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Abstract 
Doubly repeated measures designs involve v visits, with each visit consisting of t time 
points. An example of this setting is the oral glucose tolerance test (OGTT), in which 
glucose is measured at several time points following ingestion of a glucose solution and 
is carried out before and after administration of a treatment. Comparing the change in 
the shape of the glucose curve from baseline to follow-up between two or more 
treatment groups is primarily the goal. A common approach used by non-statistical 
researchers is to ignore the baseline visit and use area under the curve (AUC) analysis 
to compare group curves at the follow-up visit only. Alternatively, one may analyze this 
type of data using a linear mixed model for repeated measures. We go over assumptions 
and advantages/disadvantages of AUC and mixed model analyses when using complete 
data versus follow-up data only. 
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1. Introduction 

 
Simple repeated measures or longitudinal designs are common and easy to understand.  
These designs have measures recorded on each sampling unit over time repeatedly at 
some specified time points.  Crossover designs and parallel arm studies with a pre and 
post measurement are common examples of repeated measures designs.   

 
Doubly repeated measures designs are intrinsically more complex.  Hierarchical and 
nested models are designs that commonly use doubly repeated measures.  A study 
involving multiple administrations of an oral glucose tolerance test (OGTT) is one setting 
in which a doubly repeated measures design is employed.  During an OGTT, blood 
glucose measures (mg/dL units) are taken from a patient prior to ingestion and then every 
hour for 3 hours following ingestion of a 75 ml glucose solution. 
 
One goal when analyzing multiple OGTT data is often to determine if the glucose 
profiles are different after the patients receives some treatment.  For example, consider a 
study investigating a new drug developed to treat hyperglycemia (high blood sugar). In 
this study, hyperglycemic patients are assigned to either a drug or placebo group and 
report to clinic at the start of the study (visit 1) for an OGTT.  Then the patients take their 
assigned treatment for a set period of time and return to the clinic (visit 2) for a follow-up 
OGTT. 
 
Figure 1 gives a visualization of what the results from this type of data may look like. 
The means for glucose are plotted on the vertical axis and time on the horizontal.  The 
nomenclature from the legend indicates that data from group 1 (say treatment) are shown 
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in blue and group 2 (say control) data are green. The solid lines represent visit 1 means 
and the dotted lines are for means at visit 2. 
 

2. Methods 

 
When looking at the means in Figure 1, the profiles for both treatment and control appear 
lower at visit 2 than at visit 1. With a simple repeated measures design, OGTT data 
would be collected only once and compared between groups. It is not as straight-forward 
to determine how to test for group differences while taking into account data from both 
visits. Due to this added complexity, researchers may choose to only investigate data 
collected at the end of the study. One analytical method employed in this scenario is area 
under the curve (AUC). 
 
2.1 Area under the curve 
A very common method used for analysis in research dealing with OGTT is area under 
the curve analysis {Allison et. al.}. When this method is employed for doubly repeated 
measures data, baseline data is often ignored and only data from the second visit is 
analyzed.  The calculation for AUC when the time points are equally spaced is 
 

𝐴𝑈𝐶 =
𝑡𝑘−𝑡1

2(𝑘−1)
(𝑦1 + 2𝑦2 + 2𝑦3 + ⋯ + 𝑦𝑘),  

 
where t is time, k is the number of time points, and 𝑦𝑖 is the observed response at time i 
(i=1,…,k).  In the case of OGTT studies, the response is blood glucose level. This single 
measure cannot be used for testing OGTT time trends within or across study visits as it 
collapses the measurements across all of the time points within a visit.  From the AUC 
equation, we can see that the units are time*(mg/dL).  These units are harder to grasp 
than (mg/dL) or (mg/dL) per time.  Another point to note about AUC is that it is an 
unequally weighted sum of the response.  It down weights the first and last measures by 
half.    
 
2.2 Linear model 
Using a linear model allows us to develop an alternative to AUC analysis.  The notation 
𝝁𝒊𝒋𝒌 represents the mean glucose level for group 𝒊 at visit 𝒋 and time point 𝒌. For the 
OGTT example i,j=1,2 and k=1,2,3,4.  Using this methodology, one can incorporate all 
observations without requiring any collapsing of the data. 
 
The first hypothesis of interest is equality between groups of change in mean glucose 
levels from visit 1 to visit 2.  The null hypothesis using the mean notation is 
 

𝐻0: 𝜇11∙ − 𝜇12∙ = 𝜇21∙ − 𝜇22∙, 
 

where the dot notation indicates that the mean is calculated across the time points within 
the specified visit for the specified group. 
 
There are numerous models that can be utilized to test this hypothesis.  We will go into 
details about two such models: over-parameterized and cell means.   The 3-hr OGTT 
example is used to illustrate these models. Note that no additional covariates are added to 
the model and the variables in the model (group, visit, and time) will be treated as 
categorical. 
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2.2.1 Over-parameterized model 
The over-parameterized model contains all main effects and interactions.  Shown below 
is the list of all estimable parameters resulting from this parameterization of the model. 
 

 
There are only 16 estimable parameter because there are only that many combinations of 
group, visit, and time (2*2*4).  Defining means 𝝁𝒊𝒋𝒌 in terms of the fixed effect 
parameters requires constructing linear combinations of these parameters.  Many of the 
means will be defined in terms of shared parameters such as the following 2 means 
 

𝜇211 = 𝛽0 + 𝛽2 + 𝛽4 + 𝛽10 
𝜇212 = 𝛽0 + 𝛽2 + 𝛽5 + 𝛽11. 

