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Abstract 

The Pearson and likelihood ratio statistics are commonly used to test goodness-of-fit for 
models applied to data from a multinomial distribution. When data are from a table formed by 
cross-classification of a large number of variables, the common statistics may have low power 
and inaccurate Type I error level due to sparseness in the cells of the table. For the 
cross-classification of a large number of ordinal manifest variables, it has been proposed to 
assess model fit by using the GFfit statistic as a diagnostic to examine the fit on two-way 
subtables. A new version of the GFfit statistic has been developed by decomposing the 
Pearson statistic from the full table into orthogonal components defined on lower-order 
marginal distributions and then defining the GFfit statistic as an orthogonal component. An 
omnibus fit statistic can be obtained as a sum of a subset of these components. In this paper, 
the individual components are being studied for statistical power as diagnostics to detect the 
source of lack of fit when the model does not fit the observed data. Simulation results for 
power of components to detect lack of fit along with comparisons to other diagnostics are 
presented. 
 
Key words: sparseness, orthogonal component, latent variables, chi-square test, 
goodness-of-fit, GFfit statistic 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

JSM 2015 - Biometrics Section

3887



1.INTRODUCTION 

Traditionally we use the likelihood ratio (𝐿𝑅) and the Pearson chi-square (𝐺𝐹) to test 
goodness of fit for a model fit on cross-classified variables 

𝐿𝑅 = 2𝑛 ∑𝑓𝑟ln⁡(
𝑓𝑟
𝜋̂𝑟

)

𝑘

𝑟=1

 

𝐺𝐹 = 𝑛 ∑
(𝑓𝑟 − 𝜋̂𝑟)

2

𝜋̂𝑟

𝑘

𝑟=1

 

Suppose we have 𝑝 categorical variables and the i-th variable has 𝑐𝑖 categories. Thus there 
are 𝑘 = ∏ 𝑐𝑖

p
i=1  cells, also called response patterns in the cross-classified table. Then 𝑓𝑟 is 

the sample proportion of the r-th response pattern and 𝜋̂𝑟 is the estimated probability of the 
r-th response pattern. If the number of observations in each response pattern is large enough 
and under the conditions (Koehler and Larntz, 1980) that i)⁡𝐻0: π = π(θ), ii)⁡𝑘⁡is fixed and 
iii)⁡min1≤r≤k𝑛𝜋𝑟 → ∞ for 𝑛 → ∞, both 𝐿𝑅 and 𝐺𝐹 are approximately distributed χ2 
with degree of freedom equal to k − 1 − number of estimated parameters. However, when 
there is a problem of sparseness, these two statistics may not have an approximate chi-square 
distribution. Several statistics have been proposed using marginal distributions of the joint 
variables rather than the joint distribution.  

Joreskog and Moustaki (2001) proposed the GFfit statistic as a diagnostic to help in 
finding the source of model lack of fit. A new version of the GFfit statistic is proposed by 
Reiser, Cagnone & Zhu (2014) by decomposing the Pearson statistic from the full table into 
orthogonal components defined on lower-order marginal distributions. Then the GFfit statistic 
is defined as a sum of a subset of these components. In this paper, the individual components 
are being studied for statistical power as diagnostics to detect the source of lack of fit when 
the model does not fit the observed data. 

The paper is organized as follows: In Section 2 we introduce the marginal proportion and 
the GFfit orthogonal components. In Section 3 we give a discussion of the GLLVM model. In 
Section 4 simulation results for power of components to detect lack of fit along with 
comparisons to other diagnostics are presented. Finally in Section 5 we apply these 
orthogonal components to a real data set. 

 
2. MARGINAL PROPORTIONS 

A traditional method such as Pearson’s statistic uses the joint frequencies to calculate 
goodness of fit for a model that has been fit to a cross-classified table. This section presents a 
transformation from joint proportions or frequencies to marginal proportions. 

