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Abstract  

The in-control average run-length (ICARL) robustness is crucial for the application and 
the interpretation of any control chart. In this paper, in an extensive simulation study, the 
ICARL robustness of the well-known adaptive exponentially weighted moving average 
(AEWMA) chart of Capizzi and Masarotto (2003) is examined with respect to the 
underlying assumption of normality. The ICARL profiles of the AEWMA chart are 
calculated for a family of distributions of various shapes, including light-tailed, heavy-
tailed, symmetric and skewed distributions. Our results show that the AEWMA chart is 
quite sensitive to the normality assumption and may not maintain the nominal ICARL 
well under non-normality. This raises questions about the application of the AEWMA 
chart in some practical situations. As an alternative, a nonparametric analog of the 
AEWMA (NPAEWMA) chart is proposed based on average ranks. The NPAEWMA 
chart shows good ICARL-robustness against non-normality. Performance comparisons 
are made between the NPAEWMA chart and an available nonparametric EWMA 
(NEWMA) chart of Li et al. (2010). It is seen that the proposed NPAEWMA has better 
shift detection properties in some situations. An illustration with some data is provided. 
 
Key words: Nonparametric, AEWMA, ARL, robustness.                                  

1. Introduction 

Traditional control charts in the literature include the Shewhart charts, the 
EWMA charts and the CUSUM charts. These three charts are typically used to monitor 
the process mean. The Shewhart chart is easy to implement in practice, but is less 
efficient in detecting smaller shifts, as it uses information from the current sample. By 
contrast, the EWMA and CUSUM charts use the information in a sequence of samples up 
to the point of comparison by combining the previous and present observations. These 
charts are proven to be effective for small to moderate shifts with an assumed knowledge 
of the magnitude of the shifts. In this paper we focus on the EWMA type charts as they 
are often preferred by the users.  In practice however, it may be difficult to use the 
EWMA chart since the magnitude and the direction of the shift may be unknown and 
unpredictable so it’s not clear what tuning (weight) parameter to use.  In such situations, 
Capizzi and Masarotto (2003) considered an adaptive EWMA (AEWMA) chart, where 
the weight parameter in a standard EWMA chart is adapted, over time, as each data point 
becomes available, so that the chart is able to detect a variety of shifts more effectively.  

Because the AEWMA chart holds a lot of promise, over the last decade, a lot of 
research effort has been spent on the AEWMA chart and its various generalizations.  
Among these, Woodall and Mahmoud (2005) studied the inertia properties and evaluate 
the ‘signal resistance’ of several control charts. They stated that ‘Likewise, the AEWMA 
procedure proposed by Capizzi and Masarotto (2003) has much better worst-case 
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performance than the omnibus EWMA chart’. Reynolds and Stoumbos (2006) compared 
different charts and chart combinations for monitoring the process mean and/or variance. 
They re-defined the ‘error’ in the AEWMA by Capizzi and Masarotto (2003), and 
developed and evaluated AEWMA-type charts based on squared deviations from target 
for monitoring process mean and/or variance. Shu (2008) also extended the idea of the 
AEWMA chart for monitoring process locations to the case of monitoring process 
dispersion. Mahmoud and Zahran (2010) proposed a multivariate AEWMA (MAEWMA) 
control chart to detect shifts in process mean vector. They made performance comparison 
between MEWMA chart and the combined Shewhart-MEWMA chart in terms of the 
standard and worst-case average run length profiles and proved the effectiveness of their 
proposed MAEWMA. Simoes, Epprecht and Costa (2010) compared the performance of 
the AEWMA, the combined EWMA-Shewhart scheme and the combined AEWMA-
Shewhart scheme optimized for the same pair of shifts and concluded ‘First, there is no 
practical benefit in combining AEWMA chart with a Shewhart chart. Second, the 
performances of the AEWMA chart and of the combined EWMA-Shewhart scheme are 
practically identical’. Liu et al (2013) proposed a sequential rank-based nonparametric 
adaptive EWMA (NAE) control chart for detecting the persistent shifts in location 
parameter. Their NAE chart is claimed to be a self-starting procedure with no 
requirement of any prior knowledge of the underlying distributions, while Capizzi and 
Masarotto’s AEWMA is developed under the assumption of normality.  Liu, Tsung and 
Zhang (2014) proposed a nonparametric adaptive CUSUM control chart based on the 
sequential rank as well. Saleh, Mahmoud and Abdel-Salam (2013) pointed out that the 
AEWMA control chart was studied under the situation where the process parameters are 
known, but in practice the process parameters are usually unknown and are required to be 
estimated. They considered the performance of the AEWMA chart with estimated 
parameters and showed that the effect of different standard deviation estimators on the 
chart performance and recommended the use of the AEWMA over the EWMA especially 
when a small number of Phase I samples is available. Tang et al (2014) applied the 
AEWMA control chart method to detect low-rate denial of service (LDoS) for internet 
network and showed the priority of the AEWMA than EWMA by an experiment on a real 
dataset. Huang, Shu and Su (2014) improved the computational method for estimating the 
run length performance of the AEWMA chart.  

