and registration delays and corrections can occur a long time
after the statistical reference date, whether by allowance or negligence. See e.g.
Hedlin et al. (2006) for delayed introduction of birth units in the UK BR, Linklet-
ter and Sitter (2007) for delays in Natural Gas Production reports in Texas, and
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Zhang and Fosen (2012) for delays in the Norwegian Employer/Employee Register.
National accounts are based on multiple and complex data sources and typically un-
dergo several routine revisions as more and better source data are incorporated in
to the final estimates. The progressive data in the multiple sources of the National
Account induces sometimes up to seven revisions over time. Depending on the sit-
uations, input data delays and changes may cause coverage errors or measurement
errors, or both, in the integrated data.

For formal definition of progressive data, let t be the reference time point of
interest and t + d the measurement time point, for d ≥ 0. Let Ut and yt be the
target population and value at t, respectively. For a unit i, let Ii(t;t+d) = 1 if the
unit i belongs to Ut according to information available at time t+d and Ii(t;t+d) = 0
otherwise, and let yi(t;t+d) be the observed value for t at t+d, provided Ii(t;t+d) = 1.
The data are said to be progressive if, for d 6= d′ > 0, we can have

Ii(t;t+d) 6= Ii(t;t+d′) or yi(t;t+d) 6= yi(t;t+d′),

which lead to coverage errors or measurement errors, respectively, or both. Pro-
gressiveness is a distinct feature of administrative data sources compared to sample
surveys, unless one is determined to overlook all delays and changes after a certain
period. One can refer to the VAT register as an example of longitudinal progressive
data set based on two characteristics that are most relevant in the present context.
It is longitudinal because various measurements such as turnover are recorded for
different time points. It is progressive because the measurement of a given reference
point is not fixed over time, due to delays in reporting and changes to the previously
recorded values - this is a distinct feature that does not figure in traditional sample
survey theory.

For modelling purposes, non-reporting/nonresponse is regarded as resulting from
a random mechanism, which may be related to the outcome variables. If it can be
shown that no such relationship exists, the nonresponse mechanism is MCAR. Even
if such a relationship does exist, it may still be due to a mechanism which is MAR,
whereby the probability of the response is, given the observed outcome and covari-
ates, does not depend on the missing outcomes. If the nonresponse probabilities
depend also on the values of the missing data, then they define an informative
missing or NMAR data mechanism.

In survey sampling, the sampling probabilities are typically known to the an-
alyst fitting the model, at least for the sampled units, the response probabilities
are generally unknown and need to be modelled under nonignorable nonresponse.
Ignoring an informative sample or nonignorable nonresponse and thus assuming
implicitly that the model holding for the observed outcomes is the same as the tar-
get population model may yield large biases and erroneous inference. The books
edited by Kasprzyk et al. (1989), Skinner et al. (1989) and Chambers and Skinner
(2003) contain many discussions and illustrations of the effect of ignoring informa-
tive sampling or nonignorable nonresponse. See also Pfeffermann (1993), Pfeffer-
mann (1996), Pfeffermann and Sverchkov (2009) and Pfeffermann and Sikov (2011)
for further discussions and examples, with many other more recent references.

We often encounter missing data in longitudinal studies. Missing data occur
whenever one or more of the sequences of measurements from individuals are in-
complete, in the sense that the desired measurements are not available, or otherwise
not taken. The missingness in the longitudinal data often depends on the unob-
served value of the outcome at a given assessment time, that is, the missing data are
often nonignorable. When data are nonignorably missing, it is necessary to model
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the missing data mechanism for valid statistical inferences. Analysis of missing
data has been considered by many authors in the literature (e.g., Diggle and Ken-
ward (1994); Ibrahim et al. (1999); Ibrahim et al. (2001); Molenberghs and Verbeke
(2001); Sinha et al. (2010); Sinha et al. (2011); Statistics-Finland (2004); Verbeke
and Molenberghs (2005); Wu et al. (2009); Xie (2008); Yi and Cook (2002); and
many others). Little (1995) discusses techniques for modelling the data and the
missing data mechanism simultaneously, and presents a number of examples to de-
scribe likelihood-based inferences via maximum likelihood or Bayesian approaches.
Little and Rubin (2002) review methods for analysing data with various types of
missing data mechanisms.

Like any observational data, the VAT reports are intrinsically associated with
uncertainty. New and different frameworks are needed for administrative data,
because the nature of uncertainty (or sources of errors) is different from that arising
in survey sampling. VAT data are said to be progressive in the sense that VAT
reports (or observations) of a particular time period t of interest may arrive at
various points long after t, whether by arrangement or not. For timely prediction
of the VAT turnover total before all the data have arrived, a critical issue is when
the timeliness of VAT reporting is related to VAT turnover i.e. informative non-
reporting. In this work we develop new approaches for handling informative non-
reporting/missing that are discussed below.