 
2.1 First- and Second-order Marginals 

Consider the three variables, two categories case. An 8 by 3 matrix 𝑽 can be used to 
denote the response patterns as the rows: 
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𝑉 =

[
 
 
 
 
 
 
 
0 0 0
0 0 1
0 1 0
0 1 1
1 0 0
1 0 1
1 1 0
1 1 1]

 
 
 
 
 
 
 

 

Let 𝑣𝑖𝑠  represent element 𝑖  of response pattern 𝑠 , 𝑖 = 1,… , 𝑝⁡and 𝑠 = 1,… , 𝑘 . In this 
example, 𝑝 = 3 and 𝑘 = 8. Then, under some specific model, which we will introduce later, 
the first-order marginal proportion for variable 𝑦𝑖 can be defined as 
                   𝑃𝑖(𝜃) =Prob(𝑦𝑖 = 1|𝜃) = ∑ 𝑣𝑖𝑠𝜋𝑠(𝜃)𝑠  
and the true first-order marginal proportion is given by 
                      𝑃𝑖 =Prob(𝑦𝑖 = 1) = ∑ 𝑣𝑖𝑠𝜋𝑠𝑠  . 
Thus the marginal proportions are linear combination of joint proportions: 

𝑷 = 𝐇𝝅 
The H matrix can be defined from the V matrix. For first-order marginal, 𝐇[1] = 𝑽′. 
For 3 variables with 3 categories, 𝐇[1] = 𝑽′, where 

                         𝑉27∗6 =

[
 
 
 
 
 
 
 
 
 
 
 
 
0 0 0⁡⁡⁡⁡⁡0 0 0
0 0 0⁡⁡⁡⁡⁡0 1 0
0 0 0⁡⁡⁡⁡⁡0 0 1
0 0 1⁡⁡⁡⁡⁡0 0 0
0 0 1⁡⁡⁡⁡⁡0 1 0
⋮ ⁡⋮ ⁡⋮⁡⁡⁡⁡⁡⁡⁡⋮ ⋮ ⁡⋮
1 0 0⁡⁡⁡⁡0 0 0
1 0 0⁡⁡⁡⁡0 1 0
1 0 0⁡⁡⁡⁡0 0 1
⋮ ⁡⋮ ⁡⋮⁡⁡⁡⁡⁡⁡⁡⋮ ⋮ ⁡⋮
0 1 0⁡⁡⁡⁡1 0 0
0 1 0⁡⁡⁡⁡1 1 0
0 1 0⁡⁡⁡⁡1 0 1]

 
 
 
 
 
 
 
 
 
 
 
 

 

Under the model, for two categories, the second-order marginal proportion for variable 𝑦𝑖 
and 𝑦𝑗 can be defined as  
                𝑃𝑖𝑗(𝜽) =Prob(𝑦𝑖 = 1, 𝑦𝑗 = 1|𝜽) = ∑ 𝑣𝑖𝑠𝑣𝑗𝑠𝜋𝑠(𝜃)𝑠  , 
and the true second-order marginal proportion is given by 
                   𝑃𝑖𝑗 =Prob(𝑦𝑖 = 1, ⁡𝑦𝑗 = 1) = ∑ 𝑣𝑖𝑠𝑣𝑗𝑠𝜋𝑠𝑠  . 
If the number of categories 𝑐 is greater than 2, the second-order marginal proportions for 𝑦𝑖 
and 𝑦𝑗 can be represented as a⁡𝑐 by 𝑐 table with (𝑐 − 1)2 proportions. 

Thus for second-order marginal proportions, the rows of H are Hadamard products 
among the columns of V. For 3 variables with 3 categories, 𝐇[2] is an 18 by 27 matrix: 
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                         𝐇[2] = ⁡

[
 
 
 
 
 
 
 
 
 

(𝑣1 ∘ 𝑣3)
′

(𝑣1 ∘ 𝑣4)
′

⋮
(𝑣1 ∘ 𝑣5)

′

(𝑣1 ∘ 𝑣6)
′

⋮
(𝑣3 ∘ 𝑣5)

′

⋮
(𝑣𝑖(𝑐−1) ∘ 𝑣𝑗(𝑐−1))

′
]
 
 
 
 
 
 
 
 
 

 

where 𝑣𝑖 is the column 𝑖 of matrix V, and 𝑣𝑖 ∘ 𝑣𝑗 is the Hadamard product of columns 𝑖 
and 𝑗. 
 