However, having performed a thorough literature review of some 56 papers 
related to the AEWMA chart, we noticed that none of these authors considered the 
ICARL robustness of the AEWMA chart to the assumption of normality.  Without the 
ICARL robustness the value of a control chart is highly diminished because, for example, 
too many or too few false alarms can ruin the efficacy of the chart and the out-of-control 
shift detection property becomes somewhat meaningless.  It is true that non-normal 
distributions are often encountered in practice, so a robustness study of any chart to the 
normality (or whatever distributional) assumption is essential. Liu, Zi, Zhang and 
Wang(2013) suspected the robustness of the AEWMA, stating ‘However, these control 
charts often assume that data come from some parametric distribution, most commonly 
the normal distribution. When the underlying process is unknown or not normal, these 
charts may not be appropriate’, but they neither performed any experiments nor provided 
any evidences to prove the statement. 

Borror, Montgomery and Runger (1999) studied the robustness of the EWMA 
control chart to non-normality.  Human, Kritzinger and Chakraborti (2011) also 
examined the robustness of the EWMA chart and suggested using caution against its 
overuse, particularly in situations where the shape of the underlying process distribution 
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is not sufficiently known.  But to the best of our knowledge, no researcher has examined 
the ICARL robustness of the AEWMA control chart to non-normality. In our paper, we 
examine the robustness of the AEWMA chart for six different shapes of distributions 
within a family of distributions. This includes the 1) normal, 2) heavy tailed symmetric, 
3) light tailed symmetric, 4) slightly right-skewed, 5) slightly right-skewed and heavy 
tailed, 6) highly left-skewed. Numerical results reveal that the AEWMA chart is highly 
sensitive to non-normality so one has to be very careful while applying it in practice. As a 
follow up, we will propose a nonparametric AEWMA (NPAEWMA) chart based on 
Wilcoxon rank sum statistics. We further access the robustness of the NPAEWMA and 
make performance comparisons with the W.EWMA chart proposed by Li, Tang and Ng 
(2010).  First we start with a brief introduction to the AEWMA chart. 

2. The AEWMA Control Chart 

The basic idea of the adaptive EWMA (AEWMA) control chart, proposed by Capizzi and 
Masarotto (2003) (hereafter CM), is to “adapt” the weights given to the past observations 
in a standard EWMA chart. More specifically, in a standard EWMA control chart the 
weight parameter λ of the current observations changes along with every new observation 
coming in.  In an AEWMA chart this constant weight λ is replaced by a suitable function 
of the current ‘error’, which is the difference between the observed variable and the 
previous monitored value (the EWMA value at the previous time point).  If the error 
value is small, the weight assigned to the current observation is small, and thus the chart 
can detect a small shift quickly, that is the chart behaves close to a standard EWMA 
chart. Otherwise, the current observation will be given a larger weight, and the chart will 
perform more like a Shewhart-type chart.  

