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Abstract 
This article aims to systematically restate and interpret basic concepts and important properties of 
regression analysis under the geometric framework. We first propose a simple geometric proof 
for the Frisch-Waugh-Lovell Theorem which is then followed by developing geometric 
expressions of regression coefficients and partial correlation coefficients. In addition, we apply 
geometric approaches to prove and verify three formulas that display the relationship among 
simple, multiple and partial correlation coefficients. Moreover, by describing the geometric 
analogues of the regression concepts systematically, this article also illustrates that geometric 
approach can provide a better understanding of regression analysis. Although these formulas are 
well known in the basic statistics textbooks and have already been proved by algebraic methods, 
we are among the first who give the geometric proof.  
Keywords 
Regression Analysis, Geometry Interpretation, Frisch-Waugh-Lovell Theorem, Partial 
Correlation Coefficient  
 

1. INTRODUCTION 
 

Regression analysis is not only a widely used statistical tool but also a very important curriculum 
subject for both graduate and undergraduate students majoring in statistics, economics, politics, 
psychology and sociology. Regression analysis is traditionally presented in algebraic forms, 
especially in equations and matrices. Since the subject of regression emerged in the late of 19th 
century, algebra has been widely used to express concepts and build up models in regression 
analysis. When taking the course of regression methods, college students also use textbooks that 
express regression analysis totally in algebraic equations and matrix forms. However, all concepts 
of regression analysis can be visualized by applying a few principles of geometry (Bryant 1984). 
Statisticians have shown that many key concepts in regression analysis, including the method of 
least squares, regression coefficients, simple and partial correlation coefficients, have direct 
visual analogues in the geometry of vectors.   
 
Geometric interpretation is in reality more helpful than cumbersome algebraic equations and 
matrices in understanding regression concepts because its visual presentation is concrete. 
Margolis (1979) pointed out that geometry seems to be the natural way to emphasize the unity of 
the fundamental ideas. Furthermore, regression concepts and techniques can be explained more 
simply and clearly in a geometric way than in sophisticated algebraic equations and complicated 
matrix forms (Herr 1980). Bring (1994) also advocated using geometry to present basic 
regression concepts to serious beginning students because it can definitely improve a student’s 
comprehension of basic concepts. By exploring vectors, triangles and projections, and drawing 
them clearly in a three-dimensional space, students do not have to delve into complicated 
algebraic calculations. Therefore, an understanding of the geometrical aspects of elementary 
regression analysis may sometimes assist a student more effectively than elegantly derived 
formulas (Saville and Wood 1986).  
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Despite its merits, geometry is seldom used in regression analysis, except for the use of scatter 
plots (Marks 1982). The long-time predominance of algebra since the 20th century might be one 
of the primary reasons. Besides, the formalist philosophical stance of mathematics, which means 
strictness in formal exposition, makes algebra a more popular instrument than geometry in 
academic research (Davis and Hersh 1981). On the other hand, some statisticians and professors 
who teach statistics in universities have given other reasons for the unpopularity of geometry in 
research and in teaching of regression analysis in particular. Herr (1980), for instance, reviewed 
selected statistical papers with a geometric slant, from R. A. Fisher’s (1915) to William Kruskal’s 
(1975), and concluded that the relative unpopularity of the geometric approach is “not due to its 
inherent inferiority but rather to a combination of inertia, poor exposition, and a resistance to 
abstraction”. Davis (1981) had a similar opinion and emphasized that to fully appreciate the 
analytic geometric approach and to be able to use it effectively in research requires statisticians 
with a talent for abstract thought. The resistance to abstraction is probably the most important 
reason why geometric approach is so seldom used. Moreover, that the relevant material has not 
been published at an appropriate level is perhaps another reason why the geometric approach is 
seldom used in teaching regression analysis. Thus, although some ideas have been expressed in 
terms of geometry, they are pitched at such a high mathematical level that neither students nor 
professors would be likely to embrace them (Bryant 1984).  
 