1.2 Prediction Framework for Longitudinal Progressive Data

Zhang and Pritchard (2013) extended the following prediction framework of Valliant
et al. (2000) for progressive data. Let Ue(t;t+d) be a known universe of existent
units. For instance, in repeated statistical production, one may include in Ue(t;t+d)

all the units that have previously been included in the population, i.e. Ue(t;t+d) =
{i;
∑∞

j=0 Ii(t−j;t+d) > 1}. The existent universe Ue admits a bipartition, denoted by
Ue+∪Ue−, where Ue+ contains the units that actually belong to the target universe
Ut, i.e. Iit = 1, and Ue− those that do not, i.e. Iit = 0. Put U0(t;t+d) = Ut\Ue+(t;t+d)

i.e. the target units that are not included in the existent universe. One may refer
to U0(t;t+d) as the birth delays and Ue− the death delays. Let Yt =

∑
i∈Ut

yit be the
target total of interest. A general expression of a prediction-based estimator of Yt
at t+ d can be given as

Ŷ(t;t+d) =
∑

i∈Ue(t;t+d)

Îitŷit +
∑

i∈U0(t;t+d)

ŷit (1)

Zhang and Pritchard (2013) applied the prediction framework (1) to VAT register
data in UK. The prediction approach (1) requires modelling of {Iit, yit; i ∈ Ui(t;t+d)}
and Y0(t;t+d), with or without conditioning on historic y- and I -values and other rel-
evant auxiliaries. Zhang and Pritchard (2013) notice potential connections of mod-
elling progressive data to the literature on estimation in the presence of nonresponse
and informative sampling.

Before discussing estimation/modelling approaches, it is necessary to explain
different populations in the case of longitudinal progressive data. As we have an
existent population Uet at time t that is known at time t + d but not all the units
are in the target population Ut. The Uet contains both active (potentially reporting
units) and non-active units. The units which are active belongs to the target pop-
ulation Ut. Denote by U(e+)t the units i ∈ Uet that are active (Iit = 1), and by Urt
the sub-population of active units that report (δit = 1|Iit = 1). Not every i ∈ Ut
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belongs to Uet due to so-called birth delays, which are non-existing units at time
t+ d, but later turn out to belong to Ut nevertheless. Similarly, Uet\U(e+)t may be
called death delays. Hence Urt is a subset of U(e+)t and U(e+)t is a subset of Uet.
Also Ue\Ue+ is a subset of Ue\Ur. By this way we have two mechanisms to deal
with while discussing the estimation approaches; first is selection mechanism (from
Uet to U(e+)t) and second is reporting/response mechanism (from U(e+)t to Urt).

Currently in the following two estimation/modelling approaches, we considered
the second phase i.e. the inference from Urt to U(e+)t under informative non-
reporting. The modelling/estimation approaches proposed for dealing with report-
selection mechanism are equally applicable to longitudinal studies aimed to account
for informative selection and non-reporting.

2. Modelling/Estimation approaches

For prediction and estimation of model parameters, presently we have provided two
approaches. The first approach is based on the likelihood method in which we follow
the idea of Pfeffermann (2011) and developed the Bayes-Based Likelihood (BBL)
method for prediction as well as for estimation of model parameters in the case
of longitudinal data under informative non-reporting/non-response and currently
assuming that all units are selected. Later on this assumption will be relaxed. BBL
approach can be complicated because we need to assume density of active popula-
tion and there can be a potential non-identifiability of reporting model. Also it is
computationally heavy. An alternative to BBL approach, we developed finite pop-
ulation estimating equations approach. The EE approach is free of distributional
assumptions of the outcome variable and it is computationally easy. Also in this
approach an intuitive empirical estimator of reporting/response probability is used
that is based on the historic reporting indicators rather assuming an explicit/para-
metric form of model for reporting indicator. For EE approach we have to have
historic data. As the BBL is not the full-likelihood, hence not fully efficient either;
one might still expect it to compare favourably to the EE approach.

2.1 Bayes-Based Maximum Likelihood Approach

The case where the missing data are not MAR (NMAR) can be treated by postu-
lating a parametric model for the distribution of the outcomes before non-response
and a model for the response mechanism. These two models define a paramet-
ric model for the joint distribution of the outcomes and response indicators, and
therefore the parameters of these models can be estimated by maximization of the
likelihood based on this joint distribution. See, Greenlees et al. (1982), Rubin
(1987), Little (1993), Beaumont (2000), Little and Rubin (2002) and Qin et al.
(2002). In particular, most of the approaches assume that the model covariates are
known also for the non-respondents, which is often not the case. Pfeffermann (2011)
provided a Bayes-based conditional likelihood approach to deal with non-ignorable
non-response mechanism when covariates are unknown for the non-respondents.
Pfeffermann and Sikov (2011) review approaches proposed in the literature to deal
with NMAR non-response, but these approaches are quite limited. To develop
Bayes-based maximum likelihood approach for longitudinal studies we proceed as
follows.

Let yit denote the value of an outcome variable Y at time t, associated with
unit i belonging to the active population U(e+)t. Let xit denote a vector of auxiliary
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covariates including historic y-value associated with unit i. As defined above Urt
be the reported population with reported outcomes and covariates, and let Ur̄t be
the unreported/delayed population for which at least the outcomes are not reported
(missing) at reference time point t.

Following the idea of complex survey modelling under informative nonreponse
given by Pfeffermann (2011), we developed the model for reporting population Urt
when we have the pdf of active population U(e+)t and conditional reporting proba-
bility model. Let δit = 1 if i ∈ Urt and δit = 0 if i ∈ Ur̄t. The conditional pdf of the
outcome yit given that unit i is in the reporting population is

fUrt (yit|xit) = f (yit|xit, δit = 1) =
Pr (δit = 1|yit, xit)

Pr (δit = 1|xit)
fU(e+)t

(yit|xit) , (2)

where Pr (δit = 1|yit, xit) is reporting probability model and fU(e+)t
(yit|xit) is pdf of

active population U(e+)t. The Pr (δit = 1|xit) =
∫

Pr (δit = 1|yit, xit) fU(e+)t
(yit|xit) dyit.