Assume that 𝑦𝑦1,𝑦𝑦2, … ,𝑦𝑦𝑛𝑛 are independent and identically distributed normal 
random variables. The AEWMA control chart is based on the statistics below:  

𝑥𝑥𝑡𝑡 = �1 −𝑤𝑤(𝑒𝑒𝑡𝑡)�𝑥𝑥𝑡𝑡−1 + 𝑤𝑤(𝑒𝑒𝑡𝑡)𝑦𝑦𝑡𝑡 = 𝑥𝑥𝑡𝑡−1 + 𝑤𝑤(𝑒𝑒𝑡𝑡)(𝑦𝑦𝑡𝑡 − 𝑥𝑥𝑡𝑡−1) = 𝑥𝑥𝑡𝑡−1 + 𝜙𝜙(𝑒𝑒𝑡𝑡) 

where 𝑥𝑥0=0,  𝑒𝑒𝑡𝑡 = 𝑦𝑦𝑡𝑡 − 𝑥𝑥𝑡𝑡−1 is the “error”, 𝑤𝑤(𝑒𝑒𝑡𝑡) =  𝜙𝜙(𝑒𝑒𝑡𝑡)/𝑒𝑒𝑡𝑡, where  𝜙𝜙(𝑒𝑒𝑡𝑡) is the 
‘score’ function, which varies with the  𝑒𝑒𝑡𝑡.  CM suggested three choices of the score 
function, among which the Huber score function is favored for its efficiency and 
simplicity. An AEWMA control chart with a Huber score function is the one that is 
widely studied and made comparisons with other charts by CM and also many 
researchers.  

𝜙𝜙(𝑒𝑒) = �
𝑒𝑒 + (1 − 𝜆𝜆)𝑘𝑘      𝑖𝑖𝑖𝑖 𝑒𝑒 <  −𝑘𝑘
𝜆𝜆𝜆𝜆                        𝑖𝑖𝑖𝑖 |𝑒𝑒| ≤ 𝑘𝑘
𝑒𝑒 − (1 − 𝜆𝜆)        𝑖𝑖𝑖𝑖  𝑒𝑒 >   𝑘𝑘

 

The parameters 𝜆𝜆 and k are the two of the three chart design parameters. The third chart 
design parameter is the control limit h, that is chosen to guarantee a specified in-control 
average run length.  A monitored value 𝑥𝑥𝑖𝑖 exceeding above h or falling below –h will 
provide an out-of-control signal.  

The key advantage of the AEWMA chart stem from the fact that with the flexible 
weighting, it can effectively detect a variety of magnitudes of shifts.   However, as we 
noted earlier, the AEWMA chart is developed under the normality assumption, meaning 
that under non-normal process distributions the performance of the chart is not 
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guaranteed. To study the in-control run length (RL) distribution of the AEWMA chart 
under non-normality, six different shapes of underlying distributions are selected within 
the g-and-k distribution family (Hoaglin, 1986, and Haynes et al., 1997). They are 1) 
normal, 2) heavy tailed symmetric, 3) light tailed symmetric, 4) slightly right-skewed, 5) 
slightly right-skewed and heavy tailed, 6) highly left-skewed.   We start with a 
description of the g-and-k family of distributions: 

3. The g-and-k Distribution Family 

The family of g-and-k distributions is defined by quantile function:  

𝑄𝑄𝑥𝑥(𝑢𝑢|𝐴𝐴,𝐵𝐵,𝑔𝑔,𝑘𝑘) = 𝐴𝐴 + 𝐵𝐵𝑧𝑧𝑢𝑢(1 + 𝑐𝑐
1 − 𝑒𝑒−𝑔𝑔𝑧𝑧𝑢𝑢
1 + 𝑒𝑒−𝑔𝑔𝑧𝑧𝑢𝑢

)(1 + 𝑧𝑧𝑢𝑢2)𝑘𝑘 

where A and B >0 are the location and scale parameter, respectively, g measures the 
skewness of the distribution, and k>-0.5 measures the kurtosis (in the general sense of 
peakedness/heavy or light-tailedness), 𝑧𝑧𝑢𝑢 is the uth quantile of standard normal 
distribution and c is a normalizing constant to help produce a proper distribution. 
Approximately, c ≤ 0.83 guarantees a completely proper distribution. Here we use c=0.8 
as researchers normally do.  