Previous work has been done to show the geometric interpretations of the method of least squares, 
regression coefficients, simple, multiple and partial correlation coefficients. However, these are 
far from enough. Box, Hunter, and Hunter (1978) applied vector geometry in one of their 
statistical texts intended for the first course in the design of regression analysis experiments. 
Draper and Smith (1980) used two chapters to discuss the geometry of least squares. From the 
statistical modeling point of view, Marks (1982) gave a distribution-based geometric 
interpretation of the correlation coefficient which was built upon an assumption of bivariate 
normal distribution on regression variables. This geometric interpretation is more consistent with 
the statistical model for the data. However, the result might be invalid if distribution assumption 
is violated. Morris L. Eaton (1983) wrote a book, using vector space approach to present a 
version of multivariate statistical theory. In the book, the author not only used random vectors to 
analyze normal distribution and linear models, but also combined the vector space method and 
invariance together to solve multivariate problems. However, the mathematics used in the book is 
in a graduate course level and difficult for a beginning student to read. Saville and Wood (1986) 
advocated a method for teaching statistics using n-dimensional geometry in the Teacher’s Corner, 
and published two books on this subject (Saville and Wood 1991, 1996). In both of their books, 
the set of nonorthogonal predictor vectors are converted into an orthogonal sequence for the ease 
of their work. Thomas and O’Quigley (1993) gave a geometric interpretation of partial correlation 
from the perspective of spherical triangles model. And more recently, Bring (1996) showed the 
power of the geometric approach in studying regression by demonstrating the geometric view of 
some important concepts such as, least square, standardized regression coefficient, and R-Square.  
There are some projective arguments in the literature which require more knowledge of advanced 
linear algebra for beginning readers. In geometry, each regression variable is considered as a 
vector in an n-dimensional space, where n is the size of the sample. For the ease of demonstration, 
one usually has an n-dimensional vector displayed in a 3-dimensional vector space. This is a 
common practice in most existing literatures. However, this is not strictly correct as in higher 
dimensions (n>3), vectors cannot be shown pictorially in a strictly correct manner (Saville and 
Wood 1991). 
 
The objective of this paper is to geometrically restate and interpret basic regression concepts and 
properties under a simple and strictly correct 3-dimensional vector space, without enforcing any 
distribution assumptions on regression variables or making any transformation of non-orthogonal 
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regression vectors. The rest of the paper is organized as follows. In section 2, we first correct a 
graphing problem in the previous research by mapping the original n-dimensional space 𝐸𝑛 to a 
3-dimensional one without the loss of information. This process ensures that we can draw any 
high dimensional vectors, angles and triangles in a strictly correct manner. In addition to the 
previous studies, in section 3, we use geometry to prove the Frisch-Waugh-Lovell Theorem 
(Frisch and Waugh 1933; Lovell 1963) and provide another four geometric expressions of 
regression coefficients based on this 3-dimensional geometric framework. Moreover, we find 
another geometric interpretation of partial correlation coefficients. Finally in section 4, we use 
geometric approaches to prove and verify three formulas that display the relationship among 
simple, multiple and partial correlation coefficients. Those who have finished an introductory 
course of econometrics would find it especially helpful when they examine these visual analogues 
sketched out in the paper.  

2. DRAWING GRAPHS ON 3E  
 

Suppose a multiple regression model with two independent variables as follows: 

𝑣 = 𝛽1𝑢1 + 𝛽2𝑢2 + 𝑤, 

where 𝑣 = (𝑣1, 𝑣2, … , 𝑣𝑛)𝑇 is the observed response vector, two independent predictors 𝑢1 and 
𝑢2 are both n-dimensional column vectors, 𝛽1 ∈ 𝑅1 and 𝛽2 ∈ 𝑅1 are the regression coefficients, 
𝑤 is the error term, and n is the sample size. In terms of vector geometry,�⃗�, 𝑢�⃗ 1, 𝑢�⃗ 2  and 𝑤��⃗  can be 
regarded as vectors in n-dimensional Euclidean space, 𝐸𝑛. When using geometry to analyze this 
model, most scholars normally draw the diagram in Figure 1 directly. In Figure 1, 𝑂𝑂′�������⃗  is the 
perpendicular projection of �⃗�  on 𝑆𝑝𝑎𝑛 (𝑢�⃗ 1,𝑢�⃗ 2), the plane spanned by  𝑢�⃗ 1 and  𝑢�⃗ 2. 𝑂𝑂′�������⃗  is also 
named as 𝑣�⃗ . Vector 𝑂𝐴�����⃗  is the perpendicular projection of �⃗�  on  𝑢�⃗ 1  ; vector 𝑂𝐵�����⃗  is the 
perpendicular projection of �⃗� on 𝑢�⃗ 2 . Then, 𝐴𝑂′�������⃗ ⊥  𝑢�⃗ 1, 𝐵𝑂′�������⃗ ⊥  𝑢�⃗ 2 .  The angle between vector �⃗� 
and 𝑣�⃗  is θ; the angle between vector 𝑢�⃗ 1 and 𝑣�⃗  is  𝛾1; the angle between vector 𝑢�⃗ 2 and 𝑣�⃗  is  𝛾2. 
Finally, the angle between 𝑢�⃗ 1 and 𝑢�⃗ 2 is γ.  