By (2), if the active population outcome and the reports are independent between
the units, and the covariates are only known for the reporting units, one can esti-
mate the parameter θ governing the active population model and the parameters γ
governing the model for reporting probabilities by maximizing the reporting popu-
lation likelihood

LUrt =
r∏
i=1

f (yit|xit, δit = 1; θ, γ) =
r∏
i=1

Pr (δit = 1|yit, xit; γ) fU(e+)t
(yit|xit; θ)

Pr (δit = 1|xit; θ, γ)
.

The model for reporting population can be fitted under informative non-reporting
if we know the reporting probability model Pr (δit = 1|yit, xit; γ) and the density
of active population fU(e+)t

(yit|xit; θ). In literature, different response probability
models like linear, exponential, logit and probit models have been used. One of
these models can be used in (2).
As in (2), on right hand side there is a product of two functions. It is possible
to have a problem of non-identifiability. Identifiable model can be obtained using
logistic model instead of exponential by imposing the condition that at least one
covariate should differ among covariates used for reporting model and density of the
active population (see Pfeffermann and Landsman (2011)). However, in practice,
the covariates featuring in the population model need not be the same as the co-
variates featuring in the model of the conditional response probabilities. Feder and
Pfeffermann (2015) adopted empirical likelihood approach, which helps to avoids
the identifiability issue.

In finite population estimating equating equation (EE) approach discussed in
next chapter, we assumed a model that provides stationarity in reporting probabil-
ities so that the empirical estimator of reporting probability i.e. ratio of reporting
and existing history can be used as an estimator of unknown reporting probabili-
ties, the detail is given in Section 2.2.1. To compare Bayes-based likelihood (BBL)
approach with EE approach, we assumed following reporting probability model for
BBL approach,

Pr(δit = 1|yit, xit) = πit = [1 + exp {η(yit, xit) + dit}]−1, (3)

where η is a known function depending on yit and xit. Possible models for dit are

(i). IID with mean 0 and variance σ2 (or σ2
t ), e.g. dit ∼ N(0, σ2).
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(ii). ui + vit, where ui is an individual random effect and suppose ui ∼ N(0, σ2
u),

and vit is IID with mean 0 and variance σ2
v , e.g. vi ∼ N(0, σ2

v). Then
Corr(dit, dis) = σ2

u/(σ
2
u + σ2

v).

(iii). an AR(1) over t for fixed i, e.g. dit = ρdi,t−1 + eit, where ρ is a fixed scalar
and eit ∼ N(0, σ2

e) then dit ∼ N(0, σ2
e/(1− ρ2)) and Corr(dit, dis) = ρ(s−t). It

is assumed that |ρ| < 1 to guarantee stationarity.

For sensitivity analysis one can postulate other η than (3).
From reporting probability model (3), we have another random variable dit along
with yit and δit, the joint density of these three random variables can be written as

f(yit, dit, δit|xit) = Pr(δit|yit, xit, dit)f(yit|xit, dit)h(dit) = Pr(δit|yit, dit)f(yit|xit)h(dit).
(4)

Assuming independence between yit and dit, the pdf of yit given that unit i is in
the reporting population, is

fUrt(yit|xit, δit = 1) =

∫
dit

Pr(δit = 1|yit, xit, dit)fU(e+)t
(yit|xit)hU(e+)t

(dit)ddit∫
dit

∫
yit

Pr(δit = 1|yit, xit, dit)fU(e+)t
(yit|xit)hU(e+)t

(dit)dyitddit
.

(5)

To estimate the parameters of the reporting population distribution, by (5), if the
active population outcome and the reports are independent between the units, and
the covariates are only known for the reporting units, one can estimate the param-
eter θ governing the active population model and the parameters γ governing the
model for reporting probabilities by maximizing the reporting population likelihood,

LUrt =
∏
i∈Urt

fUrt(yit|xit, δit = 1; θ, γ)

=
∏
i∈Urt

∫
dit

Pr(δit = 1|yit, xit, dit, γ)fU(e+)t
(yit|xit; θ)hU(e+)t

(dit;σ
2
d)ddit∫

dit

∫
yit

Pr(δit = 1|yit, xit, dit, γ)fU(e+)t
(yit|xit, θ)hU(e+)t

(dit;σ2
d)dyitddit

.

(6)

2.1.1 Prediction without covariates using BBL

In simulation study, the BBL approach is used for prediction of population mean
without x. For this, suppose the parameters of the distribution of yit are θ and
σ2, as e.g. the normal and log-normal distribution then the likelihood function (6)
takes the following form,

LUrt =
∏
i∈Urt

fUrt(yit|δit = 1; θ, σ2, γ)

=
∏
i∈Urt

∫
dit

Pr(δit = 1|yit, dit, γ)fU(e+)t
(yit; θ, σ

2)hU(e+)t
(dit;σ

2
d)ddit∫

dit

∫
yit

Pr(δit = 1|yit, dit, γ)fU(e+)t
(yit, θ, σ2)hU(e+)t

(dit;σ2
d)dyitddit

.

