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Abstract

Asymptotics of an alternative extreme-value estimator for the autocorrelation pa-
rameter in a first-order bifurcating autoregressive (BAR) process with non-gaussian
innovations are derived. This contrasts with traditional estimators whose asymp-
totic behavior depends on the central part of the innovation distribution. Within
any BAR model, the main concern is addressing the complex dependency between
generations. The inability of traditional methods to handle this dependency moti-
vated an alternative procedure. Our interest lies in investigating through simulation
how significant the dependency between generations really is. Additionally, we will
investigate the asymptotic properties of our extreme value estimator associated with
the BAR(1) model with non-gaussian innovations. Finally, the implications of our
extreme value approach are discussed with an extensive simulation study that not
only asses the reliability of our proposed estimate but presents the findings for a
new estimator of an unknown location parameter θ and its implications.

1 Introduction

The bifurcating autoregressive processes (BAR, for short) are widely known for
analyzing cell lineage data, where each individual in one generation gives rise to
two offspring. In addition to their biological importance, BAR models are essential
in developing theoretical methods for the analysis of dependent data. Methods of
statistical analysis of cell lineage data, which explicitly considered the dependence
between the cells, was first introduced by Cowan and Staudte (1986). The Cowan
and Staudte model regards each line of descent as an first-order autoregressive AR(1)
process. More precisely, the first-order bifurcating autoregressive process, BAR(1),
is defined by the equation

Xt = φX⌊t/2⌋ + ǫt, for 2 ≤ t ≤ 2k − 1, (1.1)

where k represents the number of generations, |φ| < 1, and ⌊·⌋ denotes the greatest
integer function, so that one can write recursively X2 = φX1 + ǫ2,X3 = φX1 +
ǫ3,X4 = φX2 + ǫ4, etc. For illustration, the data structure with four generations is
given below.
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Figure 1: Illustration with four Generations in a Binary Tree
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Over the past two decades there have been many extensions of bifurcating autore-
gressive models. For example, referring to the variables X2t and X2t+1 as the daugh-
ters of Xt, in computing their values these daughters receive innovations ǫ2t and
ǫ2t+1, respectively. Some BAR models allow for the innovation pair (ǫ2t, ǫ2t+1) to
be dependent while other models require an iid structure for the innovations. In
this paper we consider the latter situation, but examine through simulation how our
estimation procedure performs with dependent innovations. The motivation from a
biological rationale for exploring the situation when the innovation pair (ǫ2t, ǫ2t+1)
are dependent is that the sister cells grow in a similar environment, particularly
early in their lives, and hence one expects the correlation between sisters to at least
exist. However, other more distant relatives, for example cousins, share less of their
environment and it seems reasonable to suppose that their environmental effects are
independent.
Whether the innovation pair is assumed to be independent or dependent, a com-
mon theme in almost all BAR models is the use of traditional methods to obtain
estimators whose asymptotic behavior depends on the central part of the innovation
distribution. For example, Huggins and Basawa (1999, 2000) proposed a bifurcat-
ing autoregressive moving average or BARMA (p, q) to account for this dependence
and studied maximum likelihood estimation for a Gaussian BAR model of order p.
Zhou and Basawa (2005b) introduced non-Gaussian BAR(1) with Exponential type
innovations and established the exact and asymptotic distributions of a maximum
likeihood estimator.
While the papers mentioned above made some remarkable breakthroughs, there
were some limitations to their approach. For example, the inability to handle the
complex dependency between generations, an issue to our knowledge that has yet
to be resolved. With this being said, our interest lies in providing some insight
through simulation how significant the dependency between generations really is.
In conjunction, we will investigate the asymptotic properties of our extreme value
estimator associated with the BAR(1) model with non-gaussian innovations.
A main advantage of our estimation procedure is that it relies heavily upon the
large innovations, and because of this, we were able to investigate the complex
dependency found between generations. The inability of traditional methods to
handle this dependency motivated our alternative approach. Furthermore, we are
able to consider the infinite variance case 0 < β < 2, while papers mentioned above
exclusively considered the finite variance case. Within this setup, we propose an
estimate for the correlation parameter φ and a unknown location parameter θ under
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a stationary model where we assume the innovation sequence (ǫ2t, ǫ2t+1), t ≥ 1, is
a sequence of independently and identically distributed positive bivariate random
variables. We then derive the limiting laws for our estimators (φ̂, θ̂) through the use
of point processes and regular variation that removes the complexity and difficulty
presented in Theorem 2 of Zhou and Basawa (2005b) under the specified bivariate
exponential innovation distribution. Here the process is extended, first by consid-
ering alternative estimates for φ rather than the typical least-square or maximum
likelihood estimate such that innovations {Zt} follow an non-gaussian distribution
F and secondly assuming F to be regularly varying at both endpoints θ and infinity.
The rest of the paper is organized as follows: asymptotic limit results for the autocor-
relation parameter φ and location parameter θ are presented in Section 2, Section 3
contains an extensive simulation study that assess the reliability and performance of
our proposed estimates and Section 4 verifies that our extreme value theory method
produces the same limit law as Theorem 2 in Zhou and Basawa (2005b), Addition-
ally, Section 5 presents detailed proofs for some of our main results found in Section
2 under iid assumption on the innovations.