 

Figure 1. Geometric Interpretation of Least Squares Method in n-space. 

However, the problem with Figure 1 is that it is displaying in a 3-dimensional space. And this 
contradicts with the fact that �⃗�, 𝑢�⃗ 1  and  𝑢�⃗ 2 are vectors in n-space 𝐸𝑛. According to Saville and 
Wood (1991), in higher (n>3) dimensions, vectors cannot be shown pictorially in a strictly correct 
manner. Therefore, it is not strictly correct to use Figure 1 to analyze regressions. To solve this 
contradiction, we establish a transformation matrix  𝐴  to map the n-dimensional vectors 
 𝑣���⃗ ,  𝑢�⃗ 1  and  𝑢�⃗ 2 onto the 3-dimentional space. This linear transformation keeps: 

1) The length of any vector unchanged; 
2) The angle between any two vectors unchanged. 

When pre-multiplying 𝐴 with 𝑣���⃗ ,  𝑢�⃗ 1 , 𝑢�⃗ 2, and 𝑤��⃗  , we obtain �⃗�, �⃗�1 , �⃗�2  and 𝜀 respectively. That is 
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where �⃗�, �⃗�1, and �⃗�2 are vectors in the 3-dimensional Euclidean space  𝐸3. At the same time, in 
the original n-dimensional space,  𝑣���⃗ ,   𝑢�⃗ 1  and 𝑢�⃗ 2  span a 3-dimensional subspace of 𝐸𝑛 . This 
subspace has the same dimensions as 𝐸3 . On the other hand, we know that “any two finite 
Euclidean spaces are isomorphic if and only if they have the same number of dimensions.” 
Therefore, the subspace is isomorphic to 𝐸3. This isomorphism ensures that the results we obtain 
from the new 𝐸3 are the same as those we get by analyzing the original 𝐸𝑛. Furthermore, the new 
vectors �⃗� , �⃗�1  and �⃗�2  can be shown pictorially in a strictly correct manner. In this process,  
�̂�𝑖 (𝑖 = 1,2) is unchanged. The idea is summarized as: 

 Theorem 1: For any 3 linearly independent vectors 𝒗��⃗ ,  𝒖��⃗ 𝟏 and 𝒖��⃗ 𝟐 in 𝑬𝒏, there exists an 
orthogonal transformation 𝑨 between 𝑺𝒑𝒂𝒏(𝒗��⃗ , 𝒖��⃗ 𝟏,𝒖��⃗ 𝟐)  and 𝑬𝟑 , such that, 
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In this theorem, vector 𝑢 ����⃗ 21 is the predictor of 𝑢�⃗ 2 when regressing 𝑢�⃗ 2 on 𝑢�⃗ 1. Hence (𝑢�⃗ 2 −  𝑢 ����⃗ 21) 
is the residual vector from regressing 𝑢�⃗ 2 on 𝑢�⃗ 1 and thus is perpendicular to 𝑢�⃗ 1. (�⃗� − 𝑣�⃗  ) is the 
residual vector from regressing �⃗� on 𝑢�⃗ 1 and 𝑢�⃗ 2 , and is perpendicular to 𝑆𝑝𝑎𝑛 (𝑢�⃗ 1,𝑢�⃗ 2).  And we 
also define the angle between  𝑢�⃗ 1 and �⃗� as 𝜃1; the angle between 𝑢�⃗ 2 and �⃗� as 𝜃2. 
To prove theorem 1, we need to prove 

