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Abstract 

 

Although well-controlled and conducted randomized clinical trials are viewed as gold 
standard in the safety and effectiveness evaluation of medical products, including drugs, 
biological products and medical devices, observational (non-randomized) comparative 
studies play an important role in the medical product evaluation, due to ethical or 
practical reasons, in both pre-market and post-market regulatory settings. However, 
various biases could be introduced at every stage and into every aspect of the 
observational study, and adversely impact the interpretation of the study results.  Among 
existing statistical techniques for addressing some of the bias issues, propensity score 
methodology is one increasingly used in regulatory settings, due to its unique feature of 
separating “study design” and “outcome analysis”.  In this presentation, we will focus on 
the propensity score approaches in minimizing bias in medical device studies through 
adequate study design and data analysis.   

 

1. Introduction 

Carefully designed and well-conducted randomized controlled trials (RCTs) provide the 
highest level of evidence in the safety and effectiveness evaluation of medical products. 
One of the key advantages of RCT is that with randomization, all baseline covariate 
(observed and unobserved) distributions tend to be balanced across two treatment groups, 
leading to unbiased estimation of treatment effect. Another critical feature of RCT is that 
the study is “prospectively” designed; that is, it is designed without access to any 
outcome data from either treatment group, resulting in convincing and interpretable 
treatment effect estimation on outcomes.  However, an RCT may not be feasible in some 
circumstances due to practical or ethical reasons, could be costly, or may not reflect real-
world medical practice.  Alternatively, observational (nonrandomized) comparative 
studies are playing a substantial role in device evaluations in both pre-market and post-
market settings.  The observational comparative studies could be conducted using 1) a 
concurrent (but non-randomized) control, 2) a historical control formed from patients 
with existing data collected from earlier studies of a previously approved device, or 3) a 
control extracted from a well-designed and executed registry database.  In the current 
“Big Data” era, observational comparative studies could be performed using 
administrative data, such as the Centers for Medicare and Medicaid (CMS) claims 
database, to estimate treatment effects of intervention. But, various biases could be 
introduced at every stage and into every aspect of the observational study, and adversely 
impact the interpretation of the study results. For example, while treatment assignment is 
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determined in the study design of an RCT, it is frequently based on patient characteristics 
and determined by physician judgment or patient preference in observational studies with 
concurrent controls.  This often leads to a systematic difference in the distribution of 
baseline covariates between interventional treatment group and control group, and this 
difference then result in bias in treatment effect estimation.  There may be more 
differences in baseline covariate distributions between the treatment groups in the studies 
using non-concurrent controls, due to, for example, temporal bias caused by retrospective 
use of existing data or evolution of medical practice or technology, or a difference in 
definition and adjudication of clinical outcomes.  All of these challenging issues lead to 
doubts about treatment group comparability, and hence the interpretability of study 
results and the ability of regulatory decision-making (Li & Yue, 2008).  Fortunately, 
there exist some statistical methods that could be used to address some of such 
challenges, such as regression (covariate) analysis or propensity score methodology, 
introduced by Rosenbaum and Rubin (1983, 1984).  However, these statistical methods 
can only adjust for observed confounding covariates but not for unobserved.  Also, when 
there are substantial differences in baseline covariates between two treatment groups, the 
statistical methods may not be able to reduce bias.  Therefore, minimizing bias should 
start from study design.  This presentation highlights two areas: 1) minimizing bias in 
control group selection; 2) minimizing “opportunistic bias”, described by Rubin, 2001.   

 
 

2. Minimizing Bias in Control Group Selection 

 
As in all observational comparative studies, there always exists risk that the treatment 
groups are not comparable even with concurrent control group. For example, one 
treatment group could have much sicker patients, or two treatment group patients may 
have different physiological factors.   To reduce the treatment selection bias, treatment 
group comparability should be carefully considered in control group selection.  One of 
the major concerns with using a historical control is the presence of potential temporal 
bias, due to rapidly evolving medical technology and/or learning effect of device use. For 
a historical control to be suitable for the regulatory purpose, the unexplained temporal 
bias needs to be minimal. If a control group is extracted from a national/international 
registry database, clinical comparability regrading patient population, treatment 
management, patient follow-up, definition of endpoints and clinical event adjudication 
should be thoroughly thought through.  In a case that a control group is selected from 
OUS studies, the investigation of similarity in patient population and medical practice 
across multi-regions is critical in minimizing bias.   
 
