
Calibration Weighting for Nonresponse with a Flawed but Survey-
Corrected Frame Variable 

 
Phillip S. Kott1 

 

Abstract 
Sometimes in survey sampling we have access to a frame variable that is imperfectly measured.  For 
example, the frame may contain an imperfect indicator of whether a housing unit is owned or rented. 
Although (we will assume) the error in this variable can be corrected on the survey itself, using a corrected-
frame values as a calibration variable will generally bias the resulting estimates.  We will show how to 
avoid that source of bias when adjusting for unit nonresponse through calibration weighting. This can be 
done by treating the flawed-frame variable as a shadow variable to the corrected-frame variable in the 
weight-adjustment function. In other words, by calibrating on the flawed version of the variable while 
assuming, more reasonably, that whether or not a sample unit responds is a function of the corrected version.  
Since only the respondents are reweighted, we only needed to have corrected versions of the respondents’ 
values in the weight-adjustment function. Some simple simulations will show the effectiveness this 
weighting approach. 
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1.  Introduction 

 
Sometimes in survey sampling we have access to a frame variable that is imperfectly measured.  For 
example, the frame may contain an indicator of whether a housing unit is owned or rented that is not always 
correct.  Although the error in this variable can be corrected on the survey itself (which we assume here is 
always provides correct values)), using a corrected-frame values as a calibration variable will almost always 
bias the resulting estimates because only population units responding to the survey can have their values 
corrected, not units outside the respondent sample.  
 
Now suppose unit response is a function of the true value of a variable whose sometimes flawed counterpart 
is on the frame.  Traditional calibration weighing using either the frame-variable values as they are or the 
partial-corrected frame values (i.e., corrected by the survey for respondents) will result in biased estimates.  
 
It is possible, however, to include the true values of the variable recorded in the survey among the weight-
adjustment model variables while the frame values of the variable are treated as shadow variables, that is, 
calibration variables that are not part of the response model.  This can be done with the SUDAAN 11 
calibration-weighting procedure WTADJX (RTI 2012) as we shall see.   
 
In Section 2, we provide the mathematics behind this procedure.  Section 3 demonstrates its use with a 
simplistic but enlightening example.  Section 4 contains some concluding remarks. 
  

2. The Mathematics  

Let k denote an element of the population U, and R the respondent sample.  We want to estimate a total 
 𝑇𝑦 = ∑ 𝑦𝑘  𝑈 using a vector of calibration variables zk, with known population totals:   𝑻𝐳 = ∑ 𝐳𝑘𝑈 .   Given 
sampling weights dk  and probabilities of unit response of the assumed form: 
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pk = 1/(1 + exp(xk
T)),  

where xk is a vector of covariates of the same dimension as zk and  is unknown,  then a consistent estimator 
for Ty  is   

𝑡𝑦 = ∑ 𝑑𝑘[1 + exp (𝑅 𝐱𝑘
𝑇𝐠)]𝑦𝒌,   

where g is an estimate for   found by solving the calibration equation:  

𝑻𝐳 = ∑ 𝑑𝑘(1 + exp (𝑅 𝐱𝑘
𝑇𝐠))𝐳𝒌. 

Such a solution often exists because there are as many unknowns (in g) as calibration equations 
(components of 𝑻𝐳).  Note that the components of xk need only to known for respondents. Extension to xk 

to vectors with less components than zk are possible.  See Kott (2014) for more details.  

3. A Toy Example   

We demonstrate how this can work with a simplistic example, in which we will estimate a population mean 
rather than a total.  When unity is contained in both the xk and zk vectors (or the equivalent; i.e., some linear 
combination of the components of each vector is 1) estimating a population mean is analogous to estimating 
a population total.   
 
We start with a simple random sample (with replacement) of size 1000.  Each unit (k = 1, …, 1,000) is 
assigned a random variable r  between  0 to 1. When  k > 500 then the true value xk = 0; otherwise xk = 1.   
When  k > 300 then the frame values zk = 0; otherwise zk = 1.  As a result, there is some, but not perfect 
correlation between z and x. 
 
If xk = 1 and rk  . 6 then unit k responds; otherwise it doesn’t.  If xk = 1 and rk  . 9 then unit k responds;   
otherwise it doesn’t.  We can only observe xk when unit k responds (in fact, we known what all the xk are; 
we only pretend some units don’t respond and their x-values are not observed).  Clearly, whether or not xk 
is observed depends on its value.  Nonresponse is not missing at random.   Nevertheless, we want to estimate 
the population mean of  xk  from the respondent (“observed”) sample.   
 
We will compare three estimation techniques based on one generated respondent sample. The SAS-callable 
SUDAAN code we use for this appears in the appendix.  In the first method, we reweight the respondent 
sample so that the mean of the zk  in the respondent sample equals that in the whole sample.  Although we 
use SAS-callable SUDAAN, this is a simple reweighting exercise that could be done by hand.  In particular, 
the weight-adjustment factor for a responding unit j is the number of units in the whole sample with the 
same z-value as unit j divided by the number of units with the same z-value in the respondent sample. The 
weight-adjustment factor is multiplied by the design weight (here N/n) to produce the calibration (adjusted) 
weight.  
 