2 Asymptotic Results

Suppose {Xt} is a sequence of observations of some characteristic of individual t. Be-
ginning with the positive starting value X1, the first order bifurcating autoregressive
process, BAR(1), with a positive left endpoint θ is defined as,

Xt = φX⌊t/2⌋ + ǫt, for 2 ≤ t ≤ 2(k+1) − 1, (2.1)

where 0 < φ < 1 and ⌊x⌋ denotes the largest integer less than or equal to x.
We assume that the innovations {ǫt} are such that the offspring (ǫ2t, ǫ2t+1), t ≥ 1
are a sequence of independently and identically distributed nonnegative bivariate
random vectors with (ǫ2t, ǫ2t+1) ∼ F1. Additionally, {ǫt} is assumed to have the
same marginal distribution F such that θ = inf{x : F (x) > 0} and sup{x : F (x) <
1} = ∞. Lastly, we assume F is regularly varying with index α at its positive left
endpoint θ, abbreviated F ∈ RVα, and F̄ = 1 − F is regularly varying with index
−β at infinity, its right endpoint. That is, there exists β > 0 such that

lim
t→∞

F̄ (tx)

F̄ (t)
= x−β, for all x > 0. (2.2)

In this paper we will consider the situation where k generations evolved and the
offspring from that generation are included. That is,

1 + 2 + 22 + . . . + 2k = 2k+1 − 1.

In order to notationally clarify the transition from the kth generation to the tth

individual in the BAR(1) process {Xt}, let

n = 2k+1 − 1.

That is, the total number of individuals in this process including the offspring during
the kth generation is n. Now by defining

t =

{

2t̃ if t is even (male);

2t̃+ 1 if t is odd (female),
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observe that we can now express the process in (2.1) from the offspring perspective,

{

X2t̃ = φXt̃ + ǫ2t̃, for 1 ≤ t̃ ≤ ⌊n/2⌋;

X2t̃+1 = φXt̃ + ǫ2t̃+1, for 1 ≤ t̃ ≤ ⌊n/2⌋.
(2.3)

The process in (2.3) allows for a better interpretation of the bifurcating autoregres-
sive process, where the model parameter φ represents the strength of correlation
between the mother and its offspring under the assumption that the variance is
finite. Now denoting x ∧ y = min(x, y), we have

Yt̃ = ǫ2t̃ ∧ ǫ2t̃+1 = X2t̃ ∧X2t̃+1 − φXt̃.

Then Yt̃ ∼ G(x) = 2F (x)− F1(x, x), with G(θ) = 0. Finally, the first-order autore-
gressive process, AR(1), is

X∗t = φX∗t−1 + ǫ∗t , (2.4)

where {ǫ∗t} is a sequence of i.i.d. random variables with the same marginal distri-
bution as {ǫt}.
By assuming (2.2), we are considering a time series with heavy-tailed errors and
within certain time series applications a better model is achieved. Thus, our goal is
to capitalize on the behavior of extreme value estimators over traditional estimators
when 0 < β < 2. This contrasts with estimators whose asymptotic behavior depends
on the central part of the innovation distribution when a second or higher moment
is finite. Since the estimate for θ depends on the estimate for the autocorrelation
coefficient, we begin studying the asymptotic properties of φ̂n and then move onto
asymptotic properties for θ̂n. The motivation for the natural estimator φ̂n, comes
from the observation when X⌊t/2⌋ is large, equation (2.1) implies

0 ≤ φ ≤ Xt/X⌊t/2⌋. (2.5)

Therefore, by minimizing the ratio in (2.5) we expect

φ̂n =
n
∧

t=2

Xt

X⌊t/2⌋

to be a reasonable estimator for φ. We now turn to showing that bn(φ̂n−φ) converges
in distribution where

bn = F←(1−
1

n
) := inf{x : F (x) ≥ (1− 1/n)}.

Let F̄ (x) = 1− F (x). Then we have

lim
n→∞

F̄ (bnx)

F̄ (bn)
= x−β, for all x > 0. (2.6)

Now define an = G←(1/n) − θ. Then

lim
n→∞

G(θ + any)

G(θ + an)
= yα, for all y > 0. (2.7)
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First observe that the stationary solution is

Xt = ǫt + φǫ⌊t/2⌋ + φ2ǫ⌊t/22⌋ + . . .+ φmǫ⌊t/2m⌋ + . . . .

