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Statistical analysis of commonly occurring clinical trials that have correlated primary 
endpoints are often complex because multiple comparison adjustments are necessary. In 
practice, most statisticians resort to numerical simulation, even though such approaches 
can be computationally demanding and are often restricted to specific scenarios. The 
paper provides analytical solutions to one-sided multiple comparisons adjustment for 
mean values of multivariate normal data that have known positive definite covariance 
matrices. We use the maximum of test statistics to control the familywise error rate 
(FWER). This approach is equivalent to adjusting the minimum p-value but is simple to 
use and enables analytical evaluation. We derive a formula for the cumulative probability 
functions (CDFs) of the maximal test statistics when the correlations are known to be 
sufficiently small. When this assumption cannot be justified, we provide majorizing 
inequalities for the CDFs of the maximal test statistics. In addition, we address 
calculation of power and testing of conditional hypotheses for correlated primary 
endpoints. Theoretical results are illustrated by examples and are supported by extensive 
numerical studies. 
 
Keywords: significance level, multivariate normal distribution, maximal statistics, 
multiple testing, conditional distribution 
 

1. Introduction 
In clinical trials, many variables can be measured during or after a treatment. A small 
number of these response variables, known as endpoints, are of primary importance and 
often define the success or failure of a study. Studies of correlated multiple endpoints can 
often reveal meaningful insights to complex problems, such as cases in which researchers 
cannot clearly identify outcomes that are primarily linked to a treatment, or cases in 
which a treatment might have multiple clinically important outcomes and requires a 
better method to evaluate the effect of the treatment. Statistical analysis of such studies 
can be complicated due to the necessary multiple comparisons adjustments. Numerous 
publications have addressed the multiple testing problem (Armitage and Parmar 1986; 
Pocock  et al. 1987; James 1991; D’Agostino et al. 1993;  Westfall and Young 1993; 
Zhang et al.1997; Sankoh et.al. 2003; Lix and Sajobi 2010; Bretz et al. 2010; Dmitrienko 
et al. 2010; Westfall et al. 2011; Phillipset al. 2013; Huque et al. 2013; Permutt 2013; 
Chunpeng and Zhang 2013). Much of the focus concentrates on multivariate Gaussian 
outcomes that are positively correlated. For example, (Dubey 1985; Pocock et al. 1987)  
generated detailed tables for adjustments of nominal significance levels for positively 
equicorrelated observations. The nominal significance level is the largest number at 
which the smallest of n (the dimension of the outcomes) one-sided p-values preserves an 
overall one-sided Type I error. Heuristic adjustment formulae (Armitage and 
Parmar1986;  James1991; Dubey 1985; Shi et al. 2012; Julious and McIntyre 2012) for 
the type I and II errors have been advocated. Zaslavsky and Scott (2012) derived 
asymptotic formulae for very large numbers of endpoints. Although positive correlations 
are common in trials, negatively correlated multiple endpoints have their own 
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importance. For example, studies reveal that neurotic hostility (scored by the Buss-
Durkee hostility inventory (Siegman et al. 1987)) is inversely associated with the severity 
of angiographically documented coronary artery disease, whereas nonneurotic hostility 
scores were positively related with the extent of disease (Siegman et al. 1987. In this 
paper, we consider multivariate Gaussian endpoints without restrictions on the sign of the 
correlations, given the covariance matrix is nonnegative definite. Instead of adjusting the 
minimal p -values to control the family-wise error rate, we use the significance level of 
the maximal observed test statistics. Although these two approaches are equivalent 
(Romano and Wolf 1987), the latter simplifies the analytical study of the adjustment 
process.  
Clinicians usually test the hypotheses for a few primary endpoints and do not adjust the 
p-values for many of the potentially important effects. Mathematically, this means that 
the hypotheses are tested based on the marginal probabilities of some primary endpoints 
and are averaged over the values of the other effects. As a result, the p-values adjustment 
approach might overlook hidden dependencies among the primary endpoints. Testing 
hypotheses, using maximal test statistics for the subset of endpoints conditioned on the 
realizations of the rest of endpoints, is a simple way to draw a conclusion specific to the 
study (Lehmann and Romano 2005 page 394). 
The paper is organized as follows. Section 2 introduces relevant definitions and notation 
and presents some analytical properties of the CDFs of the maximal test statistics. These 
properties include an analytical formula for the CDF of the maximal test statistics when 
the correlations are assumed to be sufficiently small. Section 2 also provides majorizing 
inequalities on this CDF in a general case where the correlations are large. Section 3 
addresses power calculation for multiple correlated endpoints. Section 4 considers testing 
of conditional hypotheses for correlated primary endpoints. Theoretical results are 
illustrated using examples and are supported by extensive numerical studies. 
 

2. Testing Unconditional Hypotheses for Correlated Primary Endpoints  
Let iX (for 1,...,i n= ) be the ith element of an n-dimensional correlated random variable 
that follows a multivariate normal distribution with an unknown mean vector ν  and a 
known n n×  covariance matrix Σ . Let iσ be the square root of the ith diagonal entry of 
Σ . We want to test the null hypothesis of 0i iν ν≤  for all i against the alternative 
hypothesis of 0i iν ν>  for at least one i. The following transformation produces normally 

distributed random variables with mean values of 0i i iµ ν ν= −  and a correlation matrix 

{ }hlR r= : 

            0i i
i

i

XY ν
σ
−

=                              (1) 

The correlation matrix R has n(n - 1)/2 independent parameters and ones along the main 
diagonal, and R is assumed to be positive definite. By rudimentary statistics, ( )i iE Y µ= , 

2( ) 1i iE Y µ− = , and [( )( )]hl h h l lr E Y Yµ µ= − − .  

First, we examine the one-sided test. We want to test the null hypothesis 0 0{ }i
u uH H=  

that 0iµ ≤  for all i against the alternative hypothesis { }i
ua uaH H= that 0iµ >  for at 

least one i, based on the observations i iY y= . The probability of rejecting 0uH  in favor 

of uaH  is controlled by the max ii
Y  as follows. Following (Romano and Wolf 2005; 
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Lehmann and Romano 2005), we define an upper α  quantile uy α  of the random variable 

max ii
Y  to be the smallest y such that Pr(max | 0 )i ii

Y y µ α≥ = ≤ . Because uy α is a 

decreasing function in α  and continuous, Pr(max | 0 )i u ii
Y y α µ α≥ = = . Let 

(max | 0 ( 1,..., ))i i
i

y i nµ = = be a realization of  (max | 0 ( 1,..., ))i ii
Y i nµ = = . If at least 

one observation exists such that k uy y α≥  for 1 k n≤ ≤ , then 

Pr( max max )i i u
i i

Y y y α α≥ > < . Therefore, we can reject 0uH  at the nominal 

significance level α . By this method, we control the (weak) FWER under the complete 
null hypothesis (Westfall and Young 1993):  FWER = Pr{Reject at least one 0

i
uH | all 

0
i
uH are true}. 

Similarly, we define a lower α quantile ly α  such that Pr(min | 0)i li
Y y α µ α≤ = = . We 

reject 0 : 0 ( 1,.., )l iH i nµ ≥ = for all i in favor of 0 : 0 ( 1,.., )l iH i nµ ≤ =  if there exists 

at least one k  (1 )k n≤ ≤  such that k ly y α≤ . In this case, min i ki
y y≤  and 

Pr(min | 0 ( 1,..., )) Pr(min | 0 ( 1,..., ))i k i i l ii i
Y y i n Y y i nαµ µ α≤ = = ≤ ≤ = = = . Under 

the null hypothesis, the CDFs of the random variables iY  and iY−  are identical. Using 

the identity min max( )i ii i
Y Y= − , l uy yα α= − . 