1. Any pairs of row vectors in A  are orthogonal vectors; 
2. 1uA  = 1x , 2uA  = 2x , vA = y  and A  preserves (a) the length of any vector (b) the angle 

between any two vectors. 
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Therefore, we prove that any pairs of row vectors in A  are orthogonal vectors. 
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The coordinates of 1x , 2x , and y  in the 3-dimensionsal space are: 
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On the other hand,  
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Therefore, A  keeps the length of any vector unchanged. In addition, we have, 
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Therefore, A  also keeps the inner product, or equivalently, the angle between any two vectors 
unchanged. Thus, theorem 1 is proved. In the following sections, our analysis is built upon this  
𝐸3 framework and thus our vectors can be pictured in a strictly correct manner. 
 

3. GEOMETRIC INTERPRETATIONS OF BASIC CONCEPTS IN 
REGRESSION  

In this section, we focus on the two-independent variable case: wuuv ++= 2211 ββ . 

Based on theorem 1, this n-dimensional case is transferred to the following 3-dimensional case  

εββ ++= 2211 xxy , 
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3.1 Regression Coefficients 
Figure 3 demonstrates how to get the estimated regression coefficients. On the 21xx  plane, we 
need to focus on parallelogram 1

'
1 BOOA . It has been concluded that the estimated regression 

coefficients are the proportions of the vectors 1x  and 2x , that, when are added, give the vector y

ˆ . 

Since yOBOA

ˆ11 =+

→→

, we can easily see that:   
1

1

1
ˆ

x

OA


→

=β ,
2

1

2
ˆ

x

OB


→

=β  

 

Figure 2. Geometric Interpretation of Least Square Method in Multiple Regression Model. 

This is one geometric interpretation of regression coefficients and it is the most commonly known. 
However, we know that regression coefficients can also be estimated by other procedures that can 
disclose the true meaning of the partial regression coefficients. These procedures are summarized 
as Frisch-Waugh-Lovell Theorem. The Frisch-Waugh-Lovell theorem is a well-known result in 
econometrics which was named after the econometricians Ragnar Frisch, Frederick Waugh, and 
Michael Lovell. As an alternative to the direct application of least squares, Ragnar Frisch and F.V. 
Waugh (1993) first demonstrated a two-step trend removal procedure and proved a remarkable 
property of the method of least squares (Lovell 2008). According to the Frisch-Waugh-Lovell 
theorem, we can first regress 1x  on 2x and obtain the residual 1̂ε . Then we regress y on 2x  and 
obtain the second residual 2ε̂ . Frisch-Waugh-Lovell Theorem shows that if we regress 2ε̂  on 1̂ε , 

the estimated regression coefficient is just 1β̂ , the partial regression coefficient of 1x  from 
regressing y  on 1x  and 2x  simultaneously.  

 

                           Figure 3. Geometric Interpretation of Estimated Regression Coefficients from OLS. 

The theorem was originally proved by using Cramer’s Rule (Frisch and Waugh 1933). Then, 
Lovell (1963) developed a more general result which was proved in terms of matrix algebra 
(1963) and algebra (2008), respectively. Davidson and MacKinnon (1999), and Sosa Escudero 
(2001) also showed geometric representations of this theorem in their work. Although the 
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algebraic proof of Frisch-Waugh-Lovell Theorem is tedious, a geometric proof can be simple and 
straightforward. The process to proof this result geometrically is as follows. 
 
In Figure 4, vector 

→

OD  is the perpendicular projection of 1x  on 2x , or 12x̂


. The corresponding 

residual vector )ˆ( 121 xx
 −  is
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Figure 4. Geometric Interpretation of Frisch-Waugh-Lovell Theorem 

Furthermore, the result of Frisch-Waugh-Lovell theorem can be restated geometrically in the 
following proposition.   

Proposition 1: The estimated regression coefficient 1β̂  is equal to the simple regression 

coefficient obtained by projecting the residual vector )ˆ( 2yy
 − on the residual vector )ˆ( 121 xx

 − . 