Below is the chart of the parameters and the graph of shapes of the six selected 
distributions.  

Table 1: parameters for the chosen six distributions 

Distribution gk1 gk2 gk3 gk4 gk5 gk6 

Shape normal symmetric 
heavy tailed 

symmetric 
light tailed 

slightly 
skewed 

slightly skewed 
heavy tailed  

highly 
skewed 

A 0 0 0 0 0 0 
B 1 1 1 1 1 1 
c 0.8 0.8 0.8 0.8 0.8 0.8 
g 0 0 0 0.5 0.5 -2 
k 0 0.5 -0.1 0 0.5 0 
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Figure 1: shapes of the chosen six distributions 

 

4. Robustness Study of the AEWMA Control Chart 

As for the design parameters (λ, k and h) in the AEWMA, we consider two optimal 
combinations given by CM that produce an in-control ARL of 500 for normal 
distribution. Table 2 displays the design parameters used in our robustness study.  

Table 2: Optimal design parameters of two AEWMAs that produce in-control ARL of 
500 

Shifts pairs Optimal design parameters 
μ1 μ2 λ k h 
1.0 5.0 0.1354 3.2587 0.7931 

 

Usually, zero-state or/and steady-state ARL measures are used to evaluate the 
performance of a control chart. In our study, we investigate the robustness of the 
AEWMA in terms of zero-state in-control ARL using Monte Carlo simulation.  

Table 3: The in-control ARL comparison of the six different shapes of underlying 
distributions. The design parameters used are those producing an in-control nominal ARL 
of 500 when normality assumption is met.  
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Shifts pairs Underlying distributions 

μ1 μ2 normal symmetric 
heavy tailed 

symmetric 
light tailed 

slightly 
skewed 

slightly skewed 
heavy tailed  

highly 
skewed 

1.0 5.0 506.13 10.00 5356.58 71.43 11.05 23.39 
 

Table 3 shows the performance of the two selected AEWMA charts for six different 
shapes of distributions: 1) normal, 2) symmetric with heavy tailed, 3) symmetric with 
light tailed, 4) slightly skewed, 5) slightly skewed with heavy tailed, and 6) highly 
skewed. All monitored random variables are generated from the g-and-k distribution. All 
six distributions have the location parameter 0, scale parameter 1 and skewness/kurtosis 
as listed in table 1. Each numerical result is calculated by 10,000 simulation times. 
According to the numerical results in table 3, the effect of the shapes of the underlying 
distributions on the in-control ARL is large. The exact in-control ARL with normal 
underlying distribution is very close to the nominal in-control ARL. However, when the 
underlying in-control distribution is not normal, the exact in-control ARL is far from the 
nominal in-control ARL=500. For heavy tailed distributions and highly skewed 
distribution, the exact in-control ARLs are significantly shorter than the nominal in-
control ARL, say less than 30, which provides us with a significantly higher false alarm 
rate. For the light tailed distribution, the exact in-control ARL is remarkably longer than 
the nominal in-control ARL, say more than 2000, which results in a much lower false 
alarm rate. The rapid decrease in the in-control ARL indicates a much higher false alarm 
rate in reality. The results make us believe that the AEWMA control chart only performs 
well for the normal distribution and could be highly sensitive to non-normality, which 
leads to the conclusion of its non-robustness in general.  

There are some solutions to consider: 

• One can modify the chart and search for optimal design parameters in the 
AEWMA control chart which guarantee a nominal in-control ARL for a specified 
distribution.  However, this solution requires a full knowledge of the underlying 
distribution. 

• One can also consider pre-processing the data, such as transforming it to normal 
and then applying the AEWMA control chart to monitor the process.  

• Applying nonparametric method to the AEWMA control chart, thus the chart is 
based on a distribution-free statistics, which does not require the normality 
assumption. For example, Li, Tang and Ng (2010) considered the idea of using a 
nonparametric Wilcoxon rank sum statistic in a standard EWMA chart and 
proposed the W.EWMA chart.  