Without loss of generality, we only need to focus on the upper quantile. This focus 
enables us to simplify the notations: let uy yα α≡ and 0 0uH H= .  
 
It is helpful to interpret the quantiles for the test statistics, max ii

Y , in the familiar terms 

of p-values. A usual standard of the outcome of a study that has n endpoints is the 
smallest of n one-sided p-values that are obtained from the normal test statistics. In order 
to keep the Type I error α , this p-value should be less than a “nominal”s value nα . 

When endpoints are correlated, the nominal nα can be calculated by using the upper 

quantile of max ii
Y  (Pocock et al. 1987. Similarly, the minimal p-value can be calculated 

by using the largest observation.  
To accomplish this objective, we compute 1 ( )n yαα = −Φ , where  ( )yΦ is the 
cumulative distribution function (CDF) of a standard normal distribution, and find the 
smallest p-value: min min{ 1 ( )}i ip p y= = −Φ .  

If min np α≤ (that is, ky yα≥ for some k), the smallest of the n one-sided p-values 
preserves an overall one-sided Type I error rate ofα .  
 

Example 1. Let 1{ }n
i iY Y =
′′ =  be an n-length vector of independent random variables that 

are generated from the standard normal distribution (with CDF ( )y′Φ ) for each 
individual element i. Let yα′ be the α quantile of max ii

Y ′ . We know that 
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Pr(max ) ( ( ))n
ii

Y y y′ ′ ′≤ = Φ  (Arnold et al. 2008). It follows that
1/( ) (1 ) 1 /ny nα α α′Φ = − ≈ −  and /n nα α≈ . The lower α quantile for independent 

observations can be calculated by using the identity Pr(min ) 1 (1 ( ))n
ii

Y y y′ ′ ′≤ = − −Φ  

 
The upper bound of the function Pr(max | 0 )i ii

Y y µ≥ =  (the lower bound of the CDF 

Pr(max | 0 )i ii
Y y µ≤ =  was studied before (Efron 1997). The following proposition 

describes the upper bound of the CDF of max ii
Y  for correlated random variables. This 

proposition enables us to compute the approximation of needed upper quantile. Let  

1{ } ~ (0, )n
i iY Y N R== , let 1{ } ~ (0, )n

i iY Y N I=
′′ = , and let [0,1]hlr ∈  be the correlation 

coefficient between the hth and lth variable for ( , 1,..., )h l n= . 
 
Proposition 1 
(a) The CDF of max ii

Y  is an increasing function of its correlation coefficients:  

{max }
0

ii

hl

P Y y

r

∂ ≤
≥

∂
 for ( )h l≠ .  

 (b) For 0hlr ≥ , the CDF of max ii
Y  can be estimated by using: 

2( ( )) {max } ( ( )) ( , ; )n n
i hl hli h l

y P Y y y r y y rϕ
<

Φ ≤ ≤ ≤ Φ +∑ ,  

where 1 2 0.5 2
2 ( , ; ) (2 ) (1 ) exp[ / (1 )]

hlhl hly y r r y rϕ p − −= − − + .  

(c) For | |hlr  that are sufficiently small, the CDF of max ii
Y can be approximated by 

2 2{max } ( ( )) ( ( )) ( ( )) (max | |)n n
i hl hli h l

P Y y y f y y r o r−

<

≤ = Φ + Φ +∑ ,  

where ( )f y is the PDF of the standard normal distribution. 
The proof is given in Appendix 1. 
  
From Proposition (1b), it follows that {max } ( ( ))n

ii
P Y y y≤ → Φ  if y →∞ (or 

equivalently 0α → ). In other words, the contribution due to the correlation coefficients 

hlr  (the summation term) is negligible. And ignoring correlation among endpoints does 
not incur loss of precision in tests that involve a very small level of α .  
 
Proposition 1 enables us to make direct comparisons between the upper quantiles   and   
for independent   and dependent random variables. First, we consider an equal level of 
significance for independent and dependent outcomes; that is, 

{max } {max } 1i ii i
P Y y P Y yα α α′ ′≤ = ≤ = − . 

From (1a), it follows that, for the corresponding quantiles, y yα α′ ≥  if all 0hlr ≥  and 

y yα α′ ≤  if all 0hlr ≤ , for ( )h l≠ .  
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When | |hlr  are sufficiently small, it follows from (1c) that y yα α′ ≥  if 0hl
h l

r
<

>∑  and 

y yα α′ ≤ if 0hl
h l

r
<

<∑ . Therefore, the adjustment for multiplicity is smaller if multiple 

endpoints are positively correlated (or have a small positive sum of correlation 
coefficients) rather than independent. 
Now, consider the case of the equal quantiles y yα α′′ = that have different significance 
levels α′  and α for independent and dependent random variables, respectively. In this 
situation, the significance level depends on the sign of the correlation: 

{max } {max }i ii i
P Y y P Y y yα α αα α′ ′′ ′ ′ ′= ≥ > ≥ = =  if 0hlr ≥  (or 0hl

h l
r

<

>∑ for sufficiently 

small | |hlr  ) and {max } {max }i ii i
P Y y P Y yαα α′ ′ ′ ′= ≥ < ≥ = if 0hlr ≤  (or 0hl

h l
r

<

<∑  for 

sufficiently small | |hlr ) .  
 
Example 2. 
Let us exemplify Proposition (1b). Let 2n = and 12 21r r r= = . Assume 0.5r =  and 

0.05α = . Then, the exact 1 2{max( , ) 1.9157} 0.95P Y Y ≤ = , 

1 2{max( , ) 1.9157} 0.9454 0.95P Y Y′ ′ ≤ = < , and 20.5 (1.9157,1.9157,0.5) 0.008ϕ = . 
Because 0.95 0.9454 0.008 0.9534< + = , condition (b) holds. Let 0.5r = −  and 

0.05α = . If 0r = , then 1 2{max( , ) 1.9545} 0.95P Y Y′ ′ ≤ = . 

1 2{max( , ) 1.9593} 0.95P Y Y ≤ =  for the correlated random variables.  Then, by 

monotonicity, 1 2{max( , ) 1.9545} 0.95P Y Y ≤ < . Therefore, condition (a) holds. 
Therefore, we have a Bonferroni’s nominal significance level is 0.025 , the exact 
nominal significance level is 0.02503  for 0.5r = − , the exact nominal significance 
level is 0.0253for 0r = , and the exact nominal significance level is 0.0277 for 

0.5r = . 
 
The formula in Proposition (1c) can be used to estimate the upper quantiles yα of the 

correlated random variables by using the upper quantiles yα′ of independent random 

variables. The upper quantiles yα′ can be calculated by using the formula 
1/( ) (1 ) nyα αΦ = −  (see Example 1).  

 
Corollary 1 
When | |hlr  are sufficiently small, the following approximations for the upper quantile of 
the correlated random variables can be used: 

1 ( ) hl
h l

y y n f y rα α α
−

<

′ ′≈ − ∑ ,                   (2a) 

( )( 1) / 2y y f y nα α α r′ ′≈ − −  if hlr r= . (2b) 
The proof is given in Appendix 2.  
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Next we briefly discuss the accuracy of formula (2b) based on numerical studies. Let eyα  

denote the exact α quantile, and let ( ) 1 ( )e ey yα αα = −Φ  denote the exact nominal 

significance level. Let ayα  denote the approximation of the α quantile from Equation (2a) 

and let ( ) 1 ( )a ay yα αα = −Φ ,  the corresponding approximate nominal significance level. 