(7)

For prediction of population mean, suppose for reporting units the estimated density
is f̂Urt(yit|δit = 1; θ̂, γ̂) and for non-reporting units we can write

f̂Ur̄t(yit|δit = 0; θ̂, γ̂)

=

∫
dit

[1− Pr(δit = 1|yit, dit, γ̂)] fU(e+)t
(yit; θ̂)hU(e+)t

(dit;σ
2
d)ddit∫

dit

∫
yit

[1− Pr(δit = 1|yit, dit, γ̂)] fU(e+)t
(yit, θ̂)hU(e+)t

(dit;σ2
d)dyitddit

. (8)
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Now the population mean at time t can be estimated as

ˆ̄Y =
1

N

r∑
i=1

yit +
1

N

N∑
i=r+1

Êr̄ (yit|δit = 0)

=
r

N
ȳrt +

1

N

N∑
i=r+1

∫
r̄
yitfUr̄t(yit|δit = 0; θ̂, γ̂)dyit . (9)

2.1.2 Prediction with covariates using BBL

The BBL approach is also used to estimate the model parameters in simulation
study. Suppose, we have a linear regression model of y with regression coefficients
β and variance σ2, then the likelihood function (6) can be written as

LUrt =
∏
i∈Urt

fUrt(yit|xit, δit = 1;β, σ2, γ)

=
∏
i∈Urt

∫
dit

Pr(δit = 1|yit, xit, dit, γ)fU(e+)t
(yit|xit;β, σ2)hU(e+)t

(dit;σ
2
d)ddit∫

dit

∫
yit

Pr(δit = 1|yit, xit, dit, γ)fU(e+)t
(yit|xit, β, σ2)hU(e+)t

(dit;σ2
d)dyitddit

.

(10)

For estimation of population mean θ, suppose for reporting units the estimated
density is f̂Urt(yit|xit, δit = 1; θ̂, γ̂) and for non-reporting units we can write

f̂Ur̄t(yit|xit, δit = 0; θ̂, γ̂)

=

∫
dit

[1− Pr(δit = 1|yit, xit, dit, γ̂)] fU(e+)t
(yit|xit; θ̂)hU(e+)t

(dit;σ
2
d)ddit∫

dit

∫
yit

[1− Pr(δit = 1|yit, xit, dit, γ̂)] fU(e+)t
(yit|xit, θ̂)hU(e+)t

(dit;σ2
d)dyitddit

.

(11)

Now the population mean at time t can be estimated as

ˆ̄Y =
1

N

r∑
i=1

yit +
1

N

N∑
i=r+1

Êr̄ (yit|xit, δit = 0)

=
r

N
ȳrt +

1

N

N∑
i=r+1

∫
r̄
yitfUr̄t(yit|xit, δit = 0; θ̂, γ̂)dyit , (12)

where xit assumed known for non-reporting units in existing population.

2.2 Finite Population Estimating Equations Approach

We have seen that using BBL approach, a potential non-identifiability can occur
while maximizing reporting model and it will become more difficult when only
historic response values will be used as covariates. Also this approach is compu-
tationally heavy because we cannot explicitly obtain the estimators from reporting
likelihood when the logistic model is used for reporting probability. We need to use
numerical optimization routines to obtain the parameter estimates and an other
potential issue can be the initial values to initiate these optimization algorithms.

For an alternative to BBL approach, we developed finite population estimat-
ing equations approach for finite population prediction and estimating the model
parameters. We use as the estimator of reporting probability the observed historic

JSM 2016 - Government Statistics Section

38



reporting rate for each existent unit on its own. Estimating equations for the param-
eter of interest, e.g. finite population mean or regression coefficients, are built on
these estimated reporting probabilities. Even though asymptotically (under certain
conditions) the MLE will attain the Cramer-Rao lower bound (which is the smallest
variance). Moreover, MLE estimators are based on the assumption that the distri-
bution is known (else the estimator is misspecified), however an estimating equation
can be free of such assumptions and explicit/parametric form of Pr(δit | yit, xit) (see
Godambe (1991a)).

As discussed earlier that currently we are only dealing with active population
U(e+)t to reporting population Urt. The combined business of Uet to Urt will be
treated later. Finite population estimating equation approach discussed in this
section, however, is applicable to missing data problems and not restricted to pro-
gressive data setting. In this approach we allow the y′s to be fixed and the basis of
inference is a model for δit given in (13).

2.2.1 Model

Let yi = (yi0, yi1, ..., yiT ) and xi = (xi0, xi1, ..., xiT ), where yit represents an outcome
variable of interest at time t and xit is a vector of covariates at time t including the
historic y′s.

To model response variable in the presence of informative non-reporting, the re-
porting probabilities are unknown unlike informative sampling. We need to model
the reporting probabilities and then the estimates of this model parameters are re-
quired. But here we want to make use of existing and reporting history of each unit
to estimate its individual reporting probability and this non-parametric estimate will
be used as an estimate of unknown reporting probabilities. For informative non-
reporting, the reporting probabilities need to depend on response variable above
their dependence on covariates. In longitudinal nature of data the reporting proba-
bilities for each time period that depends on respective response variable must have
a trend over time and it will become non-stationary time series. But the estimator
that we want to use for reporting probability is of stationary nature. Stationary of
a time series means that the mean, variance and autocorrelation structure do not
change over time and no periodic fluctuations.

We postulate informative but stationary and individual reporting. For example,
the actual reporting at a business could depend on the accounting system, the
personal responsible for the reporting, etc. all of which can potentially be related
to the size of the business and hence possibly the response variable y of interest,
beyond whatever x that is available. Meanwhile, there is bound to be some stability
over a limited time period. For such a scenario, we can define model for unknown
reporting probabilities for all previous time periods as well as for current time period
as follows. Let δit be the response indicator for t = 0, 1, ..., T , put

Pr (δit = 1) = πit = [1 + exp {ηi (yi,xi) + dit}]−1, (13)

where dit is defined earlier, ηi can differ between units but is assumed to be constant
over a time window (0, ..., T ). Further,

E (πit) ≈
eηi

1 + eηi

[
1 +

σ2
d (1− eηi)

2 (1 + eηi)2

]
= πi(say), (14)

where σ2
d is the variance of respective dit.
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For the estimator of unknown reporting probabilities, suppose for each popula-
tion unit, define Ri =

∑T
t=1 δit to be the number of past responses over (1, ..., T ).