2.2 Test statistic 

Linear combinations of 𝝅 may be tested under the null hypothesis 𝐻0: 𝐇𝝅 = 𝐇𝝅(𝜽) 
and the test statistic is 

𝑋[𝑡:𝑢]
2 = 𝒆′𝚺̂𝒆

−𝟏𝒆⁡, 

𝚺̂𝒆 = 𝑛−1𝛀𝒆 with 𝛀𝒆 evaluated at the maximum likelihood estimates 𝜽̂, and where 
𝛀𝒆 = 𝐇(𝐷(𝝅) − 𝝅𝝅′ − 𝐆(𝐀′𝐀)−𝟏𝐆′)𝐇′ 

𝐷(𝝅) =diagnal matrix with (𝑠, 𝑠) element equal to 𝜋𝑠(𝜽) 

𝐀 = 𝐷(𝜋)−1/2
∂𝝅(𝜽)

∂𝜽
 

𝐆 =
∂𝝅(𝜽)

∂𝜽
 

𝒆 = 𝐇(𝒇 − 𝝅) is the matrix form of the marginal residuals. 

𝐇 = 𝐇[1:2] produces 𝑋[1:2]
2  and 𝐇 = 𝐇[2] produces 𝑋[2]

2 . It has been proven that for two 

categories, the distributions of 𝑋[1:2]
2  and 𝑋[2]

2  are chi-square distributions with degrees of 

freedom equal to 𝑞(𝑞 + 1)/2 and 𝑞(𝑞 − 1)/2 respectively. 𝑋[1:𝑞]
2 = 𝐺𝐹. 𝑋[𝑡:𝑢]

2  is a score 

statistic, Reiser (1996), Reiser and Lin (1999), Cagnone and Mignani (2007), Rayner and 
Best (1989). 
 
2.3 Orthogonal components 

Consider the 𝑘 − 𝑔 − 1 by c𝑞 matrix 𝐇∗ = 𝑭′𝐇[1:𝑞;−𝑔], where 𝑔 is the number of 
unknown model parameters to be estimated and 𝐇[1:𝑞;−𝑔] is matrix 𝐇[1:𝑞] deleting 𝑔 rows. 
𝐇∗ has full row rank. 𝑭 is the upper triangular matrix such that⁡𝑭′𝛀𝒆𝑭 = 𝑰. 𝑭 = (𝑪′)−1, 
where 𝑪 is the Cholesky factor of 𝛀𝒆. Premultiplication by (𝑪′)−1 orthonormalises the 
matrix 𝐇[1:𝑞;−𝑔] in the matrix 𝐷(𝝅) − 𝝅𝝅′ − 𝐆(𝐀′𝐀)−𝟏𝐆′. 

𝑋𝑃𝐹
2 = 𝑋[1:𝑞;−𝑔]

2 = 𝑛𝐫′(𝐇̂∗)′𝐇̂∗𝐫 

where 𝐇̂∗ = 𝐇∗(𝜽̂), and 𝐫 = (𝒑̂ − 𝝅(𝜽̂)). 
Define 

𝛄̂ = 𝑛
1
2𝑭̂′𝐇𝐫 = 𝑛

1
2𝐇̂∗𝐫 
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where 𝑭̂⁡ is the matrix 𝑭 evaluated at 𝜽 = 𝜽̂. Then 

𝑋𝑃𝐹
2 = 𝛄̂′𝛄̂ = ∑ γ̂𝑗

2

𝒋=𝒌−𝒈−𝟏

𝒋=𝟏

 

𝐇̂∗𝐫 has asymptotic covariance matrix ⁡𝑭′𝛀𝒆𝑭 = 𝑰𝒌−𝒈−𝟏. The elements γ̂𝑗
2 are 

asymptotically independent chi-square random variables with 𝑑𝑓 = 1 (Reiser, 2008). 
Using Sequential Sum of Squares: Redefine 

𝑧𝑠 = √𝑛 (𝜋𝑠(𝜽̂))
−

1

2
(𝑝̂𝑠 − 𝜋𝑠(𝜽̂)). 