If 0.2 0.2r− ≤ ≤  and 1,...,10n = , our numerical study shows that 

0.05 0.050 0.015a ey y≤ − ≤  and 0.05 0.050.0002 ( ) ( ) 0a ey yα α− ≤ − ≤ . Note that for 
0.2r = − , the correlation matrix is positive definite if and only if 5n ≤ , and it is 

positively semi-definite if and only if 6n = . For 0.2r > , the accuracy of formulae (2a) 
might become too imprecise to be acceptable. For example, if 0.5r =  and 1,...,10n = , 

then 0.05 0.050 0.0863a ey y≤ − ≤  and 0.05 0.050.0018 ( ) ( ) 0a ey yα α− ≤ − ≤ . Similar results 

are true for the significance level 0.025α = : if 0.2 0.2r− ≤ ≤  and 1,...,10n = , then 

0.025 0.0250 0.0075a ey y≤ − ≤  and 0.05 0.050.0001 ( ) ( ) 0a ey yα α− ≤ − ≤ . We recommend 
that the formulae be used when 0.2 0.2r− ≤ ≤ .  
Note that the approximation in (2b) consistently gives a conservative estimate of the α
quantiles. The accuracies of the approximation (2b) for 0,0.1,(0.2) 0.9r =  can be 
verified using  (Pocock  et al.  1987, Table 1; Gupta et al. 1973, 1983).  
 
The monotonicity of the CDF of max ii

Y  is demonstrated using a compound symmetry 

(CS) type of correlation matrix.  
 
Example 3. Let hlr r=  for h l≠ . The CS correlation matrices are positive definite if 
and only if 1 1 / ( 1)nr> > − − and positively semi-defined if and only if 

1 / ( 1)nr = − −  or 1r =  (Tong, 1990, p.105). Here we calculate the CDF values over a 
grid of 𝜌 and n: 𝜌 from -0.2 to 0.95 by 0.05 for n=2 to 5; and 𝜌 from -0.1 to 0.95 by 0.05 
for n = 6 to 10. If 0 1r≤ <  , the CDF can be calculated using the exact formula 

{max } ( ) ( )
1

n

ii

y xP Y y f x dxr
r

∞

−∞

 −
≤ = Φ 

− 
∫   (4) (Steck and Owen 1962; Tong 1990, 

p.115). Then the α quantile is a solution of the equation  

1 ( ) ( )
1

n
y x f x dxr

α
r

∞

−∞

 −
− = Φ 

− 
∫ . This gives the Bonferroni correction when 0r = .  

From formula (4), it follows that 
1

{max }ii n
P Y y

≤ ≤
≤ is a decreasing function of n.  

By combining the CDF with the numerical integration technique, such as Gaussian 
quadrature, we can compute the CDF rather precisely. However, the computational cost 
can potentially explode as the dimension of the problem increases. We believe that 
sampling-based Monte Carlo calculation provides an adequate level of precision in most 
scenarios. We draw a large number (10 million) of samples from the multivariate normal 
distribution and calculate the Monte Carlo expectation of the CDF function for every 
combination of 𝜌 and n. The results are shown in Figure 1 where the smoothness of the 
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lines indicate that yα  is an increasing function of n and that a corresponding nominal 
significance level is a decreasing function of n. 
 

 
Figure 1. A monotone behavior of the quantile yα  as a function of the number of 
correlated observations n and correlation r . 
  

3.  Power  
This section illustrates how to estimate power in correlated outcomes. Let β  be the 
probability of a Type II error and 1 β−  is the power. We consider a clinically important 
effect 0 0 ( 1,..., )i i nµ > =  for each primary endpoint. A number of definitions of power 
have been proposed in multiple testing scenarios (Westfall and Young 1993, p. 205—
206). Here, we restrict ourselves to the adjusted power the minimal or disjunctive power 
(Senn and Bretz 2007;  de Micheaux 2014). The adjusted power is the minimal 
probability of rejecting 0H  over the set of all alternatives 01 0( , ..., )nµ µ µ=  (Westfall 
and Young 1993, p. 205—206; Romano and Wolf 2005, p. 320). Therefore, the 
maximum Type II error over the set of alternatives is {max }ii

P Z yαβ = ≤ , where 

1{Z } ~ ( , )n
i iZ N Rµ== . Consider the special case where 0 0( 1,..., )i i nµ µ= = . Then 

0{max } {max }i ii i
P Z y P Y yα α µ≤ = ≤ − , where 1{ } ~ (0, )n

i iY Y N R== . The correlation 

values are small, so we can calculate the Type II error by using the formula in 
Proposition (1c): 
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0 0

1 2 2
0 0

{max } ( ( ))

(2 ) exp( ( ) )( ( )) (max | |)

n
ii

n
hl hl

h l

P Y y y

y y r o r

α α

α α

β µ µ

p µ µ− −

<

= ≤ − = Φ −

+ − − Φ − +∑
 

If 0hl
h l

r
<

=∑ , 0( ( ))nyαβ µ≈ Φ −  and 0( ( ))nyαβ µ= Φ − is the adjusted Type II error 

for independent multiple hypotheses (Westfall and Young 1993, p. 206). We also note 
that the Type II error is a monotone decreasing function of . 

 
4.  Conditional Hypotheses Testing for Correlated Primary Endpoints 

This section discusses approaches in conditional testing, where a hypothesis on a subset 
of endpoints is conditioned on the rest of endpoints. Let iY  ( {1,..., }i I n∈ ⊂ ) be a 
vector of length k of normalized primary endpoints. We are testing a null hypothesis  of

0iµ ≤  versus the alternative of 0iµ >  for at least one {1,..., }i I n∈ ⊂ . The number of 

endpoints that are in the hypothesis is k n< , or 1{ ,..., } {1,..., }kI i i n= ≠ .   
Two approaches have been suggested to test this type of hypothesis (Lehmann and 
Romano 2005, p. 394). One is a marginal test, which ignores unrelated variables and uses 
the marginal correlation matrix R (of dimension k) of interests in testing; the other is a 
conditional approach that conditions on the unrelated endpoints. “If the overall 
experiment will be performed many times, for example in an industrial or agricultural 
setting, the average performance may be the principal feature of interest, and an 
unconditional probability suitable” (Lehmann and Romano 2005, p. 394).The average 
performance is tested by the marginal probability distribution for ( )iY i I∈  with the 

correlation matrix ,{ }hl h l IR r ∈= . “However, if repetitions refer to different clients, or are 
potential rather than actual, interest will focus on the particular event at hand, and 
conditional probability seems more appropriate.” (Lehmann and Romano 2005, p. 394). 
In clinical settings, this largely is driven by the fact that exact conditions are not often 
repeatable with small number of trials and it becomes difficult to justify the averaging 
over of other events. 
  We define a conditional upper α  quantile yα of the random variable max ii I

Y
∈

 as a value

y such that Pr(max | 0 ( ); , ( ))i i j ji I
Y y i I y j Iµ µ α

∈
≥ = ∈ ∉ = . Therefore, the 

conditional probability of erroneously rejecting the null hypothesis 0 : 0 ( )iH i Iµ ≤ ∈  is 
α . Because the order of the random variable is irrelevant, without loss of generality, we 
assume the first k variables are of interest. Let 1( ,..., )nY Y Y ′=  and 1( ,..., )nµ µ µ ′= . 

