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Abstract 
Every week, the Centers for Disease Control and Prevention (CDC) monitors counts of 
more than 75 notifiable diseases. In order to detect aberrations of numbers of occurrences, 
detection methods must be robust across different diseases and allow for endemic variation. 
To compare methods, we injected stochastic lognormal-distributed signals into each of 12 
selected diseases’ weekly time series of newly reported case counts from the CDC’s 
National Notifiable Diseases Surveillance System. We used provisional data (before end-
of-year reconciliation with state health departments) from 2006–2010 as baseline and from 
2011–2014 for testing. We compared the Historical Limits Method (HLM) to a method 
derived from quasi-Poisson regression model (England method), using both 1- and 4-week 
baseline data units for testing each method. Both methods allowed for seasonal effects by 
calculating empirical thresholds using corresponding weeks in past years’ data. At a 2% 
background alert rate, mean sensitivity for signal detection ranged from 25–78% for short 
signals (peaking at 1–2 weeks) and from and 50–88% for long signals (peaking at 3–5 
weeks). With 1-week data units, sensitivities to detect short signals were higher and alerting 
delays were lower than with 4-week data units for both methods. The England method 
outperformed HLM regardless the length of signals and weeks of data units. 
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1. Introduction 
 
The ability to detect aberrant clusters of reportable infectious disease quickly and 
accurately for meaningful response is a central goal of public health institutions [1-3]. 
Application of automated statistical techniques to detect possible outbreaks is particularly 
important in national disease surveillance systems that serve large populations and receive 
a high volume of reports because manual review and investigation of all reports are not 
always feasible. The National Notifiable Diseases Surveillance system (NNDSS), operated 
by the Centers for Disease Control and Prevention (CDC), in collaboration with the 
Council of State and Territorial Epidemiologists (CSTE), collects incidence data on more 
than 75 nationally notifiable diseases from the 50 U.S. states, New York City, Washington 
D.C., and five U.S. territories on a weekly basis. It provides an important source of 
infectious disease surveillance data for the United States.  
 
Since 1980s, the historical limits method (HLM) [4] has been used in NNDSS to detect 
unusually high or low numbers of reported cases and to indicate changes in long-term 
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trends of reported cases [5]. Farrington et al. [3] developed a quasi-Poisson regression 
model (England method) for monitoring weekly data in the 1990s for the Communicable 
Disease Surveillance Centre, which is part of the National Public Health Service for Wales. 
This method is widely applied in European countries in disease surveillance systems [6]. 
To account for seasonal effects by calculating empirical thresholds using data from the 
corresponding weeks of past years, HLM compares the number of reported cases in the 
current 4-week period for a given health event with historical data from the preceding 5 
years. However, the England method uses weekly data in the regression. A previous study 
[1] indicates that HLM lacks adjustment for long-term trend, year-to-year variation, and 
outliers (disease clusters and aberration). Although a few  studies [2, 7, 8] have examined 
whether adjustment with regression models provides better alerting by controlling for 
predicted behaviors, none of these studies examined the effects of length of data analysis 
unit and the duration of aberrations on the detection performance of HLM and regression 
models.  
 
In this study, we performed a systematic comparison between the HLM and the England 
method. We used a set of weekly case counts of provisional (before end-of-year 
reconciliation with state health departments) disease reports from CDC NNDSS as baseline 
data and added realistic simulated data effects of disease aberrations. We selected diseases 
that varied by expected volume of cases, seasonality, endemic behavior, historical trend 
and other characteristics. We compared the detection performance of HLM with the 
England method by challenging them with both sudden and slow-growing aberrations, 
testing with both the 1- and 4-week units of analysis. We compared background alert rate, 
sensitivity, and alerting delay under various endemic conditions and made 
recommendations based on our findings.  
 