In the following sections of this paper, we pursue the third solution and propose a new 
AEWMA control chart based on a nonparametric statistic.  

5. Nonparametric AEWMA (NPAEWMA) Control Chart 

Wilcoxon (1945) proposed the Wilcoxon rank sum test (WRS) based on the sum of the 
ranks of one of the samples say the Ys in the combined independent samples of Xs and 
Ys. Suppose 𝑋𝑋 = (𝑥𝑥1, 𝑥𝑥2, … 𝑥𝑥𝑚𝑚) and 𝑌𝑌 = (𝑦𝑦1, 𝑦𝑦2, …𝑦𝑦𝑛𝑛) are two independent random 
samples from two independent continuous variables. Combine the two samples together 
and put them in ascending order. Let V stand for the sum of the ranks of the Y sample in 
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the combined ordered sample and let 𝑎𝑎(𝑖𝑖) = 1 if the ith smallest observation is from 
sample Y, and  𝑎𝑎(𝑖𝑖) = 0 otherwise, then 

𝑉𝑉 =  � (𝑖𝑖 ∙ 𝑎𝑎(𝑖𝑖))
𝑛𝑛+𝑚𝑚

𝑖𝑖=1

 

If the distribution of the Y is stochastically larger than that of X, then V will tend to be 
large; otherwise V will be small. Under the null hypothesis that the X’s and the Y’s are 
identically distributed, the expectation and the variance of V are (see, e.g., Gibbons and 
Chakraborti, 2010) : 

𝐸𝐸(𝑉𝑉) =
𝑛𝑛(𝑚𝑚 + 𝑛𝑛 + 1)

2
 

𝑉𝑉𝑉𝑉𝑉𝑉(𝑉𝑉) = 𝑚𝑚𝑚𝑚(𝑚𝑚+𝑛𝑛+1)
12

, 

respectively.  To adopt this idea for a distribution-free control chart, first, a reference 
sample from an in-control process needs to be obtained. Then, at each time point during 
the future monitoring of the process, subgroups are obtained and compared to the 
reference sample. A nonparametric AEWMA control chart can be constructed as follow: 

• Collect a reference sample of size m, 𝑋𝑋 = (𝑥𝑥1, 𝑥𝑥2, … , 𝑥𝑥𝑚𝑚),  from an in-control 
process. 

• Collect subgroups, each of size n, from the monitoring process. And denote the 
subgroup collected at time t as 𝑌𝑌𝑡𝑡 = (𝑦𝑦1, 𝑦𝑦2, … , 𝑦𝑦𝑛𝑛) .  

• Compute the Wilcoxon rank sum statistic for 𝑌𝑌𝑡𝑡 against X, denote it as 𝑉𝑉𝑡𝑡. Let 
𝑉𝑉′𝑡𝑡 = 𝑉𝑉𝑡𝑡−𝐸𝐸(𝑉𝑉)

�𝑣𝑣𝑣𝑣𝑣𝑣(𝑉𝑉)
 be the standardized 𝑉𝑉𝑡𝑡:  

• Construct the NPAEWMA control chart as below, where 𝑇𝑇𝑡𝑡 is the monitoring 
statistic at time t and 𝑇𝑇0 = 0. The design parameters for the NPAEWMA chart 
are the same as those for the AEWMA of CM .  

𝑇𝑇𝑡𝑡 = �1 −𝑤𝑤(𝑒𝑒𝑡𝑡)�𝑇𝑇𝑡𝑡−1 + 𝑤𝑤(𝑒𝑒𝑡𝑡)𝑉𝑉′𝑡𝑡 
• An out-of-control signal is will be given when 𝑇𝑇𝑡𝑡 falls on or outside the control 

limits ±ℎ.  
 