They can be partitioned into 1 1 2 1( ,..., ) , ( ,..., )k k nY Y Y Y Y Y+′ ′= =   and 

1 1 2 1( ,..., ) , ( ,..., )k k nµ µ µ µ µ µ+′ ′= = . The correlation matrix { }hlR r=  can be block-

partitioned into 11 12

21 22

R R
R

R R
 

=  
 

, where 11 { }( , )hlR r h l k= ≤ . The conditional 

distribution 1 2 2| ( )Y Y y=  is a multivariate normal distribution with the mean vector cµ  

and correlation matrix cR  (Tong 1990, p. 34): 
  

0µ
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1
11 12 22 21cR R R R R−= − ,      

1
1 12 22 2 2( )c R R yµ µ µ−= − − .   

The following examples compare the marginal and conditional estimates of the 0.05 
quantile and the corresponding nominal significance levels. 
 
Example 4. Consider a randomized, double-blind crossover trial of an inhaled active 
drug versus a placebo, with a detailed description found in (Pocock et al. 1987). Each 
patient received the active drug and placebo for consecutive four-week periods in a 
random order. Respiratory functioning was measured at the end of both treatment 
periods. The measurements were the peak expiratory flow rate (PEFR), forced expiratory 
volume (FEV1), forced vital capacity (FVC), and penetration index (PI). The correlation 
matrix for these four measures is shown in Table 1. The hypothesis tested was mean 
improvement on the active drug. Therefore, we use the one-sided significance test.  
Table 1. Correlations among the following respiratory functioning measures: expiratory 
flow rate (PEFR), forced expiratory volume (FEV1), forced vital capacity (FVC), and 
penetration index (PI). 

FEV1 FVC PEFR PI 
  1 0.095 0.219 -0.162 

0.095 1 0.518 -0.059 
0.219 0.518 1 0.513 

-0.162 -0.059 0.513 1 
 
The PI measurement, which is the ratio of recorded activities between a peripheral and a 
central lung zone, is difficult to evaluate precisely. “Calculation of PI can be greatly 
influenced by minor misalignment of regions of interest. This makes it extremely difficult 
to compare results from different investigators (Bisgaard et al. 2001 p. 194).” In order to 
achieve a comparable test on the treatment effect, it is desirable to construct either a 
marginal test (which integrates out PI) or a conditional test (which conditions on the PI 
measurements). The marginal test is easy to construct, in a multivariate normal case. The 
average state of respiratory functioning is represented by the joint multivariate normal 
distribution for PEFR, FEV1, and FVC. The marginal correlation matrix for these three 
variables can be directly read from Table 1, by removing the column and row for the PI 
variable. In this case, we can compute the exact 0.05 quantile (which is 2.0923) and the 
nominal significance level (which is 0.0182nα = ). Using the approximation formula 

(2a), we calculate the 0.05 quantile 0.05 2.10954 y ≈ and the nominal significance level of 

0.0174 nα ≈ . The latter is more conservative than the exact value. We can also 
construct a conditional test that uses the conditional correlation matrix, which is 
presented in Table 2.  
Table 2. Correlations among the following respiratory functioning measures conditioned 
on the penetration index (PI): expiratory flow rate (PEFR), forced expiratory volume 
(FEV1), and forced vital capacity (FVC). 

FEV1 FVC PEFR 
1 0.0867 0.3566 

0.0867 1 0.6398 
0.3566 0.6398 1 
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For simplicity purpose, we assume that the mean value of PI is approximately equal to 
the observed value of PI. Otherwise, we can nullify the conditional mean value by a 
translation transformation. The conditional 0.05 quantile is 2.07426, and the nominal 
significance level is 0.019. Although these estimates are more liberal than the marginal 
results, both tests demonstrate significance of the treatment effect, measured on a reduced 
dimension of outcomes. By calculating the conditional significance level for a variety of 
PIs, an investigator could evaluate the robustness of the study results  
 
Example 5. Lix et al. (2008) reported a study on inflammatory bowel disease. The 
objective was to assess patients’ quality of life and psychological functioning in relation 
to patterns of the disease activity over time. A number of negative psychological 
functioning covariates (distress, perceived stress, health anxiety, pain anxiety, and pain 
catastrophizing) and positive psychological functioning covariates (social support, well-
being, and mastery) were considered. The study reported eleven outcomes: inflammatory 
bowel disease questionnaire (IBDQ), mental health component (SF-36M), physical health 
component (SF-36P), distress, stress, and health anxiety questionnaire (HAQ), pain 
anxiety symptom scale (PASS), pain catastrophizing (Catast); social support (Soc Sup), 
psychological well-being (PWB), and mastery (Mast). The 11×11 correlation matrix is 
shown in Table 3.   
Table 3. Correlations between the characteristics of inflammatory bowel disease and the 
quality-of-life parameters. The data were collected on the following 11 outcomes: IBDQ, 
SF-36M, SF-36P, distress, stress, HAQ, PASS, Catast, Soc Sup, PWB, and Mast. 
IBDQ SF-36M SF-36P Distress Stress HAQ PASS Catast Soc Sup PWB Mast 

1 0.32 0.18 -0.64 -0.56 -0.56 -0.42 -0.13 0.22 0.52 0.38 
0.32 1 -0.48 -0.46 -0.44 -0.34 -0.35 -0.17 0.09 0.25 0.25 
0.18 -0.48 1 -0.03 -0.01 -0.01 -0.03 0.17 0.09 0.18 0.12 

-0.64 -0.46 -0.03 1 0.69 0.57 0.48 0.11 -0.3 -0.71 -0.51 
-0.56 -0.44 -0.01 0.69 1 0.54 0.42 0.03 -0.33 -0.63 -0.56 
-0.56 -0.34 -0.01 0.57 0.54 1 0.55 0.16 -0.13 -0.44 -0.34 
-0.42 -0.35 -0.03 0.48 0.42 0.55 1 0.21 -0.09 -0.37 -0.36 
-0.13 -0.17 0.17 0.11 0.03 0.16 0.21 1 0.04 0.03 -0.01 
0.22 0.09 0.09 -0.3 -0.33 -0.13 -0.09 0.04 1 0.31 0.26 
0.52 0.25 0.18 -0.71 -0.63 -0.44 -0.37 0.03 0.31 1 0.53 
0.38 0.25 0.12 -0.51 -0.56 -0.34 -0.36 -0.01 0.26 0.53 1 

 
 
We use three variables (SF-36, SF-36P, and PWB) as the primary characteristics of well-
being. The average state of well-being is presented by the marginal normal distribution, 
and the corresponding 3×3 correlation matrix are cell entries in Table 3 that are indexed 
by variables SF-36M, SF-36P, and PWB. The 0.05 quantile of this three-dimensional 
marginal distribution is 2.1130, and the nominal significance level is 0.0173nα = . In this 
case, the conditional test is more appropriate for studying the improvement of well-being 
with respect to different aspects of psychological functioning. The correlation matrix for 
the three primary endpoints, conditioned on the remaining eight aspects of psychological 
functioning, is shown in Table 4.  
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Table 4. Conditional correlations between the primary characteristics of well-being, 
conditioned on the eight secondary variables.  
SF-36M SF-36P PWB 

1 -0.5686 -0.1585 
-0.5686 1 0.1809 
-0.1585 0.1809 1 

 
 
If the mean values of the IBDQ, Distress, Stress, HAQ, PASS, Catast, Soc Sup, and Mast 
variables are approximately equal to the observed values, then the 0.05 conditional 
quantile estimate is 2.121 and the nominal conditional significance level is 0.0169α = . 
The unconditional and conditional estimates of the nominal significance level are very 
close. This example illustrates the argument that using high-dimensional correlation 
models might not be much more advantageous than using concise models with properly 
chosen primary variables. 
 