2. Methods 
 
2.1 Baseline data 
State and selected local health departments send case notifications of nationally notifiable 
diseases to CDC weekly throughout the year. These provisional data are published in 
MMWR weekly. After the year ends, staff in state health departments finalize reports of 
cases for the year with local or county health departments and reconcile the data with 
reports that were previously sent to CDC throughout the year. The finalized data are 
published in the MMWR Summary of Notifiable Diseases, United States [5]. Since the 
purpose of our study was to compare methods of rapid detection of aberrations, we used 
the provisional weekly data in this report. NNDSS data from 2006 through 2014 were used 
with the first 5-year period (all of 2006–2010 inclusive) as the initial baseline and 1/1/2011 
through 12/31/2014 as test period. We selected 12 diseases as examples: Chickenpox 
(Varicella), Coccidioidomycosis, Cryptosporidiosis, Giardiasis, Hepatitis A, 
Legionellosis, Listeriosis, Lyme disease, Meningococcal disease, Pertussis, Salmonellosis, 
and Shigellosis [9]. Chickenpox (Varicella), Salmonellosis, and Lyme disease were chosen 
as typical of high weekly records counts. The Hepatitis A, Meningococcal disease, and 
Listeriosis were used to represent typically low counts. Chickenpox (Varicella) and 
Hepatitis A counts had a downward long-term trend while Pertussis counts had an upward 
trend. Time series for these selected diseases had various seasonal patterns, except for 
Coccidioidomycosis, Hepatitis A, and Listeriosis.  
 
2.2 Historical Limits Method 
In HLM,  the predicted reported count for the current 4-week period is the mean of the 
reported number of cases during the preceding 15 4-week periods, the corresponding 4-
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week periods, and the following 4-week periods, for the previous 5 years [4]. The use of 
comparable 4-week periods from the past 5 years is intended to account for seasonality. In 
the below diagram,  X0 is the current 4-week period, X1, X2 and X3 are the preceding, 
corresponding and following 4-week periods for last year, respectively. Thus, the mean of 
the 15 weekly counts from X1 through X15 is used as the expected count for the current 
period, and their standard deviation is a measure of expected spread.   
 

 
2.3 England Method 
The England method is a quasi-Poisson distribution model that assumes that variance is a 
function of the mean. It allowed for seasonal variation by calculating empirical thresholds 
for the current week using comparable weeks in the past 5 years [3,6].  
 

 
In above diagram, W0 is the current week of year 2011,  W1, W2, W3 , W4, W5, W6,  and 
W7 are the proceeding 3 weeks, current week and following 3 weeks for last year, 
respectively. W1 through W35 compose the 35 baseline values from the past 5 years. The 
England method includes a time term that is measured in weeks to account for long-term 
trend:  Et= β0 + β1* time  
 
2.4 Threshold Calculation 
Usually, HLM uses 4-week data units and the England method uses 1-week data units. 
However, to ensure thorough testing, we ran the two methods for both 1- and 4-week data 
units.  For both methods, we took the following approach for selecting baselines, so that 
the baselines would be comparable: For 1-week units, we used 35 baseline weeks (7 
consecutive weeks in each of the past 5 years), as in the England method. For 4-week units, 
we used the 15 baseline 4-week periods in past 5 years, as in the HLM. 
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For each disease, an alarm is triggered if the count for the current 1- or 4-week period is 
larger than a calculated threshold. The threshold calculation is tℎ𝑟𝑟𝑒𝑒𝑠𝑠ℎ𝑜𝑜𝑙𝑙𝑑𝑑 = Ecurrent 
+2∗𝑆𝑆Dcurrent, where Ecurrent is the predicted value of the current 1- or 4-week period, and 
𝑆𝑆Dcurrent is the standard deviation of the predicted value calculated by using the equation  
 
 
 
 
where j=15 and 35 for 4- and 1-week data units, respectively; ni is the observed disease 
count, Ei is the predicted value for each baseline 1- or 4-week period i.( i.e.,  mean of 
previous observed count in HLM and predicted value by quasi-Poisson regression in 
England method). 
 
