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Abstract 
Summary: Next generation sequencing technology is a powerful technology that enables 
researchers to discover, profile, and quantify transcripts across the entire transcriptome. 
Benefits of RNA-Seq over microarray technologies include: the ability to assess 
alternative splicing; detection of gene fusions; improved dynamic range; and the ability to 
use on non-model organisms. A fundamental question that arises in the design of many 
RNA-Seq studies is the required sample size to achieve a desired statistical power to 
determine differentially expressed genes. Here, we present an R package RSPS (RNA-
Seq Power Simulation) that uses an efficient simulation algorithm to empirically 
determine statistical power or the necessary sample size for an RNA-Seq study.  
Availability: We have uploaded an R package RSPS in R CRAN which computes sample 
size estimates based on empirical simulation estimates. 
Contact: bfridley@kumc.edu 
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1. Introduction 

 
Next-generation sequencing of transcriptomes (i.e., RNA-Seq) quantifies the 

transcriptome at a maximal resolution and dynamic range and without any prior 

assumption or biological knowledge of the organism (1). Unlike the microarray 

technology which can only quantify relative gene expression levels, RNA-Seq can 

quantify absolute gene expression levels in addition to determining gene fusions, 

alternative splicing and novel isoforms, and other expressed genetic variants. Many of the 

analyses approaches for microarray based gene expression studies have been carried 

forward into the analysis of RNA-Seq data, including sample sizes calculations based on 

the traditional two-sample t-test (i.e. normal distribution). However, a key challenge is 

that RNA-Seq produces count data that do not follow a Gaussian distribution, but rather 

an over-dispersed Poisson or Negative Binomial distribution, thereby making the use of t-

test based sample size calculation inappropriate as it is assuming an incorrect error 

distribution (2, 3).  

To date, several methods to calculate sample sizes for RNA-Seq studies have been 

proposed based on large sample asymptotics of the Poisson or Negative Binomial based 

test statistics. For example, Li et al. derive sample size calculations based on asymptotic 

statistics under an assumed Poisson model for RNA-Seq data (4). However, a Poisson 

model assumes an equal mean and variance of RNA-seq read counts. Often read counts 

exhibit over-dispersion (i.e. variance greater than the mean) and in this case necessary 

sample sizes calculated based on a Poisson distribution will be underestimated. To 
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account for over-dispersion several power calculation methods have been proposed based 

on a Negative Binomial model (5, 6). However, these methods rely on generalized linear 

models for the Negative Binomial model for which for which analytical solutions do not 

exist.  

A primary limitation of the proposed approaches are that they are based on normality 

approximations to test statistics based on generalized linear models with Poisson or 

Negative Binomial distribution errors.  Hence, the performance of these methods for 

small studies is suspicious.  This is particularly the case in many basic science 

experiments with limited sample sizes (i.e., mouse studies, xenograft studies). 

Consequently, there exists a need for sample size calculation software that accurately 

estimates power for RNA-seq studies with small sample sizes.  

   The primary aim of this R package RSPS (RNA-Seq Power Simulation) is to provide a 

simulation-based sample size or power determination for RNA-seq studies to determine 

differential expressed genes between two groups or conditions. RSPS has an advantage 

over the proposed methods in that it does not rely on normality approximations to test 

statistics based on the Poisson or Negative Binomial distributions based on either 

asymptotic arguments or data transformations. RSPS allows the user to specify either an 

underlying Poisson or Negative Binomial model for the sequencing data; can estimate 

necessary sample size for a desired power (given effect size) or vice versa; and provides 

power curves and tables that could be used within grant applications or protocols.   

The R package produced by the project is freely available from CRAN. 