On the other hand, vector y  can be decomposed into two orthogonal components, vector 2ŷ
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develop another geometric procedure to calculate 1β̂ . And this leads to another result of Frisch-
Waugh-Lovell theorem. 

Proposition 2: The estimated regression coefficient 1β̂  is equal to the simple regression 

coefficient obtained by projecting the observation vector y  on the residual vector )ˆ( 121 xx
 − . 

 

Figure 5. Two-Dimensional-Estimation Space. 

Proposition 1 and 2 are proposed based on the analysis in 3E .  If we completely center on the 2-
dimentisonal 21xx  plane, we will find that the geometric interpretations of Frisch-Waugh-Lovell 
theorem are still valid. Refer to Figure 5, what we need to do is to change the residual vector 
→

BG  to 
→

'BO  in proposition 1 and replace the observation vector y  by y

ˆ  in proposition 2. 

Figure 5 shows the Frisch-Waugh-Lovell theorem on the 2-dimentional 21xx  plane. Vector 
→

DE  

is still the residual vector from projecting 1x  on 2x . Vector 
→

'BO  can be considered the residual 

vector from projecting y

ˆ  on 2x . We already know that 1β̂  is equal to the ratio of the length of 

→
'BO  to the length of 

→

DE . This leads to the following proposition:  

Proposition 3: The estimated regression coefficient 1β̂  is the ratio of the length of the residual 

vector from projecting y

ˆ  on 2x  to the length of the residual vector from projecting 1x  on 2x . 

With this proposition, we can easily estimate 1β̂  without drawing the parallelogram 1
'

1 BOOA . 
Instead, we only need to find the length of the two residual vectors. This conclusion simplifies 
traditional way of estimating 1β̂  geometrically.  
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Proposition 4: The estimated regression coefficient 1β̂  is equal to the simple regression 

coefficient obtained by projecting the vector y

ˆ  on the residual vector )ˆ( 121 xx

 − . 

All the propositions above demonstrate the geometric interpretations of the regression coefficient 
𝛽1 from different points of view. These visual expressions facilitate the understanding of Frisch-
Waugh-Lovell theorem and thus provide a richer interpretation of regression coefficients for 
readers.  

3.2 2R , the multiple and simple correlation coefficients 

In the algebraic method, the coefficient of determination that is used to measure the goodness-of-
fit of a model, denoted by 𝑅2, is defined as  𝑅2 = SSR

SST
 . In Figure 2, this is the ratio of two sides of 

the right-angled triangle GOO ' . That is,   
2

2

2
ˆ

y

y
R 



= . 

In algebra, the multiple correlation coefficient between y  and 1x  and 2x  is 2
21

Rr xxy ±=⋅ . 

Based on a commonly known result of the geometric interpretation of 2R , we have  

)27090,0;27090,0(cos
ˆ

212121






<<<≥≤≥=±= ⋅⋅⋅ θθθθ whenrorwhenr
y

y
r xxyxxyxxy
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plane. 

This result can be extended into general cases. Suppose α is the angle between two vectors with 
same dimensions, vector 1z  and vector 2z . Then inner product of 1z  and 2z  is  

αcos, 212121 zzzzzz T 
=>=<  

Then, we have, 

αcos =
)var()var(

),cov(

21

21

2
2

2
1

21

21

21

zz
zz

zz

zz
zz
zzT

⋅
==

∑∑
∑


 

          = Simple correlation coefficient between 1z  and 2z .   

It has been shown that the simple correlation coefficient between any two variables can be 
represented as the cosine of the angle between the two vectors representing the variables.  
 
3.3 Partial Correlation Coefficients 

The partial correlation coefficient between y and 1x  is defined in such a way that it measures the 
effect of 1x  on y  which is not accounted for by the 2x  in the model. Therefore, it is calculated 
by eliminating the linear effect of 2x on y as well as the linear effect of 2x on 1x . To purify y  
and 1x  of the linear influence of 2x , we can first regress 1x  on 2x  and obtain the residual 1̂ε . 
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Then we regress y on 2x  and obtain the second residual 2ε̂ . Finally, we can say that simple 

correlation coefficient between 2ε̂  and 1ε̂  is the partial correlation coefficient between y and 1x .  