Thus we begin with a truncation of Xt’s by defining

X
(m)
t =

m
∑

j=0

φjǫ⌊t/2j⌋, m ≥ 1, t ≥ 2m

as an approximation to Xt. Furthermore,

X
∗(m)
1 =

m
∑

j=0

φjǫ2j
d
= X

(m)
t , m ≥ 1 X∗1 = X

∗(∞)
1 . (2.8)

Now using the fact that Yt̃ = ǫ2t̃ ∧ ǫ2t̃+1, we can determine the necessary point
process, since

P [bn(φ̂n − φ) > x] = P

[

n
∧

t=2

(

Xt − φX⌊t/2⌋

b−1n X⌊t/2⌋

)

> x

]

= P

[

n
∧

t=2

(

ǫt

b−1n X⌊t/2⌋

)

> x

]

= P





⌊n/2⌋
∧

t̃=1

(

ǫ2t̃ ∧ ǫ2t̃+1

b−1n Xt̃

)

> x





= P





⌊n/2⌋
∧

t̃=1

(

Yt̃

b−1n Xt̃

)

> x



 .

Thus we define the following point process:

In =

⌊n/2⌋
∑

t̃=1

ε(Yt̃,b
−1
n Xt̃)

and I(m)
n =

⌊n/2⌋
∑

t̃=1

ε
(Yt̃,b

−1
n X

(m)

t̃
)
.

Observe that the point process In consists of two independent components, where
the first component consists of the marks for the minimum of the offspring individ-
uals Yt̃ and the second component consists of the points from the parents b−1n Xt̃.
Since we are looking at the first order bifurcating process from the natural perspec-
tive of (2.3), we will let t = t̃, so that 1 ≤ t ≤ ⌊n/2⌋.

Now we consider establishing convergence of the point process I
(m)
n by first defining

rectangles
Ri = [ai, bi]× [a

′

i, b
′

i], 1 ≤ i ≤ q. (2.9)

Thus, we need to show for any q ≥ 1 that the q−dimensional distribution converges.
That is,

(I(m)
n (R1), . . . ,I

(m)
n (Rq))

d
−→ Pois(λ1)× . . . × Pois(λq) as n → ∞, (2.10)

where λi ≡ λ
(m)
i = limn→∞E[I

(m)
n (Ri)] and Pois(λ) denotes a Poisson distribution

with parameter λ, while X × Y means that X and Y are independent.
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We will prove (2.10) for the case of q = 2. That is, we will show that if a
′

1 < b
′

1 <
a
′

2 < b
′

2 so that R1 ∩R2 = ∅, then

(I(m)
n (R1),I

(m)
n (R2)) ⇒ Pois(λ1)× Pois(λ2) as n → ∞.

The proof of the other cases is similar, thus omitted. Now suppose that we have

constructed arbitrary blocks Ql,s in such a way that X
(m)
t and X

(m)
t′ are independent

for all t if t ∈ Ql,s and t′ ∈ Ql′,s′ such that (l, s) 6= (l′, s′). Under this assumption.
we proceed with the argument and define the following indicator function’s

Ii(l,s) =

{

1 if
∑

t∈Ql,s
1[(Yt, b

−1
n X

(m)
t ) ∈ Ri] ≥ 1 for i = 1, 2,

0 otherwise ,
(2.11)

and

Ĩi(l,s) =

{

1 if
∑

t∈Ql,s
1[(Yt, b

−1
n X

(m)
t ) ∈ Ri] ≥ 2 for i = 1, 2,

0 otherwise .
(2.12)

Now let I(l,s) = (I1(l,s), I
2
(l,s)) and Ĩ(l,s) = (Ĩ1(l,s), Ĩ

2
(l,s)).

Now observe that {I(l,s) : 1 ≤ s ≤ ⌊2l/r⌋, l = l0, . . . , k} are i.i.d. Bernoulli random
vectors. The following lemma shows if there exists at least two different indices in

the same interval Ql,s such that the points in I
(m)
n fall within either region R1, R2

or both for some (l, s) then the event is negligible as n tends to infinity.

First observe since X
(m)
t and X

(m)
t′ are independent if t ∈ Ql,s and t′ ∈ Ql′,s′ with

(l, s) 6= (l′, s′) then
∑

t∈Ql,s
1[(Yt, b

−1
n X

(m)
t ) ∈ Ri] and

∑

t′∈Ql′,s′
1[(Yt′ , b

−1
n X

(m)
t′ ) ∈

Ri] are independent for i = 1, 2.

Lemma 2.1. Suppose t ∈ Ql,s and t′ ∈ Ql′,s′ such that (l, s) 6= (l′, s′). Under the
assumptions that 0 < φ < 1, θ > 0, F̄ ∈ RV−β we have

P





k
∑

l=l0

⌊2l/r⌋
∑

s=1

Ĩ(l,s) 6= (0, 0)



 → 0, as k → ∞.

Remark 1. By definition as k tends to infinity n = 2k+1 − 1 tends to infinity and
therefore we can speak of regular variation in terms of k.
The next lemma shows the probability that there exists at least one index in the

same interval Ql,s for each component of I(l,s), such that the point or points in I
(m)
n

fall within region Ri is zero for i = 1, 2 and some (l, s).