Perform the regression of 𝒛 on the columns of 𝐇′: 
𝒛 = 𝐇′𝜷 

Then, 
𝜷̂ = (𝐇𝑾̂𝐇′)−𝟏𝐇𝑾̂𝐮 

where 𝐮 = √𝑛𝐫, 𝑾̂ = 𝑫̂
𝟏

𝟐𝚺̂𝚺̂𝑫̂
𝟏

𝟐 = 𝑫̂
𝟏

𝟐𝚺𝑫̂
𝟏

𝟐, and 𝑫 = 𝑑𝑖𝑎𝑔(𝝅(𝜽)). 

Σ = Σ(𝜃) = (𝑰 − 𝝅
𝟏
𝟐 (𝝅

𝟏
𝟐)

′

− 𝑨(𝑨′𝑨)−𝟏𝑨′) is idempotent. 

Let 𝑴̂ = 𝚺̂𝑫̂
𝟏

𝟐𝐇′. Then 

𝜷̂ = (𝑴̂′𝑴̂)−𝟏𝑴̂′𝒛 
γ̂𝑗

2, 𝑗 = 1, 𝑘 − 𝑔 − 1 are the sequential SS from this regression. 𝜸 = 𝑪′𝜷 are the orthogonal 
coefficients.  

Now define an orthogonal components version of 𝐺𝐹𝑓𝑖𝑡: 

𝐺𝐹𝑓𝑖𝑡⊥
(𝑖𝑗)

= ∑ 𝛾𝑙
2

𝑙=𝑚+(𝑐−1)2

𝑙=𝑚+1

 

where 𝑚 = 𝑞 + (𝑖 − 1)(𝑐 − 1)2 + (𝑗 − 2)(𝑐 − 1)2, assuming 𝐇 = 𝐇[1:2]. 
 

3. THE GENERALIZED LINEAR LATENT VARIABLE MODEL 

Let 𝒚 = (𝑦1, 𝑦2, … , 𝑦𝑝) be the vector of p ordinal observed variables, each of them 
having ci categories. Thus there are ∏ 𝑐𝑖

𝑝
𝑖=1  cells, also called response patterns in the 

cross-classified table. The r-th response pattern is indicated as 𝒚𝒓 = (𝑦1 = 𝑎1, 𝑦2 =

𝑎2, … , 𝑦𝑝 = 𝑎𝑝), where 𝑎𝑖 is the value of the i-th observed variable(𝑎𝑖 = 1,…⁡, 𝑐𝑖 ⁡𝑎𝑛𝑑⁡𝑖 =

1,… , 𝑝). 
Let 𝒛 = (𝑧1, 𝑧2, … , 𝑧𝑝) be the vector of q continuous latent variables. Then the probability of 
the r-th response pattern 𝒚𝒓 is given by 
                     𝜋𝑟(𝜃) = ∫𝜋𝑟(𝒛) ℎ(𝒛)𝑑𝒛⁡,                         
where 𝜃 is a vector of parameters. ℎ(𝒛) is the density function of z, and we assume every 
latent variable to be distributed standard normal independently. 𝜋𝑟(𝑧) is the conditional 
probability of 𝑦𝑟 given z and it is a multinormial probability function 

                 𝜋𝑟(𝒛) = ∏ 𝜋𝑎𝑖

(𝑖)(𝑧)
𝑝
𝑖=1 = ∏ (𝜏𝑎𝑖

(𝑖) − 𝜏𝑎𝑖−1

(𝑖) )
𝑝
𝑖=1 ⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡        

where 𝜏𝑎𝑖

(𝑖) = 𝜋1
(𝑖)(𝑧) + 𝜋2

(𝑖)(𝑧) + ⋯+ 𝜋𝑎𝑖

(𝑖)(𝑧) is the probability of a response in category 𝑎𝑖 
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or lower on the variable 𝑖 and 𝜋𝑎𝑖

(𝑖)
(𝑧) is the probability of a response in category 𝑎𝑖 on the 

variable 𝑖. 

We use logistic regression to model the interrelationship between 𝜏𝑎𝑖

(𝑖)  and the latent 

variables. 