Then the estimated reporting probability can be π̂i = Ri/T , where δit ∼ Bernoulli (1, πit),
then provided identical marginal distribution of dit for every t,

E (π̂i|T ) = E

{
1

T

T∑
t=1

E (δit|πit)

}
=

1

T

T∑
t=1

E (πit|ηi) =
Tπi
T

= πi. (15)

From (14) and (15), we can see that π̂i and πit are approximately same on average.
It indicates the candidature of π̂i as an estimator of πit under the model (13).

To use estimating equations approach for analytical purpose, suppose model for
response variable is

yit = β0 + β1xit + εit, (16)

where εit ∼ N(0, σ2
it) and σ2

it = σ2xαit.

2.2.2 Estimating Equations

Let θ0 be a finite population parameter defined as the solution to the following
estimating equations

HN (θ) = N−1
N∑
i=1

Si (θ) ; HN (θ0) = 0, (17)

where Si() is a score function with the y-values considered fixed. The population
parameters are defined by the estimating equations (17) and the basis of inference
is the model for reporting indicator given in (13). The (unobserved) estimating
equations for current (t = 0) reporting units are given by,

H̃N (θ) = N−1
N∑
i=1

δi0
πi0

Si (θ) = N−1
N∑
i=1

Wi (θ) and H̃N (θ̃) = 0, (18)

where πi0 denote the current reporting probability in which ‘0’ stands for current
time point of interest. On replacing πi0 by π̂i in (18), we have the observed EE,

ĤN (θ) = N−1
N∑
i=1

δi0
π̂i
Si (θ) and ĤN (θ̂) = 0. (19)

One might draw analogy between the observed EE and the pseudo-MLE approach;
but the score is not necessarily derived from likelihood, and the π̂i is estimated
instead of known. When the census estimating equations (17) are the likelihood
equations, the estimators obtained by solving (18) with known inclusion probabili-
ties are known in the sampling literature as pseudo mle (pmle). See Binder (1983),
Skinner et al. (1989), Pfeffermann (1993), Pfeffermann (1996) and Godambe and
Thompson (2009)for discussion with many examples.

Currently under finite population estimating equations approach H̃N (θ) is unbi-
ased estimating equations and it seems difficult to have ĤN (θ) asymptotically un-
biased. So there is need to obtain bias-adjusted ĤN (θ). Two possible bias-adjusted
estimating equations are

Ĥ∗N (θ) = N−1
N∑
i=1

δi0

(
1

π̂i
− V (π̂i)

π3
i

)
Si (θ), (20)
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Ĥ∗∗N = N−1
N∑
i=1

δi0

(
π2
i

π̂i(π2
i + V (π̂i))

)
Si(θ) (21)

2.2.3 Mean Square Error Estimation

For estimation of mean square error of θ̂, by Taylor expansion, we have

0 = ĤN (θ̂) = ĤN (θ0) + Ĥ ′N (θ0)(θ̂ − θ0) +
1

2
Ĥ ′′N (θ0)(θ∗ − θ0)2 (22)

where θ∗ lies between θ̂ and θ0. Ignoring the remainder terms

(θ̂ − θ0) ≈ −
(
Ĥ ′N (θ0)

)−1
ĤN (θ0)

Post multiplying by (θ̂ − θ0)′ on both sides, we have

(θ̂ − θ0)(θ̂ − θ0)′ ≈
(
Ĥ ′N (θ0)

)−1
ĤN (θ0)ĤT

N (θ0)
(
Ĥ ′N (θ0)

)−T
(23)

From (23), mean square error can be obtained provided we know θ0. Currently
we are working on various ways of estimating MSE, which can improve the direct
plug-in estimator.

2.3 Simulation Set-up

Simulation study is conducted for both population prediction and estimation of
model parameters to illustrate both approaches.

To illustrate the application of the BBL for prediction we need to assume a
density for active population and a reporting model to obtain current reporting
indicator. Suppose the density for the response variable of active population is
normal, i.e. yit ∼ N(θ, σ2).

For analytical use of BBL approach, suppose the density for the response variable
of active population is normal, i.e. yit ∼ N(β0 +β1yi(t−1), σ

2
it), where σ2

it = σ2yαi(t−1)
and it is also assumed that repose variable at time t− 1 is available at current time
period. The reporting probability model is defined in (3) along with three d′its.
The likelihood function (7) is used to obtain the estimators for density of reporting
population. Then (8) and (9) are used for prediction of population mean. The likeli-
hood function (10) is used to estimate the model parameters. The parameter γ′s of
reporting models are estimated by solving the calibration constraints

∑r
i=1wi = N

and
∑r

i=1wiδi1 =
∑N

i=1 δi1 iteratively, where wi is the reporting weight of ith unit
and δi1 is previous reporting indicator. The estimates of γ′s are then used in likeli-
hood function before maximising it.