Lemma 2.2. Under the conditions specified in Lemma 2.1 for some l0 ≤ l ≤ k, 1 ≤
s ≤ ⌊2l/r⌋, we have

P [I(l,s) = (1, 1)] = o
( r

2k+1

)

.

The following lemma calculates the probability that there exists at least one index

in the same interval Ql,s, such that the point or points in I
(m)
n fall within exactly

one region for some (l, s).
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Lemma 2.3. Let Y1 ∼ G. Then under the conditions specified in Lemma 2.1 for
r = o(2k) and some l0 ≤ l ≤ k, 1 ≤ s ≤ ⌊2l/r⌋, we have

2k+1

r
P [I(l,s) = (j, 1 − j)] ∼ γ2−j , for j = 0, 1, and k large

where γi = (G(bi)−G(ai)) ·κi and κi = (b
′−β
i −a

′−β
i )(1−φ(mβ))/(1−φβ) for i = 1, 2.

The next lemma determines the limiting distribution for our i.i.d. random vector
I(l,s) through the use of the moment generating function.

Lemma 2.4. Under the conditions specified in Lemma 2.1 for r = o(2k) we have

P [I(l,s) = (i, j)] =

{

r
2k+1γ(i,j)(1 + o(1)) if 0 ≤ i, j ≤ 1, i+ j = 1 ,

1− r
2k+1 (γ(1,0) + γ(0,1))(1 + o(1)) if i = j = 0 ,

where γ(i,j) = (G(b2−i) − G(a2−i))(b
′−β
2−i − a

′−β
2−i)(1 − φ(mβ))/(1 − φβ) for i + j = 1.

Additionally,

k
∑

l=l0

⌊2l/r⌋
∑

s=1

I(l,s) = (I1(l,s), I
2
(l,s)) ⇒ Pois(λ1)× Pois(λ2), as k → ∞,

where λi = (G(bi)−G(ai))(b
′−β
i − a

′−β
i )(1− φ(mβ))/(1 − φβ) for i = 1, 2.

Applying the previous lemma’s yields our first main result.

Theorem 2.1. Consider the stationary BAR(1) process {Xt} from (2.1) where F
satisfies (2.2). Then for any m ≥ 1 and disjoint sets, Ri := [ai, bi] × [a

′

i, b
′

i] for
i = 1, 2 we have

(I(m)
n (R1),I

(m)
n (R2)) ⇒ Pois(λ1)× Pois(λ2), as n → ∞,

where λi ≡ λ
(m)
i = limn→∞E[I

(m)
n (Ri)] = (G(bi)−G(ai))(b

′−β
i −a

′−β
i )(1−φ(mβ))/(1−

φβ), for i = 1, 2.

Recall that if n is the total number of observations in k generations, we have n =
2k+1 − 1 or k = log2(n + 1) − 1. The following corollary produces the limiting
distribution for φ̂n as the number of generations tends to infinity.

Corollary 2.1. Consider the estimator of φ, φ̂n =
∧n

t=2
Xt

X⌊t/2⌋
. Suppose 0 < φ <

1, θ > 0, F̄ ∈ RV−β and EY −γ < ∞ for some γ > β, then

lim
n→∞

P [bn(φ̂n − φ) > x] = e−x
βEY −β(1−φβ)−1

, for all x > 0,

where Y has the stationary distribution G for the process (2.1).

We now shift our attention to the positive unknown location parameter θ. The
motivation for an estimator of θ arrives from the observation that, Xt − φ̂nX⌊t/2⌋

can be expressed as −(φ̂n − φ)X⌊t/2⌋ + ǫt. Now since
∧n

t=2 ǫt
a.s.
−−→ θ and φ̂n

p
−→ φ as

n → ∞ allows us to define our estimator for θ:

θ̂n =
∧

t∈In

(Xt − φ̂nX⌊t/2⌋), (2.13)
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where we define the index set In = {t : 2 ≤ t ≤ n and X⌊t/2⌋ ≤ (anbn)
ρ} where

0 < ρ < 1 is a fixed value.
Now to determine the limiting distribution for θ̂ observe that,

θ̂n − θ = [(θ̂n −
∧

t∈In

Yt) + (
∧

t∈In

Yt − θ)]. (2.14)

The following lemma show that the first term in (2.14) goes to zero in probability,
thus allowing us to focus only on the second term.

Lemma 2.5. Under the assumptions that G is regularly varying with index α at its
positive left endpoint θ and F̄ is regularly varying with index −β at infinity, its right
endpoint, and α > β, then

a−1n

(

θ̂n −
∧

t∈In

Yt

)

p
→ 0, as n → ∞,

where an = G←(1/n) − θ.

Now we use point processes to show that the second term in (2.14) converges
(weakly) to a Poisson point process with mean measure yα/2.