The second method is the same as the first, except that the z-values are replaced by partially-corrected c-
values, defined as equal to zk when unit k in not a respondent observed and as xk otherwise. That is to say, 
we calibrate on our best guess at the x-value: xk  when it is known, zk otherwise. This is well known to 
produce biased estimates, which we will confirm.  
 
In the third method, we again reweight so the mean of the  zk  in respondent sample equals that in the whole 
sample, but we do it in such a way that that units with the same x-value in the respondent sample get the 
same weight adjustment factor.  This can be done with matrix algebra in this simple example, but we use 
the WTADJX procedure in SUDAAN 11 employing the  code in the appendix. 
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As the three tables below show, the first two method produce badly biased estimates in that their errors are 
larger than twice their estimated standard errors computed (by the WTADJUST routine in SUDAAN 11) 
under the erroneous assumption that the weighting procedure is unbiased.    
 
By contrast, the error in the estimate using the third method is well within one standard error.  It appears to 
be asymptotically unbiased, as theory predicts.  The realized response rate in the simulation for the 1,000-
unit sample was (approximately) 91.8% when xk = 0 and 59.0% when  xk = 1.  The weight-adjustment factor 
for the third method was 1.077 when xk = 0 and 1.741 when  xk = 1.   Ideal would have been 1/.918 = 1.089 
and 1/.590 = 1.695. Even though these factors do not appear that close to ideal, they produce an 
asymptotically unbiased estimator for the mean of the x-values.  

 
Table 1. Calibrating and Response Modeling on the Frame Values (z) 
----------------------------------------------------- 
 Variable                                            
----------------------------------------------------- 
  x                Mean                      0.4451   
                    SE Mean                0.0165   
----------------------------------------------------- 
 
Table 2. Calibrating and Modeling on the Partially-Corrected Frame Values (c) 
----------------------------------------------------- 
 Variable                                            
----------------------------------------------------- 
  x                 Mean                      0.4200   
                    SE Mean                 0.0156   
----------------------------------------------------- 

  
Table 3. Calibrating on the frame values (z), but modeling on the survey values (x) 
----------------------------------------------------- 
 Variable                                            
----------------------------------------------------- 
  x                 Mean                       0.5057   
                    SE Mean                  0.0223   
----------------------------------------------------- 
 

4. Concluding Remarks 
 
 If we weaken the correlations between z and x, the standard errors (as estimated by WTADJX)  increase.  

 This toy example demonstrates the usefulness of letting a variables in the weight-adjustment model 
differ from related calibration variable.  

 In actual practice, the survey-corrected frame variable will be only one of many variables in the model 
and calibration equations, and it need not be binary.  

 Moreover, the target of estimation will not likely be the total for the corrected frame value, although 
the correct frame variable may be a predictor of the target variable.   

 If the corrected frame value is not correlated with the target variable, then the nonresponse depending 
on it will not be a potential source of bias.  
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 When the components are xk are 0/1 membership indicators of mutually exclusive groups, the functional 
form the response function  p(.) doesn’t matter except when restrictions on the range of the function  
prevents calibration for some forms but not others (e.g., p(xk

T) = 1/(1 + exp(xk
T)) cannot be less than 

1 but p(xk
T) = 1/(1 +xk

T)  can). See Kott (2014).  

 Often we do not know if nonresponse is ignorable or nonignorable, but with survey-correctible frame 
variables we do know.  It depends on the true variable values in  x  rather than their proxy values in z.   

 There are procedures in R, such as ‘Sampling’ (Tille and Matei 2013), that can be used in place of 
WTADJX when more than matrix algebra is needed.     
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        Appendix:  SAS-callable SUDAAN Code for the Three Methods 

* The data set is named D. 

/* Calibrating on the frame values (z) */ 

PROC WTADJUST  DATA = D ADJUST = NONRESPONSE DESIGN = SRS; 
VAR X; 
MODEL RESPONSE = Z; * an intercept term is implicit; 
PRINT MEAN SE_MEAN  ; 
OUTPUT ADJFACTOR/FILENAME =OUT1 REPLACE; 
 
/*  Calibrating on the partially-corrected frame values (c) */ 

PROC WTADJUST DATA = D ADJUST = NONRESPONSE DESIGN = SRS; 
VAR X; 
MODEL RESPONSE = C; * an intercept term is implicit; 
PRINT MEAN SE_MEAN  ; 
OUTPUT ADJFACTOR/FILENAME =OUT2 REPLACE; 
 
/* Calibrating on the frame values (z), but modeling on the survey values (x) */ 

PROC WTADJX  DATA = D ADJUST = NONRESPONSE DESIGN = SRS; 
VAR X; 
MODEL RESPONSE = X; *  an intercept term is implicit; 
CALVARS Z; 
PRINT MEAN SE_MEAN ; 
OUTPUT ADJFACTOR/FILENAME =OUT3 REPLACE; 
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