 

2. Implementation 

 
Estimating the necessary sample size for an experiment generally requires four factors: 

the level of Type I error    , power of the test       or equivalently the Type II error 

rate    , an estimate of variability in the outcome of interest, and an estimate of clinically 

significant differences in mean log-fold change one wishes to be able to detect. In theory 

if any two of three parameters are known/fixed (assuming the Type I error is pre-

specified), the third value can be computed. However in practice, the estimate of effect 

size or fold change is usually assumed and varied over a range of possible values; with 

either the power being estimated for a given sample size or the sample size being 

estimated to achieve the desired power is computed.  

 In RSPS, the user inputs a nominal Type-I error rate, a vector of mean-fold 

changes (effect sizes of interest), and the underlying data generative distribution (Poisson 

or Negative Binomial).  If the Negative Binomial distribution is specified the user also 

inputs an estimate of the over-dispersion parameter that reflects the mean-variance 

relationship in the data. Let Ngi be the number of RNA-seq counts for group g and subject 

i. Then for the negative binomial parametrization, the count data is generated from:  

 
where  g is the mean counts for group g,  g is the fold change, and   is the over-

dispersion parameter. For the Poisson distribution      Depending on the goals of the 

empirical simulation study, the user inputs either a tentative sample size or a desired 

power.  
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Figure 1: a. The empirical simulation algorithm. b. Power curve output by RSPS.  

 
 The algorithm for simulation based power estimation proposed in RSPS is shown 

in Figure 1a. The algorithms works as follows. First, RSPS simulates data RNA-Seq data 

from two groups according to the specified underlying data distribution, under the null 

hypothesis that the log-fold mean change between the groups is 0. For each data set 

simulated under the null hypothesis a two-sample t-statistic is calculated. This process is 

repeated n0 (5000 pre-set) to construct a null-distribution of the underlying t-statistic. 

From this simulated null distribution the critical values for hypothesis testing are 

obtained. Next, the data are generated under the alternative hypothesis that the two 

groups have different mean log-fold counts. The difference in the magnitude of the mean 

log-fold counts between the two groups under the alternative hypothesis is pre-specified 

by the user. For each simulated data set under the alternative hypothesis a two-sample t-

test of the log-mean shift between the two groups is calculated. This process is repeated 

nA times. The proportion of the test-statistics generated under the alternative hypothesis 

more extreme than the empirical null distribution critical values represent an estimate of 

the power.  

 RSPS estimates the sample size given a desired power similarly to the algorithm 

above using a grid search. Specifically, power is calculated across a variety of sample 

sizes; and then output the minimum of these sample sizes required to achieve the desired 

power. Example output (power curves) are presented in Figure 1b. While the grid search 

requires additional computation RSPS it still relatively fast and can calculate 1000 

simulations across 5 simulation values in under 10 seconds.  

 

Conclusions 
Sample size and power estimation is a fundamental step in the design of any experiment 

to ensure that you have the best possible chance of determining the truth.  The digital 

count nature of RNA-Seq data, make it unsuited for standard testing methods that assume 

the data is normally distributed, particular when dealing with relatively small studies. 

Previous approaches to power and sample size estimates based on the distributions rely 

on data transformations or asymptotic arguments to justify normality assumptions on the 

test statistics measuring differential expression. However, in our experience, many 

differential expression analyses the have small sample sizes and therefore asymptotic 

approximations are poor. The main advantage of RSPS is that sample size and power 

calculation do not rely on asymptotic normality approximations, and therefore should be 

more appropriate for studies with small sample size.  

ENAR2015

3985



 RSPS currently uses a t-statistic within the simulation algorithm to generate 

distribution between two groups, but is an ongoing project and will be generalized to 

generate the null distribution with other test statistics, and also extended to handle pair 

designs, continuous predictors. A limitation of our method is that in practice the p-value 

for the t-statistic will be based on asymptotic approximations of normality from the data 

sample. Therefore, RSPS is best suited to correspond to analyses where differential 

expression is assessed by re-sampling the data under the null and alternative hypotheses, 

and comparing the distribution of the estimated t-statistics from these re-sampling 

distributions.  
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