For the illustration of EE approach in finite population prediction and estima-
tion of model parameters we do not need to assume density for response variable,
we only require the reporting probability model for current as well as for historic
reporting indicators that is actually the basis of inference in finite population pre-
diction approach. The reporting probabilities for current and historic time periods
are obtained under the postulated model (13), where ηi is assumed to be 1

T

∑T
t=1 yit

and it also assumed that past values are available at time 0. The historic reporting
probabilities will be then used to obtain reporting history and ultimately the esti-
mator for current reporting probabilities. The finite population estimating equation
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(17) are used to define the population parameters for both prediction and regres-
sion model and the reporting estimating equations based on estimated reporting
probabilities given in (19), (20) and (21) are used to obtain the estimators for finite
population parameters.

The reporting probability models for BBL and EE approached are defined in (3)
and (13) respectively. These are our postulated models. We also want to see the
effect of different reporting models on the results of both approaches as a sensitivity
check. One can imagine that the reporting can depends on previous reporting
indicator and it can also be used in reporting probability model. So the following
table is provided for different possible reporting probabilities models.

Table 1: Reporting probability models

Without δ1,j With δ1,j

Case-(i) Case-(iii)
ηi logit(πit,j) = γjηi + dit,j logit(πit,j) = γjηi + dit,j

logit(πi0,j) = γ0,jηi + di0,j logit(πi0,j) = γ01,jηi + γ02,jδi1,j + di0,j
Case-(ii) Case-(iv)

yit logit(πit,j) = γjyit + dit,j logit(πit,j) = γjyit + dit,j
logit(πi0,j) = γ0,jyi0 + di0,j logit(πi0,j) = γ01,jyi0 + γ02,jδi1,j + di0,j

In above table j = 1, 2, 3 is for each dit. The πit,j denotes the historic reporting
probabilities and πi0,j , the current reporting probabilities. Similarly dit,j denotes
the historic dit

′s and di0,j , is for current time period. The ηi and y′s are multiplied
by the coefficient γ′s, suitable values of γ′s are used to restrict the overall reporting
rate around 80%. The function ηi will be replaced with function η for BBL approach
that is based on concurrent y′s rather historic y′s.

The reporting models given in above table for case (i) are that assumed by EE;
the models given in case (ii) that by BBL. Applying BBL to the current reporting
indicators generated under case (i, iii & iv) model entails model misspecification;
likewise with EE when the current reporting indicators are generated under case
(ii, iii & iv).

For EE approach the reporting probabilities for historic time periods, i.e. πit,
are obtained using the models given in above table. These reporting probabilities
are used to generate reporting indicators of corresponding time periods, i.e. δit. The
average of these historic reporting indicators is then used to obtain the estimated
reporting probability, i.e. π̂i, which is an estimator of unknown current reporting
probabilities, πi0. Below we present the results for first two cases with dit,1.

2.4 Simulation Study

2.4.1 Population Prediction

To simulate the longitudinal data, we considered 11 time periods (t = 0, 1, 2, ..., 10(=
T )), where t = 0 is the current time period, then data for yit are generated using mul-
tivariate normal distribution with mean vector (10.50, 10.55, 10.60, 10.65, 10.70, 10.75,
10.80, 10.85, 10.90, 10.95, 12) and variance covariance matrix with same covariances
of 10 and variances of 30. The dit,1 are generated using multivariate normal dis-
tribution with zero mean vector and variance covariance matrix with 0 covariances
and same variances of 0.05.

The reporting probabilities πit for historic time periods are obtained under the
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first two cases of table 1. These reporting probabilities are used to generate re-
porting indicators of corresponding time periods. The average of historic reporting
indicators is then used to obtain the estimated reporting probability for current
time period that will be used as an estimator of unknown reporting probabilities
required in EE approach.

The size of population is assumed to be N = 1000 and no of simulations are
200. The population data is generated once and kept fixed for all simulations. The
parameters are estimated using naive unadjusted approach, BBL approach with
likelihood function given in (7) and estimating equations given in (19), (20) and
(21). The R function nlm is used to obtain the maximum likelihood estimates. The
results for all approaches are given in following table.

Table 2: Estimate, bias, empirical SE, RMSE and average of squared error for
both cases

(θFP = 12.003, and σ2
FP = 31.06; N = 1000 and S = 200)

Naive ĤN (θ) Ĥ∗N (θ) Ĥ∗∗N (θ) BBL

Case-(i): logit(πit) = γηi + dit and logit(πi0) = γ0ηi + di0

θ̂

Mean Est. 12.2838 11.9109 11.9737 11.9670 12.7030
Bias 0.2794 0.0936 0.0308 0.0375 0.6985
Emp. SE 0.0814 0.0874 0.0857 0.0859 0.0775
Emp. RMSE 0.2910 0.1281 0.0910 0.0937 0.7044
RMSEθ0 0.2813 0.1052 0.0710 0.0729 ..........

σ̂2

Mean Est. 31.0012 31.0200 31.0040 31.0096 30.1394
Bias 0.0597 0.0409 0.0569 0.0513 0.9261
Emp. SE 0.5230 0.5729 0.5579 0.5602 0.4792
Emp. RMSE 0.5264 0.5744 0.5608 0.5626 1.1010
RMSEθ0 0.4597 0.4656 0.4582 0.4586 ..........

Case-(ii): logit(πit) = γyit + dit and logit(πi0) = γ0yi0 + di0

θ̂

Mean Est. 12.6907 12.3915 12.4417 12.4364 12.1394
Bias 0.6863 0.3870 0.4373 0.4320 0.1350
Emp. SE 0.0761 0.0835 0.0816 0.0818 0.1142
Emp. RMSE 0.6905 0.3959 0.4448 0.4397 0.1769
RMSEθ0 0.7294 0.4098 0.4625 0.4415 ..........