 

3. Minimizing Opportunistic Bias 

 
Opportunistic bias occurs when an observational study is designed as if it was an RCT, 
and then outcome analyses are repeatedly performed after the study is completed, with 
both covariates and outcome data in sight.  For example, Yue (2012) describes a 
premarket study with a historical control, in which, without a prospective study design, 
two fitted propensity score estimation models were submitted to the Food and Drug 
Administration (FDA): one with 10 of 35 covariates leading to a so-called “significant” 
outcome analysis result and the other with 15 covariates but “insignificant” outcome 
analysis result. As the propensity scores were estimated with both covariates and 
outcomes data in sight, it could be argued that more propensity score models had been 
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tried but results were not submitted to the FDA. Rubin (2001) points out “it is essentially 
impossible to be objective when a variety of analyses are being done, each producing an 
answer, favorable, neutral, or unfavorable to the investigator’s interests”.  He further 
(2001, 2007, and 2008) advocates that the two appealing features of RCT mentioned in 
the Introduction can and should be duplicated for designing observational comparative 
studies.  In doing so, propensity score methods, such as matching or stratification on 
propensity scores or inverse probability weighting using propensity scores,  could be used 
to design observational studies in a way analogous to the way an RCT is designed: 
without seeing any outcome data.  In regulatory settings, the outcome-free study design 
could be implemented in two stages (Yue et al, 2014). 
  
Stage I - Initial study planning by a sponsor. This design stage mimics RCT planning 
that is performed by a sponsor and begins before the investigational study starts. The 
tasks performed in this stage include, but are not limited to, control group selection, 
baseline covariate identification, sample size estimation and power consideration, and 
propensity score method(s) to be used.  In addition, some commitments need to be made: 
1) identify an independent statistician who is masked to the outcome data of treatment 
and control groups and will perform the study design in Stage II; 2) establish firewalls to 
protect outcomes of treatment and control groups from leaking; and 3) be aware that there 
may be a need to change control group if treatment group incomparability is identified at 
the design Stage II, or to increase sample size if lower study power is noticed.  

 
Stage II - Approximating RCT by the independent statistician identified in Stage I. This 
stage involves 1) developing the propensity scores model as a function of the baseline 
covariates and then estimating the propensity score for each patient; 2) checking that 
distributional balance of propensity scores between the two groups has been achieved; 3) 
assuring that the distributions of the covariates adjusted for propensity scores have been 
balanced between the two treatment groups; and 4) specifying a final statistical analysis 
plan for the treatment effect estimation with respect to clinical outcomes. This design 
stage should start as soon as all patients are enrolled, and the design should be 
accomplished by the independent statistician identified in the design Stage I, without 
access to any outcome data of either treatment group.  Based on the resulting study 
design, the treatment comparability should be assured, and sample size and power should 
be re-evaluated.  It is also critical to communicate and reach agreement with the FDA on 
the final study design at this stage.  
 

The implementation of the two-stage study design process has started taking place in 
medical device submissions. The expected benefits of such a prospective design include: 
1) avoidance of debates regarding “study design” at the final outcome analysis stage; 2) 
an increase in the integrity of study design and the creditability of study results; 3) an 
improvement in the consistency, transparency, predictability, and efficiency of regulatory 
review process; and 4) an increased flexibility regarding control group selection, sample 
size estimation and propensity score method(s) to be used.  In addition, there are savings 
in time for both sponsors and FDA: the sponsor conducts the study design at Stage II 
during the patient follow-up period, and then simply analyzes outcome data accordingly 
after study concludes, rather than designing the study as well as performing outcome 
analysis after study ends; FDA then evaluates the outcome analysis results based on 
prospectively agreed study design and therefore reduces overall review time.  Yue et al 
(2014) present a straw-man example to illustration the outcome-free study design process 
as follows.  
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The first stage design - A clinical study was proposed to demonstrate safety and 
effectiveness of a medical device through comparison to a control group to be selected 
from an existing registry. The clinical outcome variable was the success of the treatment, 
a binary outcome, and associated hypothesis was non-inferiority, with a non-inferiority 
margin set at 11%. At the first design stage, in total 15 baseline covariates that may affect 
the treatment assignment and/or the clinical outcome were identified, based on prior 
knowledge. An applicable registry was selected, and all of these key covariates and the 
endpoint information had already been planned to be collected in the registry.  It was 
anticipated that at least 500 control subjects would be available. The design and analysis 
were planned to be based on the propensity score quintiles. The sample size in the 
investigational study for the treatment group was proposed to be 250. With this sample 
size and the assumption of equal success rate, πt = πc , for the treatment and control, at a 
significance level α = 0.025, a power of about 80% could be obtained even under some 
imbalanced sample size distribution between two treatment groups across propensity 
score quintiles, such as the one exhibited in Table 1.  
 