Theorem 2.2. Consider the stationary BAR(1) process {Xt} from (2.1) where G
satisfies (2.7). Let Vn and V be the point processes on the space E2 = [0,∞) defined
by

Vn =

⌊n/2⌋
∑

t=1

ε(a−1
n (Yt−θ))

and V =

∞
∑

p=1

εjp ,

where
∑∞

p=1 εjp is PRM(ν) with ν[0, y] = yα/2, y > 0. Then in Mp(E2),

Vn ⇒ V.

The following lemma is an alternative approach to show that the point process
used in Theorem 4.2.2 suffices.

Lemma 2.6. Consider the stationary BAR(1) process {Xt} from (2.1) where G
satisfies (2.7). Let Ṽn and Vn be the point processes on the space E3 = [0,∞)×[0,∞)
defined by

Ṽn =

⌊n/2⌋
∑

t=1

ε(a−1
n (Yt−θ),cn)

and Vn =

⌊n/2⌋
∑

t=1

ε(a−1
n (Yt−θ),0)

,

where cn = a−1n |(φ̂n − φ)|Xt. Then for t ∈ In

d(Ṽn,Vn)
p
−→ 0,

where d is the vague metric on Mp(E3).

The following corollary uses the continuous mapping theorem to obtain the lim-
iting distribution for θ̂n as n tends to infinity.

Corollary 2.2. Consider the estimator of θ, θ̂n =
∧

t∈In
(Xt − φ̂nX⌊t/2⌋). Suppose

θ > 0 and F is RVα at θ. If α > β then for any y > 0 we have

lim
n→∞

P [a−1n (θ̂n − θ) > y] = e−y
α/2.
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3 Simulation Study

In this section, we assess the reliability and performance of our extreme value
estimation method. In doing so, we will examine the finite sample properties
of (φ̂n, θ̂n), where θ̂n =

∧

t∈In
(Xt − φ̂nX⌊t/2⌋) and 0 < ρ < 1 is a fixed value,

bn = F←(1 − 1/2n) and an = F←(1/2n) − θ. To study the performance of the
estimators φ̂n =

∧n
t=2

Xt
X⌊t/2⌋

and θ̂n =
∧

t∈In
(Xt − φ̂nX⌊t/2⌋), we generated 5,000

independent samples of size n = 2k+1− 1, where k is the number of generations and
{Xt} is a BAR(1) process satisfying the difference equation

Xt = φX⌊t/2⌋ + ǫt, for 2 ≤ t ≤ n and ǫt ≥ θ.

The autoregressive parameter φ is taken to be in the range from 0 to 1 guaranteeing
a nonnegative time series since the unknown location parameter θ is positive. In
order to perform this simulation the following ad hoc approach was adopted to
generate bivariate random variables from a distribution that is regularly varying
at both endpoints. First, let Z1 and Z2 be independent random variables that are
taken from

F (z) =

{

c(z − θ)α if θ < z < θ + 1,

1− d(z − θ)−β if θ + 1 < z < ∞.

For this innovation distribution let c and d be nonnegative constants such that
c+ d = 1. Then this distribution is regularly varying at both endpoints with index
of regular variation −β at infinity and index of regular variation α at θ. Now define

ǫ2t
d
= a1Z1 + b1Z2 and ǫ2t+1

d
= a2Z1 + b2Z2,

where ai and bi are nonnegative constants such that ai + bi = 1, for i = 1, 2.
For this simulation study we have considered two different cases: The first case is
when the innovations are i.i.d and the second case is when the innovation pairs are
dependent. In order to achieve this two distributions were considered:

(i) Define F1 such that c = d = .5, a1 = 1, a2 = 0, b1 = 0, b2 = 1

(ii) Define F2 such that c = d = .5, a1 = .7, a2 = .6, b1 = .3, b2 = .4.

Observe in case (i) that (ǫ2t, ǫ2t+1) are i.i.d. with a regular varying tail distribution
at infinity with index −β and regular varying at θ with index α, whereas in case (ii)
(ǫ2t, ǫ2t+1) are dependent with a regular varying tail with index −β at infinity and
index α at θ.
Choosing k = 4, 9, 13, 17 and n = 2k+1 − 1, the sample mean and standard error
(s.e.) of the estimates are given in Table 1 and 2 for φ = .3, θ = 2, respectively.
Additionally, the average lengths for 95 percent empirical confidence intervals with
exact coverage are also reported. Note that the confidence intervals were directly
constructed from the empirical distributions of n1/β(φ̂n − φ) and n1/α(θ̂n − θ) re-
spectively, while the exponent ρ inside the index set In was set to .9.
We first examine the simulation results in Table 1 for different number of gener-
ations. As k increases, the standard errors and biases of φ̂n and θ̂n decrease. In
particular, when β = .3 and k increases from 9 to 13, the standard error becomes
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1,712 times smaller. Similarly, the 95% confidence interval average length is 5,580
times smaller.
Next we look at the behavior of the estimators as β increases. Not surprisingly,
the standard errors and bias get larger as β increases. This is expected since our
extreme value method of estimation depends heavily on obtaining large innovations.
Thus, it can be shown when the regular varying index is small (less than 1) that
the distance in quantity between the largest innovation Zt and other innovations
will be extremely large, and only in the situation when a large sample value occurs
followed by innovations in the next generation at least one of which is as large, does
our estimator behave badly. Whereas, if β takes on values larger than one, then
the distance in quantity between the largest innovation and other innovations is
not as likely to be as large, thus the chance that we get a bad estimate increases.
Therefore, we can expect with small probability to observe some extremely poor
estimates from our estimator.