σ̂2

Mean Est. 29.8130 29.6781 29.7246 29.7149 30.2354
Bias 1.2479 1.3828 1.3363 1.3460 0.8253
Emp. SE 0.5200 0.5742 0.5591 0.5614 0.6023
Emp. RMSE 1.3519 1.4973 1.4485 1.4584 1.0218
RMSEθ0 1.9005 1.7200 1.7069 1.7140 ..........

The estimates for γ are obtained only for BB approach for both case. For first cases
γ̂=0.1301, Bais(γ̂)=0.0051, Emp. SE(γ̂)=0.0072 and Emp. RMSE(γ̂)=0.0088.
For second case γ̂=0.12037, Bais(γ̂)=0.00037, Emp. SE(γ̂)=0.0086 and Emp.
RMSE(γ̂)=0.0086.
From above table, the naive approach exhibits bias. While the bias seems small
in absolute value, it actually dominates the SE. The EE approach is performing
well under the postulated model i.e. case-(i) and BBL is performing well under the
postulated model i.e. case-(ii). The bias of EE under case-(ii) is still smaller than
the naive it means that it is not that sensitive. But the bias of BBL under case-(i)
is larger than the naive it means that it is sensitive.
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Figure 1: Graphical comparison of different estimation approaches

Next we looked at more skewed data that is common in business surveys. To gen-
erate skewed data, the data for yit are simulated using multivariate log-normal dis-
tribution with mean vector (0.50, 0.55, 0.60, 0.65, 0.70, 0.75, 0.80, 0.85, 0.90, 0.95, 1)
and variance covariance matrix with same covariances of 1 and variances of 3. The
remaining setting is same as above case except we could not get the results for
BBL approach while using log-normal to generate the data for outcome variable
because nlm routine was producing wrong estimates. We will try later to get rid
of this computational bug. The results for naive and EE approach are given in the
following table.
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Table 3: Estimate, bias, empirical SE, RMSE and average of squared error for
both cases

(θFP = 13.06, and σ2
FP = 1422.3; N = 1000 and S = 200)

Nave ĤN (θ) Ĥ∗N (θ) Ĥ∗∗N (θ)

Case-i: logit(πit) = γηi + dit and logit(πi0) = γ0ηi + di0

θ̂

Mean Est. 16.2059 12.3999 13.1814 13.0147
Bias 3.1502 0.6559 0.1257 0.0410
Emp. SE 0.3237 0.3056 0.2972 0.3012
Emp. RMSE 3.1668 0.7235 0.3227 0.3040
RMSEθ0 2.5208 0.7132 0.2511 0.2455

σ̂2

Mean Est. 1909.9334 1340.9651 1445.8350 1426.3838
Bias 488.0298 80.9384 23.9315 4.4803
Emp. SE 38.5870 33.4300 33.4789 33.6360
Emp. RMSE 489.5529 87.5705 41.1528 33.9331
RMSEθ0 283.0270 94.4655 31.7511 27.1976

Case-ii: logit(πit) = γyit + dit and logit(πi0) = γ0yi0 + di0

θ̂

Mean Est. 18.0508 15.5006 16.2305 16.0131
Bias 4.9950 2.4449 3.1748 2.9574
Emp. SE 0.2919 0.3071 0.2818 0.2907
Emp. RMSE 5.0036 2.4641 3.1872 2.9717
RMSEθ0 3.9017 2.1820 2.7167 2.5562

σ̂2

Mean Est. 2019.1321 1621.6746 1722.9971 1696.8667
Bias 597.2286 199.7711 301.0936 274.9632
Emp. SE 34.7365 34.6352 32.6455 33.4409
Emp. RMSE 598.2379 202.7513 302.8582 276.9893
RMSEθ0 310.7262 150.4409 203.8914 191.3530

From above table, in the case of skewed data EE is performing far better than naive
unadjusted reporting population estimates.
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Figure 2: Graphical comparison of different estimation approaches

2.4.2 Estimation of Model Parameters

To illustrate the BBL and estimating equations approach in the case of estima-
tion of model parameters, the data for yit is simulated using the model, yit =
β0 + β1yit−1 + εit, where yit−1 is the response variable of previous time period and
ε ∼ N(0, σ2

it). It is assumed that there is full reporting in the previous time pe-
riod for response variable. We considered 11 time periods (t = 0, 1, 2, ..., 10(= T )),
where t = 0 is the current time period. The yi11 is generated from log-normal
distribution with mean 1 and variance 2. The yi11 is used as covariate for yi10 and
further yi10 is used as covariate for yi9 and so on yi1 is used as covariate for yi0.
To generate the values of yit for 11 time periods including the current time period,
the β0 = (1.5, 1.6, 1.7, 1.8, 1.9, 2.0, 2.1, 2.2, 2.2, 2.4, 2.5), β1 = (0.05, 0.15, 0.25, 0.35,
0.45, 0.55, 0.65, 0.75, 0.85, 0.95, 1) and σ2

it = σ2y0.75
i(t−1) with σ2 = 1.25. The data

for dit,1 are obtained similar to above population prediction case. The reporting
probabilities are generated using the model for Case-(1) and Case-(ii) given in table
1. The following figure is given to assess the informativeness when ηi is used instead
of yi0
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Figure 3: Assessment of Informativeness
From Figure 3, one can see that using ηi instead of yi0 gives less pronounced infor-
mative reporting pattern.
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The population data is generated once and kept fixed for all simulations. The
size of population is assumed to be N = 1000 and no of simulations are 200. The
parameters are estimated using BBL approach with likelihood function given in (10)
and estimating equations given in (19), (20) and (21). The results are given below.