           𝑙𝑜𝑔 [
⁡𝜏𝑠

(𝑖)

1−𝜏𝑠
(𝑖)] = 𝛼𝑖0(𝑠) − ∑ 𝛼𝑖𝑗𝑧𝑗

𝑞
𝑗=1 ,⁡⁡⁡𝑠 = 1,…⁡, 𝑐𝑖−1⁡               

𝛼𝑖0(𝑠) and 𝛼𝑖𝑗 are the parameters of the model. 𝛼𝑖0(𝑠) is the intercept and 𝛼𝑖𝑗 is the j-th 
slope for variable 𝑖. The intercepts should satisfy the condition 𝛼𝑖0(1) ≤ 𝛼𝑖0(2) ≤ ⋯ ≤

𝛼𝑖0(𝑐𝑖). 
 We use the E-M algorithm to calculate the maximum likelihood estimator for the 
parameters in the model. The integrals are approximated through the Gauss-Hermite 
quadrature method (Cagnone & Mignani, 2007). 
 

4. MONTE CARLO SIMULATION 

4.1 Type I error study 

 
A simulation study was conducted using GLLVM to assess the accuracy of the Type I error 

rates for 𝐺𝐹𝑓𝑖𝑡⊥
(𝑖𝑗)

,𝑀𝑖𝑗 and 𝑋𝑖𝑗
2 . 𝑀𝑖𝑗 is the individual Joe-Maydeu chi-square statistic. 𝑋𝑖𝑗

2  

is similar to the Pearson’s statistic. However, instead of using the joint frequencies, 𝑋𝑖𝑗
2  is 

calculated by using the marginal frequencies. Although the Pearson’s statistic is distributed 
approximately chi-square, 𝑋𝑖𝑗

2  is not. 
The design of this Monte Carlo study is described as follows 

 Model                               GLLVM with 1 latent factor 
 Number of observed variables            𝑝 = 4, 𝑝 = 5, 𝑝 = 6 
 Number of categories for each variable     𝑐 = 3, 𝑐 = 4 
 Number of samples                     500 
 Sample size                           𝑛 = 500 

The intercepts range from -3 to 3. The factor loadings are the following: for 𝑝 = 4, 𝛼1 =

(0.0, 0.1, 0.2, 0.6)′;⁡for 𝑝 = 5, 𝛼1 = (0.0, 3.0, 2.0, 1.0, 2.0)′⁡; for p = 6, α1 =

(0.8, 0.7, 0.5, 0.3, 0.2, 0.1)′. 
Simulation results for Type I error are shown in the following tables. The tables show 
empirical Type I error for nominal α = 0.05, using a chi-square distribution for each statistic. 

TABLE 1: Type I error of 𝐺𝐹𝑓𝑖𝑡⊥
(𝑖𝑗)

, 𝑀𝑖𝑗  and 𝑋𝑖𝑗
2  , 4 variables 3 categories 

 Type I error 

 
𝐺𝐹𝑓𝑖𝑡⊥

(𝑖𝑗)
 𝑀𝑖𝑗  

𝑋𝑖𝑗
2  

(12) 0.0301 0.048 0.024 
(13) 0.0281 0.068 0.018 
(14) 0.0481 0.06 0.024 
(23) 0.0462 0.042 0.022 

JSM 2015 - Biometrics Section

3892



(24) 0.0441 0.07 0.024 
(34) 0.0441 0.042 0.026 

 

TABLE 2: Type I error of 𝐺𝐹𝑓𝑖𝑡⊥
(𝑖𝑗)

, 𝑀𝑖𝑗  and 𝑋𝑖𝑗
2  , 4 variables 4 categories 

 Type I error 

 
𝐺𝐹𝑓𝑖𝑡⊥

(𝑖𝑗)
 𝑀𝑖𝑗  

𝑋𝑖𝑗
2  

(12) 0.05 0.048 0.04 
(13) 0.05 0.068 0.05 
(14) 0.036 0.036 0.028 
(23) 0.024 0.04 0.022 
(24) 0.052 0.05 0.034 
(34) 0.08 0.076 0.06 

 

TABLE 3: Type I error of 𝐺𝐹𝑓𝑖𝑡⊥
(𝑖𝑗)