2.5 Outbreak Signal Simulation 
We used simulated signals to compare the detection performance of the two alerting 
methods. We generated these signals from lognormal random draws because the incubation 
periods of many infectious diseases are lognormally distributed [10, 11].  
 
For each disease, our signal simulation process was to form short series of weekly 
outbreak-attributable counts for addition to the authentic data. To obtain detectable signals 
to challenge the alerting methods, we set the estimated number of cases in the peak 
outbreak week to M = 2 * SDbackground, where SDbackground is the standard deviation of the 
disease-specific background counts. For a two-parameter lognormal distribution, we used 
two sets of location and shape parameters ζ = 1.0 , δ = 0.15 (for short signals) and ζ = 1.8, 
δ = 0.3 (for long signals)  calculated experimentally using literature on infectious disease 
incubation [12]. From the lognormal probability density, we used the peak-week count M 
to calculate the total number N of attributable cases, generated N incubation periods for 
these cases using lognormal draws, and rounded these periods to the nearest week. Then 
we summed to find the number of injected cases for each week after the start of the signal.  
For each disease, this procedure was used to generate injected signals beginning at each 
chosen target week.  
 
2.6 Method Evaluation  
The inclusion of past clusters or aberration in historical data may introduce bias in the 
method’s ability to detect aberrations. To reduce this bias, we trimmed extreme outliers by 
truncating values greater than 4 standard deviations above the baseline mean to the mean 
itself [1]. Thus, we created evaluation datasets by adding simulated signals onto the 
trimmed time series. For each disease, we added with two series of 80 consecutive injected 
signals, one set of short signals and one set of long signals. For the first signal, we chose a 
theoretical onset date of Jan 1, 2011. The starting weeks of each subsequent signal varied 
according to exact lengths of previous signals, which ranged from 2 to 5 weeks for short 
signals and 6 to 15 weeks for long signals. We repeatedly used the initial time series for 
each disease to ensure that 80 injected signals were tested for both short and long signals. 
We applied the two aberration detection methods to the evaluation datasets for each 
disease. We calculated the background alert rate, sensitivity, and alerting delay for 
detecting injected signals using these three steps: (1) running each method to estimate 
predicted value, standard deviation, and threshold (=2*SDcurrent above predicted value) 
without signal injection for each disease week; (2) identifying weeks during which the 
observed count exceeded the threshold values and calculating background alert rate; and 
(3) identifying weeks during which the value of observed count plus injected counts 
exceeded the threshold values and calculating sensitivity and alerting delay. 
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In our study, the background alert rate was calculated as the ratio of weeks when baseline 
count exceeded the threshold to the total number of tested weeks. We refer to a background 
alert rate rather than a false alert rate (=1-specificity) because there was no  way to identify 
and exclude real outbreaks from the data [13]. The calculation of specificity would require 
the unverifiable assumption that true outbreaks are absent from the baseline data. The 
sensitivity was defined as the proportion of the number of signals detected before the 
lognormal distribution peak to the total number of injected signals, with the rationale that 
detection is required no later than the outbreak peak. Alerting delay was calculated as the 
number of weeks from the start of injection to the first algorithm alert occurring not later 
than the peak inject week. If there was no alert or an alert occurred after the peak week, the 
alerting delay was set as 1 plus the mean of peak week of signals injected in the disease 
counts. For example, if the mean of peak week of injected signals for a disease is 3 and the 
peak week of a specific signal is during week 2, and a method alerts this signal on the 
second week, its alerting delay is 2 weeks. But, if it alerts after the second week or does 
not alert at all, its alerting delay is 4 (1+3) weeks. We calculated the means of background 
alert rate, sensitivity, and alerting delay and their minimum and maximum values to 
indicate the variation across the 12 diseases. We used ANOVA to compare the two 
aberration detection methods in backgrounds alert rates, sensitivities, and timeliness 
adjusting for data unit and signal length.  SAS 9.3 was used to perform all analyses. 
 