Like the multiple and simple correlations, the partial correlation coefficient can also be 
represented by cosine of some angle. This result was concluded as: partial correlation coefficient 
between y and 1x  is the cosine of the angle between the “residual vectors”, namely, )ˆ( 2yy

 −  

and )ˆ( 121 xx
 − , the components of y and 1x  orthogonal to 2x . In Figure 4, we can say that vector 

→

BG  and 
→

DE  represent the purified y  and 1x , or 2ε̂  and 1ε̂ . The simple correlation coefficient 

between 2ε̂  and 1ε̂  is the cosine of the angle between vector 
→

BG  and
→

DE . On the other hand, 

vector
→

'BO , the residual vector from projecting y

ˆ  on 2x , is also perpendicular to 2x  and on the 

same plane with
→

DE . Therefore, we have
→

DE //
→

'BO . And we can say that the angle between 
→

BG  and 
→

DE  is the angle between 
→

BG and
→

'BO , denoted by 1φ .  

Here we use 
21 xyxr ⋅  to stand for the partial correlation coefficient between y and 1x . That is, 

1
2

2
cos

ˆ

ˆˆ
21

φ=
−

−
=⋅

yy

yy
r xyx 



 

To get the partial correlation between y and 2x , simply switch the subscripts of x  vectors. If we 
define the relevant angle as 2φ , we have 2cos

12
φ=⋅xyxr . 

If examining Figure 4 further, we can find that 1φ  is actually the angle between two planes, Span 

( y , 2x ) (i.e. 2yx  plane) and Span ( 1x , 2x ) (i.e. 21xx  plane). That is because 
→

BG is 

perpendicular to 
→

OB and 
→

'BO  is also perpendicular to 
→

OB . This finding leads to the following 
proposition: 

Proposition 5: Partial correlation coefficient between y and 1x  is the cosine of the angle 
between the subspace spanned by y and 2x , and the subspace spanned by 1x and 2x . 

Suppose that the angle between vector y  and vector 1x  be 1θ , the angle between vector y  and 

vector 2x  be 2θ , the angle between vector y

ˆ  and vector 1x  be 1γ , and the angle between vector 

y

ˆ  and vector 2x  be 2γ  ( 1γ  and 2γ  are on the 21xx  plane). Then the angle between vector 1x  

and 2x  is γ . We also define the projection of y  on 1x  as 1ŷ


 and the projection of 2x  on 1x  as 

21x̂


. The residual vectors are hence )ˆ( 1yy
 −  and )ˆ( 212 xx

 − , respectively.  

3.4  Geometric Expressions for Multiple, Simple and Partial Correlations  
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Table 1 summarize the geometric expressions for multiple, simple and partial correlations in 
Figure 2 and Figure 4. 

Table 1. Summary for Geometric Expressions for Simple, Partial and Multiple Correlations. 

Multiple and Simple Correlations Geometric Expressions 
Multiple correlation between y  and 1x  and 2x : 

21xxyr ⋅  
y

y



ˆ

cos =θ  

Simple correlation between y  and 1x : 
1yxr  

y

y



1

1

ˆ
cos =θ  

Simple correlation between y  and 2x : 
2yxr  

y

y



2

2

ˆ
cos =θ  

Simple correlation between ŷ  and 1x : 
1ˆxyr  

y

y




ˆ

ˆ
cos

1
1 =γ

 

Simple correlation between ŷ  and 2x : 
2ˆxyr  

y

y




ˆ

ˆ
cos

2
2 =γ

 

Simple correlation between 1x  and 2x : 
21xxr  

2

21

1

12 ˆˆ
cos

x

x

x

x








==γ  

Partial correlation between y and 1x , given 2x : 
21 xyxr ⋅  

2

2
1 ˆ

ˆˆ
cos

yy

yy




−

−
=φ  

Partial correlation between y and 2x , given 1x : 
12 xyxr ⋅  

1

1
2 ˆ

ˆˆ
cos

yy

yy




−

−
=φ

 

 

3.5  Relationship among Simple, Partial, and Multiple Correlation Coefficients 

In this section, we examine the relationship among simple, partial and multiple correlation 
coefficients. Three classical equations are chosen to characterize the relationship among three 
types of correlation coefficients. These equations have been proved by other statisticians using 
algebras and matrices which can be found in basic statistics or econometrics texts. However, to 
the best of our knowledge, they are seldom proved by geometric approaches. Here, we will use 
geometry to prove the following three equations.  