Table 1: Performance of (φ̂n, θ̂n) with (φ = .3, θ = 2) and α = 1 under F1

φ̂n θ̂n 95% C.I. Avg. Length

k β mean s.e. mean s.e. φ̂n θ̂n
4 .3 .3002 (4.76 × 10−3) 2.09 (.0738) 5.26 × 10−3 .0363

.9 .3089 (8.39 × 10−1) 2.24 (.1689) 9.47 × 10−1 .0748

9 .3 .30016 (7.21 × 10−8) 2.005 (.0035) 6.92 × 10−5 .0195
.9 .3003 (1.56 × 10−3) 2.091 (.0249) 2.74 × 10−2 .0397

13 .3 .300074 (4.21 × 10−11) 2.0082 (.0028) 1.24 × 10−8 .0092
.9 .30078 (7.83 × 10−5) 2.047 (.0153) 7.34 × 10−3 .0203

17 .3 .300001 (5.28 × 10−13) 2.0024 (.0009) 5.19× 10−10 .0033
.9 .30023 (6.29 × 10−7) 2.006 (.0077) 3.56 × 10−5 .0096

We now turn our attention to Table 2. The purpose of this table is to see whether or
not the correlation between (ǫ2t, ǫ2t+1) affects our estimates for the autocorrelation
parameter φ. The results are expected from a biological viewpoint, as one expects
the environmental correlation between the sisters to be distinct from the environ-
mental correlations inherited from the mother. Hence, the results seem to suggest
that a cell’s attributes can be explained by inheritance from its mother, suggesting
that a BAR(1) model for a single line of descent is appropriate.

Table 2: Performance of (φ̂n, θ̂n) with (φ = .3, θ = 2) and α = 1 under F2

φ̂n θ̂n 95% C.I. Avg. Length

k β mean s.e. mean s.e. φ̂n θ̂n
4 .3 .3011 (2.44 × 10−2) 2.17 (.1148) 8.45× 10−3 .0543

.9 .3109 (9.67 × 10−1) 2.44 (.2408) 9.95× 10−1 .1148

9 .3 .30079 (8.34 × 10−5) 2.05 (.0108) 5.72× 10−4 .0262
.9 .3071 (4.52 × 10−2) 2.03 (.0967) 8.34× 10−2 .0432

13 .3 .30059 (6.28 × 10−7) 2.0089 (.0051) 3.19× 10−7 .0147
.9 .30052 (3.74 × 10−4) 2.0078 (.0427) 5.21× 10−3 .0379

17 .3 .300031 (3.67 × 10−10) 2.0021 (.0018) 7.16× 10−9 .0079
.9 .30058 (3.24 × 10−6) 2.0028 (.0104) 3.22× 10−5 .0142
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4 The Elegance of An Extreme Value Approach

In this section we use demonstrate the effectiveness of an extreme value approach
by not only filling in the gaps for the proof of Proposition 2 in Zhang (2011),
but also verifying that our alternative approach under the correct parameterization
can obtain the same limit law found in Theorem 2 of Zhou and Basawa (2005b).
While this approach may seem unless under the given conditions, it does reveal the
complexity and difficulty found in Zhou and Basawa (2005b) is unnecessary. In order
to obtain the same limit law found in Zhou and Basawa 92005b) for our estimator
φ̂n we must first apply the assumption that Yt = ǫ2t ∧ ǫ2t+1 is positive and the
marginal distribution is regularly varying at θ = 0 with index α. In Section 2, we
obtained the limit law for φ̂n under the assumption that the innovation distribution
for {ǫt} was regularly varying at infinity with index −β. We now continue in this
section with the usual first-order bifurcating autoregressive process defined by

Xt = φX⌊ t
2
⌋ + ǫt, for 2 ≤ t ≤ n, (4.1)

where ⌊x⌋ denotes the largest integer less than or equal to x. For the model in
(4.1) we assume that 0 < φ < 1 and the innovations ǫt are such that (ǫ2t, ǫ2t+1) are
i.i.d with (ǫ2t, ǫ2t+1) ∼ F1 and ǫt has the same marginal distribution F satisfying
F (θ) = 0. By defining G(x) = 2F (x) − F1(x, x), we assume G is regularly varying
at θ = 0 with index α. The following Theorem generalizes the result presented in
Zhang (2011) where the author assumes Weibull type innovations.