3.  Results 
 
3.1 Descriptive Data 
The baseline data we used were weekly disease counts from NNDSS provisional data from 
2006–2014. The 12 selected diseases represented a variety of volumes of disease counts, 
trends, and seasonal behaviors. For example, the weekly counts for time series of 
Chickenpox (varicella) had a declining long-term trend and a strong seasonality (Figure 1). 
Varicella also showed year-to-year variation and some outliers (blue lines in the figure). 
The time series of Pertussis had an upward trend. Pertussis also showed strong year-to-year 
variation and some outliers, but not as consistent a seasonal pattern as varicella. The orange 
lines in Figure 1 are the baseline data after trimming. We used the baseline data after 
trimming in the method comparison. 
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3.2 Characteristics of Injected Signals  
As described above, we set peak-week counts for injected signals at two standard 
deviations above the baseline mean to obtain practical detection challenges. We tested 80 
short signals and 80 long signals for each disease from Jan 1, 2011 through Dec. 31, 2014. 
The durations of the long signals ranged from 6 to 15 weeks with peak weeks ranging from 
3 to 5 weeks. The durations of the short signals ranged from 2 to 5 weeks with peak weeks 
ranging from 1 to 2 weeks (Figure 2). 
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3.3 Threshold Comparison 
Our method of evaluation was based on the threshold of two standard deviations (SD) 
above the predicted value generated by each method. An example of thresholds and the 
created evaluation datasets with series of consecutive injected signals from 2011 through 
2014 is displayed in Figure 3 for Chickenpox (varicella) and Pertussis. To avoid crowding 
the plot with symbols, only the peak week value of each signal is shown. For Chickenpox 
(Panel A), the threshold is high for HLM, especially in the first three years. In contrast, the 
threshold from the England method is relatively stable from year to year. On the other hand, 
if the disease (e.g., Pertussis) has an upward trend (Panel B), the HLM tends to generate 
lower threshold than the England method.  
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3.4 Background Alert Rate, Signal Sensitivity, and Alerting Delay  
The mean background alert rates, sensitivities, alerting delay for the 12 diseases and their 
minimal (Min) and maximal (Max) at two SD above predicted value are presented in Table 
1. They are stratified according to signal length (no signal for background alert rate) and 
data units.   
 
For both methods, using 1-week data units resulted in a lower (better) background alert 
rate than using 4-week data units. The HLM model has slightly lower background alert rate 
than the England method, but has more variation across the 12 diseases than the England 
method based on differences between maximum and minimum values.  
 
The sensitivity is higher (better) when using 1-week data units than 4-week units, and the 
advantage of using 1-week data units is even larger for short signals. Both methods have 
better sensitivity for detection of longer signals than short signals. The England method 
has higher sensitivity than does HLM regardless of length of signals or 1- or 4-week data 
units.  
 
Using 1-week data units yields a shorter alerting delay than 4-week data units for all signals 
and methods. The differences in average delay time are 0.7 week (~5 days) for long signals 
and 0.4 week (~3 days) for short signals. The England method has shorter alerting delay 
than HLM regardless of length of signals or 1- or 4-week data units, but the differences are 
smaller than the differences between 1-week vs. 4-week data units.  
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Table1. Background alert rate, sensitivity and alert delay of detection injected 
signal with 12 diseases baseline series from NNDSS national provisional data  

( 2011 - 2014) at threshold of 2*standard deviation above predicted value 

Outcome Signal                
(Peak week) Data Unit 

Historic Limits England 
Mean Min Max Mean Min Max 

Background 
alert rate 

(%) 
N/A 

1-week 6 0 21 6 0 12 

4-week 8 0 27 10 0 20 

Sensitivity 
(%) 

Short (1-2) 
1-week 67 21 93 78 48 99 
4-week 25 0 54 34 16 58 

Long (3-5) 
1-week 79 53 98 88 61 99 
4-week 50 4 84 66 35 88 

Alerting 
delay 

(Week) 