5. Conclusion   
After studying the problem of testing statistical hypotheses for correlated multivariate 
normal endpoints, we propose that the maximum value of a sample of correlated random 
variables be used to calculate the nominal significance level at which the smallest one-
sided p-value preserves an overall one-sided Type I error. When the random variables 
exhibit a low level of correlation, we obtained an analytical expression for the CDF of the 
maximum of multiple correlated variables. This CDF formula enables precise estimation 
for the quantile of the maximum in question. When the correlations are considered to be 
more pronounced, we provide an analytical expression for the lower and upper limits on 
CDF of the maximum of multiple correlated variables. This proposed approach allows for 
extension to power calculation in addition to multivariate conditional testing.  We use 
studies reported in the literature to illustrate our approach. Overall, we believe that this 
approach provides a practical solution to the multiple comparisons adjustment in 
correlated outcomes and can be considered as a viable alternative to existing approaches. 
 
Disclaimer. No official support or endorsement of this article by the Food and Drug 
Administration is intended or should be inferred. 
 
Appendix 1 
Here we present proofs for various parts of Proposition 1. We adapted the approach 
presented in (Slepian 1962) ; Berman 1964) and directly used some of the results by these 
authors. Let 1( ,..., ;{ })n n hlz z rϕ be the n-dimensional Gaussian density function with 

mean vector 0 and covariance matrix { | , 1,..., }hlR r h l n= = . Let 

1
1

( , ) ... ( ,..., ; )
ny y

n n n i
i

Q y R z z R dzϕ
−∞ −∞

=

= ∏∫ ∫ . It was shown that nQ  is an increasing 

function of hlr  (Slepian 1962,; Berman 1964). In addition, 

1
,

( , ) / ... ( ,..., ,..., ,..., ; ) 0
ny y

n hl n h l n i
i h i l

Q y R r z z y z y z R dzϕ
−∞ −∞

≠ ≠

∂ ∂ = = = ≥∏∫ ∫ . (A.1)                         

Under the null hypothesis, {max } ( , )i ni
P Y y Q y R≤ = and {max } ( , )i ni

P Y y Q y R′≤ = .  

Because of (A.1), Proposition (1a) follows. 
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Let us replace the upper limit of integration in the (n-2)-fold integral in equation (A.1) of 

( , ) /n hlQ y R r∂ ∂  by ( ,..., )∞ ∞ . Then, 

2
,

( , ) / ... (.) ( , ; )
n

n hl n i hl
i h i l

Q y R r dz y y rϕ ϕ
∞ ∞

−∞ −∞
≠ ≠

∂ ∂ ≤ =∏∫ ∫  (Berman 1964). By 

monotonicity of 2 ( , , )hly y rϕ  as a function of 0hlr ≥ , 2( ,{ }) / ( , , )n ij hl hlQ y r r y y rϕ′′ ′′∂ ∂ ≤  

and 2 2( , , ) ( , , )hl hly y r y y rϕ ϕ′′ ≤ if hl hlr r′′ ≤ . By the law of the mean, 

( , ) ( , ) ( ,{ } ) /n n hl n ij i j hl
h l

Q y R Q y I r Q y r r<
<

′′= + ∂ ∂∑  for some { }ijr′′ . This proves 

Proposition (1b). 

By (A.1) ( ) 2
1 2 ( 2)/2 2( ,{0 } ) / (2 ) exp( )(2 ) exp( / 2)

nyn
n ij i j hlQ y r y z dzp p

−
− − −

< −∞
∂ ∂ = − −∫ . 

This proves Proposition (1c). 
 

Appendix 2  
Here we provide proof to Corollary 1. Let yα′  and yα be the α  quantiles for the 
uncorrelated and correlated observations, respectively. Let y y yα α′∆ = − . By definition, 

( ( )) 1nyα α′Φ = −  and {max } 1ii
P Y yα α≤ = − .  From Proposition (1c), it follows that 

 2 2{max } ( ( )) ( ( )) ( ( )) (max | |)n n
i hl hli h l

P Y y y f y y r o rα α α α
−

<

≤ = Φ + Φ +∑ . Then 

2 2

1 1 ( ( )) ( ( ))

( ( )) ( ( )) (max | |) ( )

n n

n
hl hl

h l

y y
f y y r o r o y

α α

α α

α α
−

<

′− = − + Φ − Φ +

Φ + + ∆∑  

and 2 2( ( )) ( ( )) ( ( )) ( ( )) (max | |)n n n
hl hl

h l
y y f y y r o rα α α α

−

<

′Φ − Φ = Φ +∑ . 

And it follows that 
( ( )) ( ( )) ( ( )) / ( )n n ny y y y y o yα α α′ ′Φ = Φ − ∆ ∂ Φ ∂ + ∆ , where 

1( ( )) / ( ( )) ( )n ny y n y f yα α α
−′ ′ ′∂ Φ ∂ = Φ and ( )f yα′ is a Gaussian PDF. Thus,  
1

2 2

1 1 ( ( )) ( )

( ( )) ( ( )) (max | |) ( )

n

n
hl hl

h l

yn y f y
f y y r o r o y

α αα α −

−

<

′ ′− = − − ∆ Φ +

Φ + + ∆∑  

Because the functions in this expression are smooth and restricted in  yα′  , we can 
assume that (max | |).hly O r∆ =   Therefore, 

2 2 2 2 2( ( )) ( ( )) ( ( )) ( ( )) (max | | )n n
hl hl hl

h l h l
f y y r f y y r o rα α α α

− −

< <

′ ′Φ = Φ +∑ ∑ . Finally, we 

get 1 1( ( ))( ( )) (max | |) ( )hl hl
h l

y n f y y r o r o yα α
− −

<

′ ′∆ = Φ + + ∆∑ . Considering that 

( ) 1 /y nα α′Φ ≈ −  whenα  is small, we get 
1( ( )) (max | |) ( ) ( )hl hl

h l
y n f y r o r o y oα α−

<

′∆ = + + ∆ +∑ . If hlr r= , it follows that 

( )( 1) / 2 (max | |) ( ) ( )hly f y n o r o y oα r α′∆ = − + + ∆ + . 
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Appendix 3 
Here we verify the precision of the approximation of the formula (1b) in Proposition 1. 