3.5.1 )1)(1()1( 222
212 xyxyx rrR ⋅−−=−  

This result first appears in a basic text by Anderson (1958). Our geometric proof is as follows. 

In Figure 6, GOO '∆ , OBG∆  and GBO '∆  are all right-angled triangles. As described in the 
previous section, the angle between vectors y  and y


ˆ  ( 'GOO∠ ) is named as θ , and θ22 cos=R . 

The angle between vector y  and 2x  ( GOB∠ ) is named as 2θ , and 2
22 cos

2
θ=yxr . The angle 

between vector 
→

BG  and 
→

'BO is named as 1φ , and 1
22 cos

21
φ=⋅xyxr .  
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We find that in the right-angled triangle GOO '∆ ,
→

→

=
OG

GO '

sinθ ; in the right-angled triangle 

OBG∆ , 
→

→

=
OG

BG
2sinθ ; in the right-angled triangle GBO '∆ , 

→

→

=
BG

GO '

1sinφ ; 

   

                 

1 φ   

2 x  

  

O ’   

B   

1 x  

  

y  

  

O   

G   

 

Figure 6. Relationship among Simple, Partial and Multiple Correlations. 

Therefore, we have 

θφθ sinsinsin

''

12 ==⋅=⋅
→

→

→

→

→

→

OG

GO

BG

GO

OG

BG ,                   or,                      12 sinsinsin φθθ ⋅=  

Square both sides, we have,      1
2

2
22 sinsinsin φθθ ⋅=  

Or,                 )cos1()cos1()cos1( 1
2

2
22 φθθ −⋅−=−  

That is,          )1)(1()1( 222
212 xyxyx rrR ⋅−−=−                                                       (3.5-1-1) 

Equation (3.5-1-1) discloses the relationship among the simple, partial and multiple correlation 
coefficients. And the process of deriving this equation totally relies on simple geometric method.  

By symmetry, we have another equation,  )1)(1()1( 222
121 xyxyx rrR ⋅−−=−   (3.5-1-2) 

Another form of these two equations is       2222
1211

)1( xyxyxyx rrrR ⋅−+=                (3.5-1-3) 

And,  2222
2122

)1( xyxyxyx rrrR ⋅−+=                                                                    (3.5-1-4) 

Damodar N. Gujarati (1995) provides explanations for these two equations. Equation (3.5-1-3) 
states that the proportion of the variation in y  explained by 1x  and 2x  jointly is the sum of two 
parts: the part explained by 1x  alone (= 2

1yxr ) and the part not explained by 1x (=1- 2
1yxr ) times the 
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proportion that is explained by 2x  after eliminating the influence of 1x .  Equation (3.5-1-4), 
similarly, states that the proportion of the variation in y  explained by 1x  and 2x  jointly is the 
sum of two parts: the part explained by 2x  alone (= 2

2yxr ) and the part not explained by 2x  (=1-
2

2yxr ) times the proportion that is explained by 1x  after eliminating the influence of 2x .   

3.5.2 
2212 ˆ xyxxyxy rrr ⋅⋅⋅ = , and  

1211 ˆ xyxxyxy rrr ⋅⋅⋅ =  
In Figure 7, there exists another relationship among the three vertex angles, θ  (the angle 
between vector y  and y


ˆ ), 2θ  (the angle between vector y  and vector 2x ), and 2γ (the angle 

between vector y

ˆ  and vector 2x ).  

   

                 

  

2 x  

  

O ’   

B   

y  

 three vertex angles 

O   

G   

 

Figure 7. Relationship between Simple and Multiple Correlation. 

In the right-angled triangle OBG∆ , 
2cosθyOB =

→ ; in the right-angled triangle 'OBO∆ , 

2cosˆ γyOB


=
→ ; in the right-angled triangle GOO '∆ , θcosˆ yy 

= . 

Therefore,  22 coscoscos γθθ yy  = . 