Theorem 4.1. Let dn = G←(1/n) and consider the estimator of φ, φ̂n =
∧n

t=2 Xt/X⌊t/2⌋.
Under the assumption that G ∈ RVα and EXγ

1 < ∞ for some γ > α, we have

lim
n→∞

P [d−1n (φ̂n − φ) > y] = e−y
α
EXα

1 /2,

where X1 has the stationary distribution H for the process in (4.1).

Remark 2. The stationary distribution H is the same as the stationary distri-
bution of the AR(1) sequence X̃t = φX̃t−1+ ǫ̃t, where the ǫ̃t are i.i.d. with the same
marginal distribution as ǫt.

The following Corollary is a verification that our extreme value method under
the specified bivariate exponential innovation distribution is in agreement with the
limit law presented in Theorem 2 of Zhou and Basawa (2005b). That is, suppose
the joint distribution of (ǫ2t, ǫ2t+1) is specified by

F̄1(x1, x2) = P [ǫ2t > x1, ǫ2t+1 > x2] = exp (−α(x1 + x2)− β(x1 ∨ x2)), x1, x2 > 0,
(4.2)

where α and β are the model parameters satisfying α > 0, β > 0.
Observe that the marginal distribution of ǫ2t and ǫ2t+1 are exponential with

mean (α+ β)−1 and correlation ρ = β(2α+ β)−1.
Now we consider the parameterization

α =
1− ρ

(1 + ρ)λ
and β =

2ρ

(1 + ρ)λ
, (4.3)

where λ > 0 and 0 ≤ ρ < 1. With this parameterization, the marginal distributions
of ǫ2t and ǫ2t+1 are both exponential with mean λ and correlation ρ. Observe when
ρ = 0, the innovations {ǫt} in (4.1) will be independent and identically exponential
distributed random variables.

JSM2014

3918



Corollary 4.1. Suppose (ǫ2t, ǫ2t+1) ∼ F1, where F1 is specified in (4.2). Then with
the parameterization defined in (4.3) we have

lim
n→∞

P

[

n

(1 + ρ)(1− φ)
(φ̂n − φ) > y

]

= e−y.

5 Selected Proofs

Prior to proving any results, our first objective is to look at the dependency among

X
(m)
t . Upon doing so, we realized that the dependency within each tree segment is

more delicate than anticipated, hence the following argument should be considered
heuristic. The thought process to obtain independence was to determine how much
distance was needed between observations. With this in mind, we begin by parti-
tioning the index set [1, 2k+1 − 1].
Thus, for the lth generation we consider intervals

Zl,s = [2l + (s − 1)r, 2l + sr − 1],

for s = 1, . . . , ⌊2l/r⌋, l = l0, . . . , k, where l0 is such that 2l0−1 < r ≤ 2l0 and
r ≥ 2m+1 + 1. Notice that the number of indices in each interval is at most 2l+1 −
1 − 2l − r(2l/r − 1) + 1 = r. Now we consider trimming the intervals by 2m+1 in
hopes of achieving the necessary independence. Thus, we define Ql,s = [2l + (s −
1)r, 2l + sr − 1− 2m+1]. Then

dist(Ql,s, Ql,s+1) = 2l + sr − (2l + sr − 1− 2m+1) = 2m+1 + 1 > 2m+1.

Therefore, X
(m)
t is independent of X

(m)
t′ , for all t ∈ Ql,s and t′ ∈ Ql′,s′ pro-

vided (l, s) 6= (l′, s′). This is true by construction when l = l′ and s 6= s′. In the
case l 6= l′, we have

dist(Ql,s, Ql−1,⌊2l−1/r⌋) = 2l − (2l−1 + ⌊2l−1/r⌋ − 1− 2m+1 ≥ 2m+1 + 1 > 2m+1.

Remark 1. As stated above, it is not the case that X
(m)
t will be independent of

X
(m)
t′ for all t and t′. That is, most of the time the distance between indices t and

t′ will be large enough so that observations X
(m)
t and X

(m)
t′ will be independent,

but there are a few scenarios where this is not true. While this is a concern, we
verified through simulation that asymptotically this dependency does not affect our
estimators.
Proof of Lemma 2.3.

Proof. With out loss of generality suppose j = 1. Then applying Lemma 4.24 in
Resnick (1987) for ǫ > 0 and k large we have

P [I(l,s) = (1, 0)] ≤ r2k+1P [a1 ≤ Y1 ≤ b1]P [bna
′

1 ≤ X
∗(m)
1 ≤ bnb

′

1]

≤ (1 + ǫ)r2k+1(G(b1)−G(a1))P [bna
′

1 ≤
m
∑

j=0

φjǫ2j ≤ bnb
′

1]

= (1 + ǫ)
r

2k+1
(G(b1)−G(a1))(b

′−β
1 − a

′−β
1 )

1− φ(mβ)

1− φβ
.
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Thus,

lim sup
k→∞

2k+1

r
P [I(l,s) = (1, 0)] ≤ γ1.