We use the representation 
2 2(1 )/ 1 (1 )/ 1

/2 /2 /2
z zz

x x x

z

e dx e dx e dx
r r r r− − − −

− − −

−∞ −∞

= +∫ ∫ ∫ . For small 

r , the two expressions are equal up to ( )o r : 
2

2
(1 )/ 1

/2 /21 zy
z x

z

e e dzdx
r r

p

− −
− −

−∞
∫ ∫  and 

1 2 0.5 2
2 ( , ; ) (2 ) (1 ) exp[ / (1 )]y y yrϕ r r p r r− −= − − + . 
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Statistical analysis of commonly occurring clinical trials that have correlated primary endpoints are often complex because multiple comparison adjustments are necessary. In practice, most statisticians resort to numerical simulation, even though such approaches can be computationally demanding and are often restricted to specific scenarios. The paper provides analytical solutions to one-sided multiple comparisons adjustment for mean values of multivariate normal data that have known positive definite covariance matrices. We use the maximum of test statistics to control the familywise error rate (FWER). This approach is equivalent to adjusting the minimum p-value but is simple to use and enables analytical evaluation. We derive a formula for the cumulative probability functions (CDFs) of the maximal test statistics when the correlations are known to be sufficiently small. When this assumption cannot be justified, we provide majorizing inequalities for the CDFs of the maximal test statistics. In addition, we address calculation of power and testing of conditional hypotheses for correlated primary endpoints. Theoretical results are illustrated by examples and are supported by extensive numerical studies.
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1. Introduction

In clinical trials, many variables can be measured during or after a treatment. A small number of these response variables, known as endpoints, are of primary importance and often define the success or failure of a study. Studies of correlated multiple endpoints can often reveal meaningful insights to complex problems, such as cases in which researchers cannot clearly identify outcomes that are primarily linked to a treatment, or cases in which a treatment might have multiple clinically important outcomes and requires a better method to evaluate the effect of the treatment. Statistical analysis of such studies can be complicated due to the necessary multiple comparisons adjustments. Numerous publications have addressed the multiple testing problem (Armitage and Parmar 1986; Pocock  et al. 1987; James 1991; D’Agostino et al. 1993;  Westfall and Young 1993; Zhang et al.1997; Sankoh et.al. 2003; Lix and Sajobi 2010; Bretz et al. 2010; Dmitrienko et al. 2010; Westfall et al. 2011; Phillipset al. 2013; Huque et al. 2013; Permutt 2013; Chunpeng and Zhang 2013). Much of the focus concentrates on multivariate Gaussian outcomes that are positively correlated. For example, (Dubey 1985; Pocock et al. 1987)  generated detailed tables for adjustments of nominal significance levels for positively equicorrelated observations. The nominal significance level is the largest number at which the smallest of n (the dimension of the outcomes) one-sided p-values preserves an overall one-sided Type I error. Heuristic adjustment formulae (Armitage and Parmar1986;  James1991; Dubey 1985; Shi et al. 2012; Julious and McIntyre 2012) for the type I and II errors have been advocated. Zaslavsky and Scott (2012) derived asymptotic formulae for very large numbers of endpoints. Although positive correlations are common in trials, negatively correlated multiple endpoints have their own importance. For example, studies reveal that neurotic hostility (scored by the Buss-Durkee hostility inventory (Siegman et al. 1987)) is inversely associated with the severity of angiographically documented coronary artery disease, whereas nonneurotic hostility scores were positively related with the extent of disease (Siegman et al. 1987. In this paper, we consider multivariate Gaussian endpoints without restrictions on the sign of the correlations, given the covariance matrix is nonnegative definite. Instead of adjusting the minimal p -values to control the family-wise error rate, we use the significance level of the maximal observed test statistics. Although these two approaches are equivalent (Romano and Wolf 1987), the latter simplifies the analytical study of the adjustment process. 

Clinicians usually test the hypotheses for a few primary endpoints and do not adjust the p-values for many of the potentially important effects. Mathematically, this means that the hypotheses are tested based on the marginal probabilities of some primary endpoints and are averaged over the values of the other effects. As a result, the p-values adjustment approach might overlook hidden dependencies among the primary endpoints. Testing hypotheses, using maximal test statistics for the subset of endpoints conditioned on the realizations of the rest of endpoints, is a simple way to draw a conclusion specific to the study (Lehmann and Romano 2005 page 394).

The paper is organized as follows. Section 2 introduces relevant definitions and notation and presents some analytical properties of the CDFs of the maximal test statistics. These properties include an analytical formula for the CDF of the maximal test statistics when the correlations are assumed to be sufficiently small. Section 2 also provides majorizing inequalities on this CDF in a general case where the correlations are large. Section 3 addresses power calculation for multiple correlated endpoints. Section 4 considers testing of conditional hypotheses for correlated primary endpoints. Theoretical results are illustrated using examples and are supported by extensive numerical studies.



2. Testing Unconditional Hypotheses for Correlated Primary Endpoints 























Let (for ) be the ith element of an n-dimensional correlated random variable that follows a multivariate normal distribution with an unknown mean vector  and a known  covariance matrix . Let be the square root of the ith diagonal entry of . We want to test the null hypothesis of  for all i against the alternative hypothesis of  for at least one i. The following transformation produces normally distributed random variables with mean values of  and a correlation matrix :



                                         (1)







The correlation matrix R has n(n - 1)/2 independent parameters and ones along the main diagonal, and R is assumed to be positive definite. By rudimentary statistics, , , and . 



















































First, we examine the one-sided test. We want to test the null hypothesis  that  for all i against the alternative hypothesis that  for at least one i, based on the observations. The probability of rejecting  in favor of  is controlled by the  as follows. Following (Romano and Wolf 2005; Lehmann and Romano 2005), we define an upper  quantile  of the random variable  to be the smallest such that . Because is a decreasing function in  and continuous, . Let be a realization of  . If at least one observation exists such that for , then . Therefore, we can reject  at the nominal significance level . By this method, we control the (weak) FWER under the complete null hypothesis (Westfall and Young 1993):  FWER = Pr{Reject at least one | all are true}.





























Similarly, we define a lower quantile such that . We reject for all i in favor of  if there exists at least one   such that. In this case,  and . Under the null hypothesis, the CDFs of the random variables  and  are identical. Using the identity, .





Without loss of generality, we only need to focus on the upper quantile. This focus enables us to simplify the notations: letand . 













It is helpful to interpret the quantiles for the test statistics, , in the familiar terms of p-values. A usual standard of the outcome of a study that has n endpoints is the smallest of n one-sided p-values that are obtained from the normal test statistics. In order to keep the Type I error , this p-value should be less than a “nominal”s value . When endpoints are correlated, the nominal can be calculated by using the upper quantile of  (Pocock et al. 1987. Similarly, the minimal p-value can be calculated by using the largest observation. 







To accomplish this objective, we compute , where  is the cumulative distribution function (CDF) of a standard normal distribution, and find the smallest p-value: . 







If (that is, for some k), the smallest of the n one-sided p-values preserves an overall one-sided Type I error rate of. 























Example 1. Let be an n-length vector of independent random variables that are generated from the standard normal distribution (with CDF ) for each individual element i. Let be the quantile of . We know that  (Arnold et al. 2008). It follows that and . The lower quantile for independent observations can be calculated by using the identity 

















The upper bound of the function  (the lower bound of the CDF  was studied before (Efron 1997). The following proposition describes the upper bound of the CDF of for correlated random variables. This proposition enables us to compute the approximation of needed upper quantile. Let  , let , and let  be the correlation coefficient between the hth and lth variable for .



Proposition 1



(a) The CDF of  is an increasing function of its correlation coefficients: 





 for . 





 (b) For , the CDF of  can be estimated by using:



, 



where . 





(c) For  that are sufficiently small, the CDF of can be approximated by



, 



where is the PDF of the standard normal distribution.

The proof is given in Appendix 1.

 











From Proposition (1b), it follows that  if (or equivalently ). In other words, the contribution due to the correlation coefficients  (the summation term) is negligible. And ignoring correlation among endpoints does not incur loss of precision in tests that involve a very small level of . 





Proposition 1 enables us to make direct comparisons between the upper quantiles   and   for independent   and dependent random variables. First, we consider an equal level of significance for independent and dependent outcomes; that is, .











From (1a), it follows that, for the corresponding quantiles,  if all  and  if all , for . 











When  are sufficiently small, it follows from (1c) that  if  and if . Therefore, the adjustment for multiplicity is smaller if multiple endpoints are positively correlated (or have a small positive sum of correlation coefficients) rather than independent.