Table 4: Estimate, bias, empirical SE & RMSE, and average of squared error for
Case-(i)

(Finite Population Parameters: β0FP = 2.573, β1FP = 0.9773 and σ2
FP = 1.243)

(Theoretical Parameters: β0 = 2.5, β1 = 1.0, σ2 = 1.25 and γ0 = (0.30, 0.1))

Naive ĤN (θ) Ĥ∗N (θ) Ĥ∗∗N (θ) BBL

Case-(i): logit(πit) = γηi + dit and logit(πi0) = γ0ηi + di0

β̂0

Mean Est. 2.6299 2.5001 2.5309 2.5257 2.6266
Bias 0.1299 0.0725 0.0417 0.0469 0.1394
Emp. SE 0.1048 0.1111 0.1091 0.1094 0.1329
Emp. RMSE 0.1669 0.1326 0.1168 0.1190 0.2096
RMSEθ0 0.0955 0.1097 0.0964 0.0983 ..........

β̂1

Mean Est. 0.9743 0.9819 0.9797 0.9802 0.9868
Bias 0.0257 0.0046 0.0024 0.0028 0.0143
Emp. SE 0.0110 0.0117 0.0115 0.0116 0.0134
Emp. RMSE 0.0280 0.0126 0.0118 0.0119 0.0215
RMSEθ0 0.0092 0.0104 0.0097 0.0098 ..........

σ̂2

Mean Est. 1.2360 1.2473 1.2454 1.2457 1.2184
Bias 0.0140 0.0040 0.0022 0.0024 0.0325
Emp. SE 0.0277 0.0302 0.0295 0.0296 0.0256
Emp. RMSE 0.0311 0.0304 0.0296 0.0297 0.0446
RMSEθ0 0.0254 0.0239 0.0234 0.0235 ..........

Table 5: Estimate, bias, empirical SE & RMSE, and average of squared error for
Case-(ii)

(Finite Population Parameters: β0FP = 2.573, β1FP = 0.9773 and σ2
FP = 1.243)

(Theoretical Parameters: β0 = 2.5, β1 = 1.0, σ2 = 1.25 and γ0 = (0.30, 0.1))

Naive ĤN (θ) Ĥ∗N (θ) Ĥ∗∗N (θ) BBL

Case-(ii): logit(πit) = γyit + dit and logit(πi0) = γ0yi0 + di0

β̂0

Mean Est. 2.7833 2.6218 2.6611 2.6527 2.4811
Bias 0.2833 0.0492 0.0885 0.0801 0.0189
Emp. SE 0.1124 0.1163 0.1140 0.1145 0.1444
Emp. RMSE 0.3048 0.1263 0.1443 0.1397 0.1564
RMSEθ0 0.2226 0.1026 0.1198 0.1156 ..........

β̂1

Mean Est. 0.9697 0.9832 0.9803 0.9808 0.9868
Bias 0.0303 0.0059 0.0030 0.0035 0.0135
Emp. SE 0.0110 0.0112 0.0111 0.0111 0.0190
Emp. RMSE 0.0322 0.0126 0.0115 0.0116 0.0231
RMSEθ0 0.0114 0.0101 0.0093 0.0094 ..........

σ̂2

Mean Est. 1.2198 1.2545 1.2431 1.2461 1.2391
Bias 0.0302 0.0112 0.0001 0.0028 0.0108
Emp. SE 0.0288 0.0364 0.0327 0.0338 0.0338
Emp. RMSE 0.0418 0.0381 0.0327 0.0339 0.0355
RMSEθ0 0.0571 0.0327 0.0330 0.0326 ..........
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The estimates for γ are obtained only for BB approach for both case. For first case γ̂
= 0.1308, Bais(γ̂) = 0.0048, Emp. SE(γ̂) = 0.0071 and Emp. RMSE(γ̂) = 0.0095.
For second case γ̂ = 0.1203, Bais(γ̂) = 0.0019, Emp. SE(γ̂) = 0.0081 and Emp.
RMSE(γ̂) = 0.0084. For regression analysis, BBL seems slightly sensitive under
case-(i) and EE approach seems slightly sensitive under case-(ii). Bias remains the
dominate error under the naive approach.

Figure 4: Graphical comparison of different modelling approaches
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3. Conclusions

In conclusion, the results of prediction and estimation of model parameters suggest
that if sufficient long reporting history exists in longitudinal data that can provide
an empirical estimator of reporting probability, one can use EE approach as an
alternative to likelihood approaches for prediction as well as for the estimation of
model parameters under informative non-response. This approach is simple, com-
putationally easy and free from strict distributional assumptions of the outcome
variable. However, when the report probabilities depend on the concurrent value of
the target variable, the more sophisticated BBL may be necessary. In practice, one
could apply the BBL for every year separately and test the conditions underlying
the use of the EE. But applying separate BBL to test the constancy of reporting
probability over time is possible in theory but troublesome in practice. One could
check this assumption even using EE approach by comparing the estimated report-
ing probability for different span of consecutive historic time periods depending
on the length of history or observing the reporting rate over time. We intend to
investigate these possibilities more closely in future.
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