Now to obtain a lower bound observe that

P [I(l,s) = (1, 0)] ≥ (r − 2m+1)P [a1 ≤ Y1 ≤ b1]P [bna
′

1 ≤ X
∗(m)
1 ≤ bnb

′

1]

− r2P 2[bna
′

1 ≤ X
∗(m)
1 ≤ bnb

′

1]

≥ (1− ǫ)
r

2k+1
γ1 − 2

( r

2k+1

)2
(b

′−2β
1 − a

′−2β
1 )

m
∑

j=0

φ(2β)j .

Then

lim inf
k→∞

2k+1

r
P [I(l,s) = (1, 0)] ≥ γ1,

which completes the proof.

Proof of Corollary 2.1.

Proof. First observe that

P [bn(φ̂n − φ) > x] = P





⌊n/2⌋
∧

t=1

(

Yt

b−1n Xt

)

> x



 . (5.1)

Now define a subset of R2
+ by Ax = {y1, y2 : y1/y2 ≤ x, y1, y2 > 0}. Then it suffices

to show that there are no points t that satisfies the condition in Ax. Thus, if we
let y1 = Yt and y2 = b−1n Xt, then notice that (5.1) is equivalent to (In(Ax) = 0).
Furthermore, observe that Ax is a bounded set in E = [θ,∞)×(0,∞] provided θ > 0.
Therefore, assuming φ > 0 and applying Lemma 2.5 in Bartlett and McCormick

(2012) we have that the point process I
(m)
n =

∑⌊n/2⌋
t=1 ε

(Yt,b
−1
n X

(m)
t )

is equivalent to

In =
∑⌊n/2⌋

t=1 ε(Yt,b
−1
n Xt)

. Hence using Theorem 2.1 and (5.1), we have that

lim
n→∞

P [bn(φ̂n − φ) > x] = lim
n→∞

P [In(Ax) = 0]

= exp

(

−(1− φβ)−1
∫ ∞

θ

(y1
x

)−β
Ḡ(y1/x)dy1

)

= exp

(

−(1− φβ)−1xβ
∫ ∞

θ
y−β1 Ḡ(y1/x)dy1

)

= e−x
βEY −β(1−φβ)−1

.

Proof of Theorem 2.2.

Proof. First observe from (2.7) we have

nP [a−1n (Y1 − θ) ∈ ·]
v
−→ ν in E2

JSM2014

3920



where

ν[0, y] = lim
n→∞

P [a−1n (Yt − θ) ≤ y] = lim
n→∞

n/2P [Y1 ≤ (θ + any)]

= lim
n→∞

1/2
G(θ + any)

G(θ + an)

= yα/2.

The result now follows from the fact that {Yt, t = 1, . . . , ⌊n/2⌋} are i.i.d. random
elements of (E2,B) where E2 is locally compact, B is the Borel σ-algebra, and ν is
a Radon measure on (E2,B). Therefore, by (proposition 3.21 in Resnick (1987)) we
have

Vn ⇒ V.

Proof of Corollary 2.2.

Proof. By Lemma 2.5 and (2.14) we have

lim
n→∞

P [a−1n (θ̂ − θ) > y] = lim
n→∞

P [a−1n (
∧

t∈In

Yt − θ) > y] + o(1).

Now observe that

0 ≤ P
[

a−1n (
∧

t∈In

Yt − θ) > y
]

− P
[

a−1n (

⌊n/2⌋
∧

t=1

Yt − θ) > y
]

= P
[

a−1n (

⌊n/2⌋
∧

t=1

Yt − θ) ≤ y < a−1n (
∧

t∈In

Yt − θ)
]

≤ P
[

⋃

1≤t≤⌊n/2⌋

(

Xt > (anbn)
ρ and a−1n (Yt − θ) ≤ y

)

]

≤ nP [X∗1 > (anbn)
ρ]P [Y1 ≤ any + θ] = o(1). (4.5.3)

It then follows from (4.5.3) that

lim
n→∞

P





⌊n/2⌋
∧

t∈In

(

Yt − θ

an

)

> y



 = lim
n→∞

P





⌊n/2⌋
∧

t=1

(

Yt − θ

an

)

> y



+ o(1).

Now observe from Lemma 2.6 that the point process Vn suffices. Therefore, if we

define the subset By = {z : z ≤ y, z > 0}, then
∧⌊n/2⌋

t=1

(

Yt−θ
an

)

> y is equivalent to
(Vn(By) = 0). The result now follows from Theorem 2.2 since

lim
n→∞

P [a−1n (θ̂n − θ) > y] = lim
n→∞

P





⌊n/2⌋
∧

t=1

a−1n (Yt − θ) > y



+ o(1)

= lim
n→∞

P [Vn(By) = 0]

= P [V(By) = 0] = e−y
α/2.
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