Now, consider the case of the equal quantiles that have different significance levels  and for independent and dependent random variables, respectively. In this situation, the significance level depends on the sign of the correlation:  if  (orfor sufficiently small  ) and if  (or  for sufficiently small ) . 



Example 2.

























Let us exemplify Proposition (1b). Let and . Assume and . Then, the exact, , and . Because , condition (b) holds. Let  and . If , then .



















 for the correlated random variables.  Then, by monotonicity,. Therefore, condition (a) holds. Therefore, we have a Bonferroni’s nominal significance level is , the exact nominal significance level is for , the exact nominal significance level is for , and the exact nominal significance level is for .











The formula in Proposition (1c) can be used to estimate the upper quantilesof the correlated random variables by using the upper quantiles of independent random variables. The upper quantiles can be calculated by using the formula  (see Example 1). 



Corollary 1



When  are sufficiently small, the following approximations for the upper quantile of the correlated random variables can be used:



,                   (2a)





 if . (2b)

The proof is given in Appendix 2. 



















































Next we briefly discuss the accuracy of formula (2b) based on numerical studies. Let denote the exact quantile, and let  denote the exact nominal significance level. Let denote the approximation of the quantile from Equation (2a) and let ,  the corresponding approximate nominal significance level. If  and , our numerical study shows that  and . Note that for , the correlation matrix is positive definite if and only if , and it is positively semi-definite if and only if . For , the accuracy of formulae (2a) might become too imprecise to be acceptable. For example, if  and , then  and . Similar results are true for the significance level : if  and , then  and . We recommend that the formulae be used when . 





Note that the approximation in (2b) consistently gives a conservative estimate of the quantiles. The accuracies of the approximation (2b) for  can be verified using  (Pocock  et al.  1987, Table 1; Gupta et al. 1973, 1983). 





The monotonicity of the CDF of  is demonstrated using a compound symmetry (CS) type of correlation matrix. 





















Example 3. Let  for . The CS correlation matrices are positive definite if and only if and positively semi-defined if and only if  or  (Tong, 1990, p.105). Here we calculate the CDF values over a grid of  and n:  from -0.2 to 0.95 by 0.05 for n=2 to 5; and  from -0.1 to 0.95 by 0.05 for n = 6 to 10. If  , the CDF can be calculated using the exact formula   (4) (Steck and Owen 1962; Tong 1990, p.115). Then the α quantile is a solution of the equation  . This gives the Bonferroni correction when . 



From formula (4), it follows that is a decreasing function of n. 



By combining the CDF with the numerical integration technique, such as Gaussian quadrature, we can compute the CDF rather precisely. However, the computational cost can potentially explode as the dimension of the problem increases. We believe that sampling-based Monte Carlo calculation provides an adequate level of precision in most scenarios. We draw a large number (10 million) of samples from the multivariate normal distribution and calculate the Monte Carlo expectation of the CDF function for every combination of  and n. The results are shown in Figure 1 where the smoothness of the lines indicate that is an increasing function of n and that a corresponding nominal significance level is a decreasing function of n.



[image: ]





Figure 1. A monotone behavior of the quantile  as a function of the number of correlated observations n and correlation .

 

3.  Power 





















This section illustrates how to estimate power in correlated outcomes. Let  be the probability of a Type II error and  is the power. We consider a clinically important effect for each primary endpoint. A number of definitions of power have been proposed in multiple testing scenarios (Westfall and Young 1993, p. 205—206). Here, we restrict ourselves to the adjusted power the minimal or disjunctive power (Senn and Bretz 2007;  de Micheaux 2014). The adjusted power is the minimal probability of rejecting  over the set of all alternatives  (Westfall and Young 1993, p. 205—206; Romano and Wolf 2005, p. 320). Therefore, the maximum Type II error over the set of alternatives is, where . Consider the special case where. Then , where . The correlation values are small, so we can calculate the Type II error by using the formula in Proposition (1c):











If ,  and is the adjusted Type II error for independent multiple hypotheses (Westfall and Young 1993, p. 206). We also note that the Type II error is a monotone decreasing function of [image: ].



4.  Conditional Hypotheses Testing for Correlated Primary Endpoints















This section discusses approaches in conditional testing, where a hypothesis on a subset of endpoints is conditioned on the rest of endpoints. Let  () be a vector of length k of normalized primary endpoints. We are testing a null hypothesis  of versus the alternative of  for at least one . The number of endpoints that are in the hypothesis is, or .  





Two approaches have been suggested to test this type of hypothesis (Lehmann and Romano 2005, p. 394). One is a marginal test, which ignores unrelated variables and uses the marginal correlation matrix R (of dimension k) of interests in testing; the other is a conditional approach that conditions on the unrelated endpoints. “If the overall experiment will be performed many times, for example in an industrial or agricultural setting, the average performance may be the principal feature of interest, and an unconditional probability suitable” (Lehmann and Romano 2005, p. 394).The average performance is tested by the marginal probability distribution for  with the correlation matrix . “However, if repetitions refer to different clients, or are potential rather than actual, interest will focus on the particular event at hand, and conditional probability seems more appropriate.” (Lehmann and Romano 2005, p. 394). In clinical settings, this largely is driven by the fact that exact conditions are not often repeatable with small number of trials and it becomes difficult to justify the averaging over of other events.



































  We define a conditional upper  quantile of the random variable  as a valuesuch that . Therefore, the conditional probability of erroneously rejecting the null hypothesis  is . Because the order of the random variable is irrelevant, without loss of generality, we assume the first k variables are of interest. Let  and . They can be partitioned into   and . The correlation matrix  can be block-partitioned into, where . The conditional distribution  is a multivariate normal distribution with the mean vector  and correlation matrix  (Tong 1990, p. 34):

 



,     



.  

The following examples compare the marginal and conditional estimates of the 0.05 quantile and the corresponding nominal significance levels.



Example 4. Consider a randomized, double-blind crossover trial of an inhaled active drug versus a placebo, with a detailed description found in (Pocock et al. 1987). Each patient received the active drug and placebo for consecutive four-week periods in a random order. Respiratory functioning was measured at the end of both treatment periods. The measurements were the peak expiratory flow rate (PEFR), forced expiratory volume (FEV1), forced vital capacity (FVC), and penetration index (PI). The correlation matrix for these four measures is shown in Table 1. The hypothesis tested was mean improvement on the active drug. Therefore, we use the one-sided significance test. 

Table 1. Correlations among the following respiratory functioning measures: expiratory flow rate (PEFR), forced expiratory volume (FEV1), forced vital capacity (FVC), and penetration index (PI).

		FEV1

		FVC

		PEFR

		PI



		  1

		0.095

		0.219

		-0.162



		0.095

		1

		0.518

		-0.059



		0.219

		0.518

		1

		0.513



		-0.162

		-0.059

		0.513

		1













The PI measurement, which is the ratio of recorded activities between a peripheral and a central lung zone, is difficult to evaluate precisely. “Calculation of PI can be greatly influenced by minor misalignment of regions of interest. This makes it extremely difficult to compare results from different investigators (Bisgaard et al. 2001 p. 194).” In order to achieve a comparable test on the treatment effect, it is desirable to construct either a marginal test (which integrates out PI) or a conditional test (which conditions on the PI measurements). The marginal test is easy to construct, in a multivariate normal case. The average state of respiratory functioning is represented by the joint multivariate normal distribution for PEFR, FEV1, and FVC. The marginal correlation matrix for these three variables can be directly read from Table 1, by removing the column and row for the PI variable. In this case, we can compute the exact 0.05 quantile (which is 2.0923) and the nominal significance level (which is ). Using the approximation formula (2a), we calculate the 0.05 quantileand the nominal significance level of . The latter is more conservative than the exact value. We can also construct a conditional test that uses the conditional correlation matrix, which is presented in Table 2. 