Then, 22 coscoscos γθθ = , or,  
2212 ˆ xyxxyxy rrr ⋅⋅⋅ =                                                 (3.5-2-1) 

By symmetry, we can obtain another equation, 
1211 ˆ xyxxyxy rrr ⋅⋅⋅ =                                     (3.5-2-2) 

3.5.3 
)1)(1( 22

212

2121

21

xxyx

xxyxyx
xyx

rr

rrr
r

−−

−
=⋅

 

This is a well-known algebraic formula to calculate partial correlation coefficient based on simple 
correlation coefficients. The algebraic proof can be easily found in a basic statistical text. But the 
proof is complicated. In fact, geometry is very helpful in interpreting this relation.  

Kendall and Stuart (1973) developed a geometric proof of this formula. It was also discussed by 
Guy Thomas and John O’quigley in their paper “A geometric interpretation of partial correlation 
using spherical triangles” (1993). They used spherical triangles to give a geometric interpretation 
of this relationship. Their method is more illustrating because it shows that the above formula is 
identical with the formula of spherical trigonometry. However, to fully understand their 
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interpretations, one need to have some geometry background in a higher level, specifically, the 
understanding of spherical trigonometry. Our proof here is simple and easy to understand. 

Proof: In section (3.5-2), we have obtained the results 
2212 ˆ xyxxyxy rrr ⋅⋅⋅ =  and 

1211 ˆ xyxxyxy rrr ⋅⋅⋅ = . Or 

equivalently, 11 coscoscos γθθ ⋅=                                                                                      (3.5-3-1) 

And, 22 coscoscos γθθ ⋅=                                                                                                  (3.5-3-2) 

On the other hand, in the right-angled triangle GBO '∆  in Figure 7, we have 

2

2

2

2

'

1 sin
sincos

sin

sinˆ
cos

θ
γθ

θ

γ
φ

⋅
===

→

→

y

y

BG

BO



       (3.5-3-3) 

At the same time, since 21 γγγ −= , and then we have, 11 coscoscos γθθ ⋅=                      (3.5-3-4) 

                                                               

22

22

2

sincossincoscoscos
)sinsincos(coscos

)cos(cos

γθγγθγ
γγγγθ

γγθ

−=
−⋅=

−⋅=
                                           

Substitute (3.5-3-2) into (3.5-3-4), we obtain,
γ

γθθ
γθ

sin
coscoscossincos 21

2
−

=       (3.5-3-5) 

Substitute (3.5-3-5) into (3.5-3-3), we obtain, 

γθ
γθθ

φ
sinsin

coscoscoscos
2

21
1

−
=                 or,                  

)cos1()cos1(

coscoscoscos
2

2
2

21
1

γθ

γθθ
φ

−−

−
=  

Thus, we use geometry to prove
)1)(1( 22

212

2121

21

xxyx

xxyxyx
xyx

rr

rrr
r

−−

−
=⋅

. 

4. CONCLUSION 
 
Regression analysis is traditionally presented in algebraic forms, especially in equations and 
matrices. Due to the predominance of algebra and the unpopularity of geometry, not much 
insightful work has been done to apply geometry in regression analysis. To correct a graphing 
problem in the previous research, the matrix established in this paper ensures the validity of 
drawing the n-dimensional vectors, angles and triangles into a 3-dimensional space. Based on this 
strictly correct 3-dimensional framework, we not only summarize the previous results about 
geometric interpretations of the least squares method, regression coefficients, simple, multiple 
and partial correlation coefficients, but also propose the geometric proofs to the Frisch-Waugh-
Lovell Theorem, and three classical formulas that display the relationship among simple, multiple 
and partial correlation coefficients. Although these formulas are well known in the basic statistics 
texts and have already been proved with the use of algebraic methods, we are among the first to 
give the geometric proof. All these geometric proof proposed in this paper are concise and easy to 
understand for beginners. In fact, all concepts of regression analysis can be visualized by 
applying a few principles of geometry. In this paper, some fundamental theorems and concepts, 
such as Frisch-Waugh-Lovell and partial correlation coefficients, are restated from the 
perspective of geometry. In its sister paper, we will also provide geometric interpretations of 
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principle component analysis and regression test statistics. In our opinion, the geometric approach 
sheds lights on the regression analysis as it provides a richer and concrete understanding for 
readers, especially for beginners.   
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