, 𝑀𝑖𝑗  and 𝑋𝑖𝑗
2  , 5 variables 

 Type I error 

 
𝐺𝐹𝑓𝑖𝑡⊥

(𝑖𝑗)
 𝑀𝑖𝑗  

𝑋𝑖𝑗
2  

(12) 0.052 0.052 0.034 
(13) 0.07 0.07 0.052 
(14) 0.054 0.05 0.046 
(15) 0.064 0.048 0.03 
(23) 0.042 0.05 0.034 
(24) 0.042 0.04 0.032 
(25) 0.042 0.048 0.026 
(34) 0.042 0.042 0.03 
(35) 0.044 0.056 0.04 
(45) 0.032 0.028 0.022 

 

TABLE 4: Type I error of 𝐺𝐹𝑓𝑖𝑡⊥
(𝑖𝑗)

, 𝑀𝑖𝑗  and 𝑋𝑖𝑗
2  , 6 variables 

 Type I error 

 
𝐺𝐹𝑓𝑖𝑡⊥

(𝑖𝑗)
 𝑀𝑖𝑗  

𝑋𝑖𝑗
2  

(12) 0.042 0.034 0.032 
(13) 0.04 0.04 0.032 
(14) 0.034 0.026 0.016 

（15） 0.05 0.04 0.028 
（16） 0.058 0.05 0.038 
（23） 0.052 0.056 0.042 
（24） 0.056 0.048 0.038 
（25） 0.034 0.046 0.02 
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（26） 0.052 0.058 0.036 
（34） 0.036 0.048 0.044 
（35） 0.066 0.056 0.04 
（36） 0.048 0.04 0.032 
（45） 0.046 0.048 0.04 
（46） 0.042 0.05 0.04 
（56） 0.054 0.054 0.032 

From these tables we can see that both 𝐺𝐹𝑓𝑖𝑡⊥
(𝑖𝑗) and 𝑀𝑖𝑗 have a good Type I error when 

sparseness is present. 
 
A Kolmogorov-Smirnov test has also been applied to each statistic. The p-values are shown in 
the following tables. 
 

TABLE 5: p-value of 𝐺𝐹𝑓𝑖𝑡⊥
(𝑖𝑗)

, 𝑀𝑖𝑗  and 𝑋𝑖𝑗
2  , 4 variables 3 categories 

 p-value 

 
𝐺𝐹𝑓𝑖𝑡⊥

(𝑖𝑗)
 𝑀𝑖𝑗  

𝑋𝑖𝑗
2  

(12) <0.001 0.860 <0.001 
(13) 0.003 0.029 <0.001 
(14) 0.259 0.193 <0.001 
(23) 0.876 0.277 <0.001 
(24) 0.498 0.125 <0.001 
(34) 0.488 0.928 <0.001 

 

 

TABLE 6: p-value of 𝐺𝐹𝑓𝑖𝑡⊥
(𝑖𝑗)

, 𝑀𝑖𝑗  and 𝑋𝑖𝑗
2  , 4 variables 4 categories 

 p-value 

 
𝐺𝐹𝑓𝑖𝑡⊥

(𝑖𝑗)
 𝑀𝑖𝑗  

𝑋𝑖𝑗
2  

(12) 0.006 0.135 <0.001 
(13) 0.216 0.163 0.003 
(14) 0.334 0.447 <0.001 
(23) 0.633 0.938 <0.001 
(24) 0.474 0.281 0.011 
(34) 0.257 0.523 <0.001 

 

TABLE 7: p-value of 𝐺𝐹𝑓𝑖𝑡⊥
(𝑖𝑗)

, 𝑀𝑖𝑗  and 𝑋𝑖𝑗
2  , 5 variables 

 p-value 

 
𝐺𝐹𝑓𝑖𝑡⊥

(𝑖𝑗)
 𝑀𝑖𝑗  

𝑋𝑖𝑗
2  
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(12) 0.851 0.866 0.009 
(13) 0.228 0.100 0.633 
(14) 0.523 0.434 0.081 
(15) 0.189 0.059 0.636 
(23) 0.065 0.875 <0.001 
(24) 0.903 0.919 <0.001 
(25) 0.150 0.137 0.010 
(34) 0.602 0.943 0.018 
(35) 0.309 0.998 <0.001 
(45) 0.269 0.198 <0.001 

 

 

TABLE 8:  p-value of 𝐺𝐹𝑓𝑖𝑡⊥
(𝑖𝑗)