 
Using the null hypothesis previously defined, the test of this hypothesis in terms of the 
parameters would be 

𝐻0: 4𝛽3 + 𝛽13 + 𝛽14 + 𝛽15 = 0. 
 
Note that this is not a contrast (linear combination of parameters whose coefficients sum 
to 0) which makes testing this hypothesis more difficult. 
 
2.2.2 Cell means model 
Using a different model parameterization can make the hypothesis easier to test.  The cell 
means model only contains the highest level interaction involving all model terms of 
interest (group*visit*time).  Below is the parameterization. 

 
 
This parameterization of the model does not change the fit since the number of 
parameters and what they are estimating are the same.  Using the null hypothesis 
previously defined, the test of this hypothesis in terms of the parameters would be 
 
        𝐻0: (𝛽1 + 𝛽2 + 𝛽3 + 𝛽4) − (𝛽5 + 𝛽6 + 𝛽7 + 𝛽8) = 

(𝛽9 + 𝛽10 + 𝛽11 + 𝛽12) − (𝛽13 + 𝛽14 + 𝛽15 + 𝛽16). 

𝛽0: intercept 
𝛽1: treatment=1 
𝛽2: visit=1 
𝛽3: treatment=1, visit=1 
𝛽4: time=0 
𝛽5: time=60 
𝛽6: time=120 
𝛽7: treatment=1, time=0 

𝛽8: treatment=1, time=60 
𝛽9: treatment=1, time=120 
𝛽10: visit=1, time=0 
𝛽11: visit=1, time=60 
𝛽12: visit=1, time=120 
𝛽13: treatment=1, visit=1, time=0 
𝛽14: treatment=1, visit=1, time=60 
𝛽15: treatment=1, visit=1, time=120 

𝛽1: treatment=1, visit=1, time=0 
𝛽2: treatment=1, visit=1, time=60 
𝛽3: treatment=1, visit=1, time=120 
𝛽4: treatment=1, visit=1, time=180 
𝛽5: treatment=1, visit=2, time=0 
𝛽6: treatment=1, visit=2, time=60 
𝛽7: treatment=1, visit=2, time=120 
𝛽8: treatment=1, visit=2, time=180 

𝛽9:   treatment=2, visit=1, time=0 
𝛽10: treatment=2, visit=1, time=60 
𝛽11: treatment=2, visit=1, time=120 
𝛽12: treatment=2, visit=1, time=180 
𝛽13: treatment=2, visit=2, time=0 
𝛽14: treatment=2, visit=2, time=60 
𝛽15: treatment=2, visit=2, time=120 
𝛽16: treatment=2, visit=2, time=180 
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SAS can easily be used to construct a test of this hypothesis {Littell et. al.}.  
 
proc mixed data=ogtt; 
class treatment visit time id; 
model glucose = treatment*visit*time / ddfm=kr; 
repeated visit time / subject=id type=UN@CS; 
contrast ‘Test 1’ treatment*visit*time 1   1   1   1  -1  -1  -1  -1  -1  -1  -1  -1   1   1   1   1; 
run; 
 
The test of the linear contrast shown above requires one degree of freedom.  More 
complex hypotheses can also be tested using this model to construct contrasts.  Consider 
testing equality between the changes in mean glucose levels from visit 1 to visit 2 at each 
time point, 
 

𝐻0: (

𝜇121 − 𝜇111

𝜇122 − 𝜇112
𝜇123 − 𝜇113

𝜇124 − 𝜇114

) = (

𝜇221 − 𝜇211

𝜇222 − 𝜇212
𝜇223 − 𝜇213

𝜇224 − 𝜇214

). 

 
In terms of the parameters in the over-parameterized model this null hypothesis would be 
 

𝐻0: (

𝛽3

𝛽3

𝛽3

𝛽3

) = (

𝛽13

𝛽14

𝛽15

0

). 

 
Again, this hypothesis can be estimated using statistical software, but requires the user to 
compute this combination of parameters.  Whereas using the cell means parameterization, 
the difference between means is straight forward to compute and the null hypothesis 
becomes: 
 

𝐻0: (

𝛽5 − 𝛽1

𝛽6 − 𝛽2

𝛽7 − 𝛽3

𝛽8 − 𝛽4

) = (

𝛽13 − 𝛽9

𝛽14 − 𝛽10

𝛽15 − 𝛽11

𝛽16 − 𝛽12

). 

 
This can be tested using the same SAS code as above with the contrast statement {Littell 
et. al.} changed to the following. 
 
contrast ‘Test 2’ treatment*visit*time 
  -1  0  0  0  1  0  0  0  1  0  0  0 -1  0  0  0, 
   0 -1  0  0  0  1  0  0  0  1  0  0  0 -1  0  0, 
   0  0 -1  0  0  0  1  0  0  0  1  0  0  0 -1  0, 
   0  0  0 -1  0  0  0  1  0  0  0  1  0  0  0 -1; 
  
 

3. Conclusion 
 
The hypotheses tested in the doubly repeated measures setting can be quite different from 
those in the commonly used single repeated measures setting.  The two models described 
above, the over-parameterized and cell means, are simply different parameterizations of 
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the same model. The two examples showed how some hypotheses are easier to test in the 
cell means model as compared to the over-parameterized model.  However, there are other 
tests, not shown here, that may be easier to test using the over-parameterized model.  Model 
parameterization should always be considered when determining how to evaluate 
hypotheses of interest. 
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Figure 1 Example of OGTT data for two groups each with two visits. 
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