Table 2. Correlations among the following respiratory functioning measures conditioned on the penetration index (PI): expiratory flow rate (PEFR), forced expiratory volume (FEV1), and forced vital capacity (FVC).

		FEV1

		FVC

		PEFR



		1

		0.0867

		0.3566



		0.0867

		1

		0.6398



		0.3566

		0.6398

		1







For simplicity purpose, we assume that the mean value of PI is approximately equal to the observed value of PI. Otherwise, we can nullify the conditional mean value by a translation transformation. The conditional 0.05 quantile is 2.07426, and the nominal significance level is 0.019. Although these estimates are more liberal than the marginal results, both tests demonstrate significance of the treatment effect, measured on a reduced dimension of outcomes. By calculating the conditional significance level for a variety of PIs, an investigator could evaluate the robustness of the study results 



Example 5. Lix et al. (2008) reported a study on inflammatory bowel disease. The objective was to assess patients’ quality of life and psychological functioning in relation to patterns of the disease activity over time. A number of negative psychological functioning covariates (distress, perceived stress, health anxiety, pain anxiety, and pain catastrophizing) and positive psychological functioning covariates (social support, well-being, and mastery) were considered. The study reported eleven outcomes: inflammatory bowel disease questionnaire (IBDQ), mental health component (SF-36M), physical health component (SF-36P), distress, stress, and health anxiety questionnaire (HAQ), pain anxiety symptom scale (PASS), pain catastrophizing (Catast); social support (Soc Sup), psychological well-being (PWB), and mastery (Mast). The 11×11 correlation matrix is shown in Table 3.  

Table 3. Correlations between the characteristics of inflammatory bowel disease and the quality-of-life parameters. The data were collected on the following 11 outcomes: IBDQ, SF-36M, SF-36P, distress, stress, HAQ, PASS, Catast, Soc Sup, PWB, and Mast.

		IBDQ

		SF-36M

		SF-36P

		Distress

		Stress

		HAQ

		PASS

		Catast

		Soc Sup

		PWB

		Mast



		1

		0.32

		0.18

		-0.64

		-0.56

		-0.56

		-0.42

		-0.13

		0.22

		0.52

		0.38



		0.32

		1

		-0.48

		-0.46

		-0.44

		-0.34

		-0.35

		-0.17

		0.09

		0.25

		0.25



		0.18

		-0.48

		1

		-0.03

		-0.01

		-0.01

		-0.03

		0.17

		0.09

		0.18

		0.12



		-0.64

		-0.46

		-0.03

		1

		0.69

		0.57

		0.48

		0.11

		-0.3

		-0.71

		-0.51



		-0.56

		-0.44

		-0.01

		0.69

		1

		0.54

		0.42

		0.03

		-0.33

		-0.63

		-0.56



		-0.56

		-0.34

		-0.01

		0.57

		0.54

		1

		0.55

		0.16

		-0.13

		-0.44

		-0.34



		-0.42

		-0.35

		-0.03

		0.48

		0.42

		0.55

		1

		0.21

		-0.09

		-0.37

		-0.36



		-0.13

		-0.17

		0.17

		0.11

		0.03

		0.16

		0.21

		1

		0.04

		0.03

		-0.01



		0.22

		0.09

		0.09

		-0.3

		-0.33

		-0.13

		-0.09

		0.04

		1

		0.31

		0.26



		0.52

		0.25

		0.18

		-0.71

		-0.63

		-0.44

		-0.37

		0.03

		0.31

		1

		0.53



		0.38

		0.25

		0.12

		-0.51

		-0.56

		-0.34

		-0.36

		-0.01

		0.26

		0.53

		1











We use three variables (SF-36, SF-36P, and PWB) as the primary characteristics of well-being. The average state of well-being is presented by the marginal normal distribution, and the corresponding 3×3 correlation matrix are cell entries in Table 3 that are indexed by variables SF-36M, SF-36P, and PWB. The 0.05 quantile of this three-dimensional marginal distribution is 2.1130, and the nominal significance level is. In this case, the conditional test is more appropriate for studying the improvement of well-being with respect to different aspects of psychological functioning. The correlation matrix for the three primary endpoints, conditioned on the remaining eight aspects of psychological functioning, is shown in Table 4. 

[bookmark: _GoBack]Table 4. Conditional correlations between the primary characteristics of well-being, conditioned on the eight secondary variables. 

		SF-36M

		SF-36P

		PWB



		1

		-0.5686

		-0.1585



		-0.5686

		1

		0.1809



		-0.1585

		0.1809

		1











If the mean values of the IBDQ, Distress, Stress, HAQ, PASS, Catast, Soc Sup, and Mast variables are approximately equal to the observed values, then the 0.05 conditional quantile estimate is 2.121 and the nominal conditional significance level is. The unconditional and conditional estimates of the nominal significance level are very close. This example illustrates the argument that using high-dimensional correlation models might not be much more advantageous than using concise models with properly chosen primary variables.



5. Conclusion  

After studying the problem of testing statistical hypotheses for correlated multivariate normal endpoints, we propose that the maximum value of a sample of correlated random variables be used to calculate the nominal significance level at which the smallest one-sided p-value preserves an overall one-sided Type I error. When the random variables exhibit a low level of correlation, we obtained an analytical expression for the CDF of the maximum of multiple correlated variables. This CDF formula enables precise estimation for the quantile of the maximum in question. When the correlations are considered to be more pronounced, we provide an analytical expression for the lower and upper limits on CDF of the maximum of multiple correlated variables. This proposed approach allows for extension to power calculation in addition to multivariate conditional testing.  We use studies reported in the literature to illustrate our approach. Overall, we believe that this approach provides a practical solution to the multiple comparisons adjustment in correlated outcomes and can be considered as a viable alternative to existing approaches.



Disclaimer. No official support or endorsement of this article by the Food and Drug Administration is intended or should be inferred.



Appendix 1













Here we present proofs for various parts of Proposition 1. We adapted the approach presented in (Slepian 1962) ; Berman 1964) and directly used some of the results by these authors. Let be the n-dimensional Gaussian density function with mean vector 0 and covariance matrix. Let . It was shown that  is an increasing function of  (Slepian 1962,; Berman 1964). In addition, . (A.1)                        





Under the null hypothesis, and . 

Because of (A.1), Proposition (1a) follows.























Let us replace the upper limit of integration in the (n-2)-fold integral in equation (A.1) of  by . Then,  (Berman 1964). By monotonicity of  as a function of ,  and if . By the law of the mean,  for some . This proves Proposition (1b).



By (A.1) . This proves Proposition (1c).



Appendix 2 













Here we provide proof to Corollary 1. Let  and be the  quantiles for the uncorrelated and correlated observations, respectively. Let . By definition,  and .  From Proposition (1c), it follows that



 . Then







and .

And it follows that







, where and is a Gaussian PDF. Thus, 

















Because the functions in this expression are smooth and restricted in   , we can assume that   Therefore, . Finally, we get . Considering that  when is small, we get





. If , it follows that



.



Appendix 3











Here we verify the precision of the approximation of the formula (1b) in Proposition 1. We use the representation . For small , the two expressions are equal up to :  and .
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