, 𝑀𝑖𝑗  and 𝑋𝑖𝑗
2  , 6 variables 

 p-value 

 
𝐺𝐹𝑓𝑖𝑡⊥

(𝑖𝑗)
 𝑀𝑖𝑗  

𝑋𝑖𝑗
2  

(12) 0.002 0.008 <0.001 
(13) 0.953 0.845 0.033 
(14) 0.076 0.074 <0.001 

（15） 0.672 0.911 <0.001 
（16） 0.785 0.276 <0.001 
（23） 0.431 0.623 0.613 
（24） 0.539 0.610 0.123 
（25） 0.465 0.497 0.003 
（26） 0.089 0.283 0.004 
（34） 0.618 0.616 0.004 
（35） 0.922 0.957 <0.001 
（36） 0.192 0.621 0.026 
（45） 0.221 0.923 <0.001 
（46） 0.517 0.850 0.002 
（56） 0.855 0.309 0.028 

 

From these p-values we can see that in most cases the 𝐺𝐹𝑓𝑖𝑡⊥
(𝑖𝑗) and 𝑀𝑖𝑗  are distributed 

chi-square but clearly 𝑋𝑖𝑗
2  is not. 

 
4.2 Power Study 

A simulation to examine power of the statistics was also conducted using GLLVM for the 4 
variables 3 categories case and 6 variables 4 categories case. Pseudo data for 1000 samples 
were generated from a confirmatory two-factor model with all parameters fixed and then fit 
with a one factor model. The 4 variables case has a sample size 500 and the 6 variables case 
has a sample size 300. The parameters for the data generating models are the following: for 
p=4, 𝛼0(1) = (−1.5,−0.6, 0.3, 1.0)′, 𝛼0(2) = (−1.0,−0.3, 0.6, 1.5)′, 𝛼1 =
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(0.0, 1.0, 1.0, 0.0)′, 𝛼2 = (2.0,0.1,0.2,2.0)′⁡; for p=6, 𝛼0(1) =

(−3,−2.5,−2,−1.8,−1.5,−0.8)′, 𝛼0(2) = (−1,−0.5, 0, 0.2, 0.5, 1.2)′, 𝛼0(3) =

(1, 1.5, 2, 2.2, 2.5, 3.2)′, 𝛼1 = (1.6, 1.35, 1.25, 0.4, 0.5, 0.6)′, 𝛼2 = (0, 0, 0, 1, 1, 1)′. The two 
latent variables were specified as uncorrelated, each with variance equal to 1.0. Estimation of 
the one-factor GLLVM for 4 variables case converged for 981 of the 1000 samples. For 6 
variables case, it converged for all 1000 samples. A chi-square distribution was used to 
evaluate each statistic. The power simulation results are shown below: 

TABLE 9: power of 𝐺𝐹𝑓𝑖𝑡⊥
(𝑖𝑗)

, 𝑀𝑖𝑗  and 𝑋𝑖𝑗
2  , 4 variables 3 categories 

 Power 

 
𝐺𝐹𝑓𝑖𝑡⊥

(𝑖𝑗)
 𝑀𝑖𝑗  

𝑋𝑖𝑗
2  

(12) 0.0754 0.0560 0.0438 
(13) 0.1590 0.0479 0.0254 
(14) 0.2538 0.0407 0.0224 
(23) 0.7186 0.0570 0.894 
(24) 0.0550 0.0570 0.031 
(34) 0.0530 0.0489 0.0275 

 

TABLE 10: power of 𝐺𝐹𝑓𝑖𝑡⊥
(𝑖𝑗)

, 𝑀𝑖𝑗  and 𝑋𝑖𝑗
2 , 6 variables 

 p-value 

 
𝐺𝐹𝑓𝑖𝑡⊥

(𝑖𝑗)
 𝑀𝑖𝑗  

𝑋𝑖𝑗
2  

(12) 0.160 0.046 0.038 
(13) 0.204 0.039 0.034 
(14) 0.072 0.046 0.055 

（15） 0.060 0.059 0.044 
（16） 0.075 0.042 0.047 
（23） 0.794 0.046 0.048 
（24） 0.061 0.051 0.057 
（25） 0.074 0.049 0.045 
（26） 0.140 0.053 0.047 
（34） 0.154 0.054 0.070 
（35） 0.115 0.055 0.052 
（36） 0.114 0.058 0.048 
（45） 0.066 0.039 0.416 
（46） 0.086 0.047 0.373 
（56） 0.113 0.029 0.338 