6. The Robustness of the NPAEWMA Control Chart 

The asymptotic distribution of the 𝑉𝑉′𝑡𝑡 is close to normal when the reference sample size 
m and the subgroup sample size n is large. From a practical point of view, we prefer the 
value of subgroup size n to be small. Meanwhile, we would like to have a modest to large 
size of Phase I reference sample to gather enough information about the assumed in-
control process. A common selection of m and n values by researchers are m=100, 300, 
and 500, and n=5, respectively. Following this tradition, we examine the robustness of 
the proposed NPAEWMA control chart and performance of the chart when there is a shift 
in the location of the monitored process. Table 5 shows in-control ARLs and out-of 
control ARLs of the NPAEWMA control chart. The data are simulated from standard 
normal distribution. The nominal in-control ARL is 500. The design parameters of the 
chart are from CM’s paper. The number of the reference sample m=100, 300 and 500, 
and n=5. Each ARL is calculated from 20,000 simulated RL. 
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Table 5: The in-control ARL and the out-of-control ARL of the NPAEWMA control 
chart. The shift in the location are in the unit of /√𝑛𝑛 .  

SimN=20,000,     rational subgroup n=5 

shifts number of reference samples 
δ m=100 m=300 m=500 
0 428.3 469.9 502.8 

0.05 416.2 450.8 482.9 
0.1 387.1 413.1 426.3 
0.25 282.7 219 197.1 
0.5 99.1 52.7 46.3 
1 13.3 10.9 10.7 

1.5 5.9 5.5 5.4 
2 3.8 3.5 3.6 
3 2.2 2.1 2.1 

 

According to the numerical results in Table 5, the in-control ARLs increase from 428.3 to 
502.8 as the reference sample size increases from 100 to 500. When m=500, the exact in-
control ARL equals the nominal in-control ARL. When there is a shift from the in-control 
distribution, the chart can detect it by producing an out-of-control alarm.  

7. Performance Comparison between the NPAEWMA and WEWMA 

Li et al. (2010) proposed an EWMA control chart based on the WRS statistics called the 
WEWMA chart. They also made performance comparisons among several nonparametric 
and parametric control charts. Among the nonparametric control charts, their WEWMA 
performed better than the other charts. Here comparisons are made between the 
NPAEWMA and the WEWMA control charts. Table 6 shows the out-of-control ARL for 
both charts at the same shift levels. In order to make the comparisons, we select the same 
in-control distributions: normal, t5 and gamma(3, 1) as in Li et al. (2010). From the 
results of Table 6 below, both of nonparametric charts are seen to be in-control robust to 
non-normality.. When the monitored process is out-of-control and the distribution is 
symmetric, the NPAEWMA is seen to perform better than the WEWMA chart. 
Especially when there is a small shift, for example, a shift of 0.25, the NPAEWMA chart 
is able to detect it quicker than the WEWMA. For larger shifts, greater than 2, the 
NPAEWMA and WEWMA charts perform similarly. For asymmetric distribution, the 
performance of the NPAEWMA chart is not as good as the WEWMA chart for smaller 
shifts, but the out-of-control ARLs are almost the same when the shift is greater than 3.  

Table 6: The ARL for WEWMA and NPAEWMA control chart for normal, t5 and 
gamma(3,1) distribution. The data for WEWMA are from Li et al (2010). The reference 
sample size m=500 and subgroup size=5 for both charts. The shifts are in unit of 1/√5. 
The ARLs of the NPAEWMA are calculated from 10,000 simulations.  

  normal t5 gamma(3,1) 
shifts WEWMA NPAEWMA WEWMA NPAEWMA WEWMA NPAEWMA 

0 502.94 509.08 501.61 518.21 501.13 505.37 
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0.25 321.52 197.04 288.19 238.56 340.5 534.84 
0.5 103.15 45.76 75.53 61.82 103 141.06 
1 14.29 10.55 11.35 13.43 11.79 26.49 

1.5 7.52 5.44 6.44 6.64 6.5 11.33 
2 5.3 3.57 4.71 4.11 4.75 6.85 
3 3.64 2.06 3.39 2.54 3.41 3.72 

 

Further work on this chart, including a detailed performance examination, is in progress.  
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