Short (1-2) 
1-week 2.0 1.3 2.5 1.9 1.3 2.5 
4-week 2.4 1.9 2.9 2.3 1.7 2.8 

Long (3-5) 
1-week 3.1 2.3 3.9 2.8 2.2 3.9 
4-week 3.8 2.9 4.5 3.5 2.7 4.4 

 
ANOVA tests show that the estimated background alert rate was similar between HLM 
and England methods (p=0.641). However, adjusting for data unit and signal length, 
England method had significantly higher sensitivity (p=0.003) and shorter alerting delay 
(p=0.029) than HLM method. As expected, 1-week data unit yield significantly higher 
sensitivity (p<0.001) and shorter alerting delay (p<0.001) than 4-week data unit. 
 

4. Discussion 
 
The purpose of this study was to compare HLM with the England method for aberration 
detection in national disease surveillance systems. In our study, using weekly provisional 
counts of 12 selected diseases, we found that both methods have better performance in 
detecting long signals than short signals. The use of 1-week data units yields consistently 
better sensitivity and shorter detection delays than conventional 4-week data units. Using 
1-week data units has even greater advantage for detecting short signals. The England 
method gives better sensitivity and alerting delay than HLM for the same duration of 
signals and data units.  
 
HLM lacks adjustment for long-term trend and yearly variation. The simple calculation of 
the predicted value as the mean of the 15 baseline data points does not account for the long-
term trend and adjusts poorly for year-to-year variation and outliers. The England method’s 
quasi-Poisson distribution is more appropriate for most disease count data. In addition, its 
adjustment for long-term trends is important for many diseases. The quasi-Poisson 
(England) model yields better adjustment for year-to-year variation and thus provides more 
representative thresholds.  
 
From our study, using the 1-week data unit gave higher sensitivity and shorter detection 
delay than using 4-week data units. The advantage of 1-week data units was even greater 
for detecting short signals.  A plausible explanation is that injected signals were diluted by 
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the 4-week data units. The 1-week units also yielded a shorter background alert rate, 
possibly because the 4-week data units decreased the standard deviation and then generated 
relatively lower thresholds. The choice of 4-week data units in original HLM was to control 
the weekly fluctuation in disease reporting that is usually due to irregular reporting rather 
than to disease incidence [14]. However, in public health practice, some outbreaks may last 
only a few weeks, and thus the use of 4-week data units may miss or delay the detection of 
these events. 
 
NNDSS surveillance data provide valuable information on trends in infectious disease 
incidence for the United States. These data are also used to detect sudden changes in disease 
occurrence and distribution. Provisional weekly data are often reported as early as possible 
to alert public health practitioners regarding emerging problems. However, it should be 
noted that increases in the number of reported cases of a particular disease could also be a 
result of batched reporting related to a jurisdiction’s priorities and practices, changes in 
physician reporting due to increased awareness, or changes in case finding due to screening 
or modified diagnostic methods. Completeness of reporting may vary among jurisdictions 
and may relate to the condition or disease being reported. Although we used weekly 
provisional data in this study to perform method evaluation on the best available timely 
data, future studies could assess predictive performance from provisional counts relative 
to final, corrected counts. 
 
There are several additional limitations of this study. First, we tested the methods only at 
the national level. Therefore, our results might not apply to data at state, county, or city 
levels having much smaller disease counts. Second, the 12 selected diseases used for the 
study do not represent all disease characteristics. Data derived for other diseases may differ 
in scale, seasonality, and other systematic behaviors from the study series. Third, the 
simulated signals should not be considered representative of all authentic signal types. 
Though data effects of true outbreaks are rarely available in quantities required for 
statistical significance, such data should be used for testing whenever possible. 
 
The results of our study indicate that compared to traditional HLM, the England method 
performs better for aberration detection in NNDSS. If HLM is to be used, 1-week data units 
instead of current 4-week data units would likely improve detection performance.  
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