Table 1. Power calculation at the first design stage – based on a hypothetical scenario of 
750 subjects (control: 500; treatment: 250) 

 Propensity Score Quintile (k)  

 1 2 3 4 5 Power  

nc(k) 145 130 105 90 30  
nt(k) 5 20 45 60 120 
π(k) 0.87 0.87 0.87 0.87 0.87 82.8% 
π(k) 0.85 0.86 0.87 0.88 0.89 86.7% 
π(k) 0.89 0.88 0.87 0.86 0.85 79.0% 

 
 
The second stage design – The design was conducted as soon as the enrollment of 
investigational study was completed. Based on the pre-specified inclusion/exclusion 
criteria of the investigational study, in total 1000 subjects from the registry were 
identified to be potential control subjects to be included in the study design and data 
analysis. The information of all 15 baseline covariates was available for subjects in both 
treatment and control groups.  Based on the 250 subjects in the treatment group and 1,000 
in the control, propensity scores were estimated using the logistic regression with all 15 
baseline covariates in their linear terms. Multiple models with higher order terms were 
also tried, but not much difference was noticed in the design result. Thus, the simple 
model is presented here for illustration of control group selection. Five strata with equal 
sample size (quintiles) were then formed. The distribution of subjects by treatment group 
is listed in Table 2.  It can be seen that that in the first propensity score quintile there 
were 250 control subjects but no treated subjects.  Considering that the 250 control 
subjects looked nothing like any treated subjects, they could be reasonably discarded 
from the investigational study. However, any exclusion of treated subjects should be 
discouraged in a regulatory setting, because such exclusion may change the intended 
patient population.  Propensity score re-modeling was then performed based on 250 
treated subjects and remaining 750 control subjects (see Table 3).  It is important to 
emphasize that the propensity score remodeling is valid only if the process is outcome 
free, i.e., selecting control subjects without access to any outcomes. Also, in a regulatory 
setting, an agreement with FDA on the final design is critical. Power estimation was 
examined (see Table 4) under different assumptions on success rates, all greater than 
80%.  
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Table 2. Distribution of subjects at the five propensity score quintiles – based on 1250 
subjects (control: 1000; treatment: 250) 
 

 

Propensity Score Quintile  

1 2 3 4 5 Total 

Control  250 244 234 186 86 1000 
Treatment  0 6 16 64 164 250 

 

Table 3. Distribution of subjects at the five propensity score quintiles – based on 1000 
subjects (control: 750; treatment: 250) 
 

 

Propensity Score Quintile  

1 2 3 4 5 Total 

Control  196 193 172 128 61 750 
Treatment  4 7 28 72 139 250 

 

Table 4. Power calculation at the second design stage   
 

 

 Quintile (k)  

 1 2 3 4 5 Power  

nc(k) 196 193 172 128 61  
nt(k) 4 7 28 72 139 
π(k) 0.87 0.87 0.87 0.87 0.87 86.7% 
π(k) 0.85 0.86 0.87 0.88 0.89 82.8% 
π(k) 0.89 0.88 0.87 0.86 0.85 91.1% 

 
 

4. Summary 

Minimizing bias in observational comparative clinical studies should begin in study 
design stage, particularly in control group selection and study design process. Propensity 
score methodology could help with the bias reduction, and its critical feature of 
separating study design and outcome analysis should be well utilized.  
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