 

From these tables we can see that for 4 variables case, 𝐺𝐹𝑓𝑖𝑡⊥
(23) has a power of 0.7186, 

which shows that primarily the association between variables 2 and 3 was not adequately 

explained by the one-factor model. All the 𝑀𝑖𝑗 ’s have a very low power. Although 𝑋23
2  has a 
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large power of 0.894, as we demonstrated above, it is not distributed chi-square. For 6 

variables case we have a similar conclusion: 𝐺𝐹𝑓𝑖𝑡⊥
(23) has a power of 0.794, which shows 

that primarily the association between variables 2 and 3 was not adequately explained by the 

one-factor model. All the 𝑀𝑖𝑗 ’s have a very low power. Although several 𝑋𝑖𝑗
2  statistics have 

a power of 0.3 to 0.4, they are not truly distributed chi-square. 
 

5. APPLICATION 

In this section, we analyze a real data set about agoraphobia. Agoraphobia is a type of anxiety 
disorder in which sufferers fear and often avoid places or situations that might cause panic 
and feeling trapped, helpless or embarrassed. Those who suffer from agoraphobia often have 
a hard time feeling safe in any public places, especially where crowds gather. They may even 
feel unable to leave their home (Wittchen, Gloster, Beesdo-Baum, Fava, Craske, 2010). This 
dataset consists in judgments expressed by 3305 patients about several fears. There are 5 
variables in this dataset: 

 Fear of tunnels or bridges 
 Fear of being in a crowd 
 Fear transportation 
 Fear of going out of house alone 
 Fear of being alone 

Each variable has three categories: “yes”, “no”, “kind of”. Our goal is to study whether these 
five variables can be modeled by a one-factor latent variable model. The number of all the 
possible response patterns are k=243. However, as most of the answers are “no”, 139 
response patterns are empty. Furthermore many response patterns have a frequency less than 
5. 
The GLLVM with one factor was fit to these data, and fit statistics were calculated, using R 
software. Goodness-of-fit test results are shown in Table 11. 
 

TABLE 11: 𝐺𝐹𝑓𝑖𝑡⊥
(𝑖𝑗)’s of the Agoraphobia Sample 

𝐺𝐹𝑓𝑖𝑡⊥
(𝑖𝑗) 

Value 

(12) 29.34 
(13) 31.82 
(14) 1.58 
(15) 6.39 
(23) 47.91 
(24) 43.60 
(25) 61.56 
(34) 16.40 
(35) 23.69 
(45) 58.90 

 

JSM 2015 - Biometrics Section

3897



In this sample,⁡𝐺𝐹𝑓𝑖𝑡⊥
(𝑖𝑗) should distribute chi-square on (3 − 1)2 = 4 degrees of freedom 

independently if the model is correct. The critical value is 9.49 for Type I error equal to 0.05. 

We can see that 8 out of 10 𝐺𝐹𝑓𝑖𝑡⊥
(𝑖𝑗)’s are greater than the critical value. This also indicates 

that the one-factor model is not appropriate. We can also see that 𝑋[2]
2 = ∑ ∑ 𝐺𝐹𝑓𝑖𝑡⊥

(𝑖𝑗)
𝑗𝑖 =

321.19 on 40 df. 
 

6. Conclusion 

The⁡𝐺𝐹𝑓𝑖𝑡⊥
(𝑖𝑗) statistics can be calculated by using sum of squares from an orthogonal 

regression. Monte Carlo simulations demonstrated that the 𝐺𝐹𝑓𝑖𝑡⊥
(𝑖𝑗) statistics perform well 

when sparseness is present. The 𝐺𝐹𝑓𝑖𝑡⊥
(𝑖𝑗) statistics can be used as diagnostic to assist in 

detecting the source of poor fit when the model specified in the null hypothesis is rejected. An 
application to agoraphobia symptoms showed that these data cannot be explained by a model 
of a single underlying factor. 
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