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Abstract
Quadratic growth curves of 2nd degree polynomial are widely used in longitudinal studies. For

a 2nd degree polynomial, the vertex displays the location of the curve in the XY plane. Under
some models, an indirect test on the location of the vertex can be based on the intercept and slope
parameters; but in other models, a direct test on the vertex is required. In this paper, we derive
a quadratic-form statistic for a test of the null hypothesis that there is no shift in the location of
the vertex in a linear mixed model. The statistic has a large sample chi-square distribution. For
2nd degree polynomials from two independent groups, another chi-square statistic is derived for
a test that there is no difference of location between the two curves, and it is compared to an F
statistic. Power functions are presented for both the indirect F test and the direct chi-square test.
We calculate the theoretical power and propose a simulation study to investigate the power of the
tests. An analysis is also presented using the TELL efficacy longitudinal study, in which sound
identification scores for children are modeled as quadratic growth curves for two groups, TELL and
control curriculum.
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1. Introduction

Many longitudinal studies are designed to investigate a characteristic of an individual,
where the characteristic is measured repeatedly over the occasion for each study subject.
Often the individuals are considerably correlated across observations [Fitzmaurice, Laird,
and Ware, 2004]. A multivariate model with general unrestricted covariance structure may
be applied to analyze these correlated data, but the growth curve model is usually consid-
ered. The analysis of growth curves provides an explanation of within-individual variation
by the aging process or natural development. In some longitudinal studies, the relation
between the time measurement t and response y cannot be adequately described by a linear
trend model. Adding a square term of the fixed effect time t to the model gives a quadratic
growth curve model, which can often describe the true unknown model better. The coeffi-
cient parameters of the fixed effect are necessary to determine the growth curve. The vertex
of a quadratic curve provides the location of such a curve, which is interesting. For two
independent groups, such as control and treatment, difference of vertices of two quadratic
growth curves are useful to compare the locations. Both the x-coordinate and y-coordinate
of the vertex are given by a non-linear combination of the model fixed regression coef-
ficients, not simply only one of them. However, common statistical computer packages
usually display statistical inferences for the fixed regression coefficient, but not for any of
their functions.

For a one-sample study, the test of the null hypothesis of no shift in the location can be
performed indirectly with an F test on the model parameters. The location of the vertex is
a function of the model parameters, and a statistic for a direct test on the location of the
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vertex is also presented. Power calculations are performed to investigate the performance
of the indirect F test and the direct test. For a two-sample study, the null hypothesis of no
difference in the location of the vertices can sometimes be conducted with the indirect F
test, but sometimes only the direct test is available. Power calculations for comparing the
F test and direct test will also be performed for the two-sample study.

Two models, linear mixed effects models and growth curve models will be reviewed in
Chapter 2. Power functions and analysis will be derived and performed in Chapter 3 and
Chapter 4 for a one-sample quadratic growth curve and two independent samples respec-
tively. In Chapter 5, an application of analysis, TELL Efficacy Study, will be presented.
The conclusion and discussion for future research are presented in Chapter 6.

2. Linear Mixed Models and Growth Curves

A mixed model is a statistical model containing mixed effects, where the mixed effects
consist of both fixed effects and random effects. They are appropriate in settings where
repeated measurements are provided on the same individual, or where measurements are
made on clusters of related individuals. Mixed models are based on explicit identification
of individual and population characteristics; many mixed models in the literature can be
described either as growth models or as repeated-measures models. Growth-curve analyses
emphasize the explanation of within-subject variation by the natural developmental or ag-
ing process [Ware, 1985]. These analyses often compare growth characteristics for different
populations, emphasizing the contribution of experimental conditions to between-subject
variability [Laird and Ware, 1982].

A linear mixed model for longitudinal data can be expressed in matrix notation,

yi =Xiβ+Ziαi +εi, (1)

where yi is a known vector of observations for subject i, Y ′ = [y′1, · · · ,y′N ], Xi and Zi

are known model matrices of regressors for subject i relating the observations yi to β
and αi, X ′ = [X ′1, · · · ,X ′N ], β is an unknown vector of fixed effects parameters, αi is an
unknown vector of random effects with mean E(αi) = 0 and covariance Cov(αi) =G; the
covariance matrix G is usually identical for all the subjects, εi is an unknown vector of
random error terms with mean E(εi) = 0 and covariance Cov(εi) =Ri; the set of unknown
parameters in Ri do not depend on the subject i, only the dimension of Ri depends on the
subject i; αi and εi are independent, Cov(αi,εi) = 0.

Assuming αi is normally distributed with mean 0 and covariance G. The marginal
density function of the random vector yi is given by [Verbeke and Molenberghs, 2009],

f (yi) =
∫

f (yi|αi) f (αi)dαi

which is multivariate normal distributed with the dimension of time measurements n, i.e.,
the marginal model of yi is, yi ∼Nn(Xiβ,ZiGZ

′
i +Ri). When all the covariance param-

eters are known, the maximum likelihood (ML) function of θ = (β,αi)
′ is [Verbeke and

Molenberghs, 2009],

LML(θ)=
N

∏
i=1

{
(−2π)−n/2 ∣∣ZiGZ

′
i +Ri

∣∣−1/2× exp

(
n

∑
i=1

(yi−Xiβ̂ML)
′(ZiGZ

′
i +Ri)

−1(yi−Xiβ̂ML)

)}
,

where N is the sample size. The ML estimator for fixed regression coefficients and their
variance are [Laird and Ware, 1982],

β̂ML =

(
N

∑
i=1
X ′i (ZiGZ

′
i +Ri)

−1Xi

)−1( N

∑
i=1
X ′i (ZiGZ

′
i +Ri)

−1yi

)
(2)
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Σβ̂ML
=

(
N

∑
i=1
X ′i (ZiGZ

′
i +Ri)

−1Xi

)−1

. (3)

Denote ζ as the vector of variance and covariance parameters found in Ri and G. The
restricted maximum likelihood (REML) function of ζ is [Verbeke and Molenberghs, 2009],

LREML(ζ) =(2π)−(n−k)/2

∣∣∣∣∣ N

∑
i=1
X ′iXi

∣∣∣∣∣
1/2

×

∣∣∣∣∣ N

∑
i=1
X ′i (ZiGZ

′
i +Ri)

−1Xi

∣∣∣∣∣
−1/2 N

∏
i=1

∣∣ZiGZ
′
i +Ri

∣∣−1/2

× exp

{
−1

2

n

∑
i=1

(yi−Xiβ̂ML)
′(ZiGZ

′
i +Ri)

−1(yi−Xiβ̂ML)

}
.

ζ is a function of a set of error contrasts U =A′Y where A is any (n× (n− k)) full-rank
matrix with columns orthogonal to the columns of the X matrix. Then for each individual
i, the REML estimator through an empirical bayesian algorithm for the random effect and
its variance are [Laird and Ware, 1982],

α̂i(REML) =GZ
′
i(ZiGZ

′
i +Ri)

−1(yi−Xiβ̂ML) (4)

Σα̂i(REML) =GZ
′
i

{
(ZiGZ

′
i +Ri)

−1− (ZiGZ
′
i +Ri)

−1XiΣ̂β̂ML
X ′i (ZiGZ

′
i +Ri)

−1
}
ZiG,

assuming that the necessary matrix inverses exist when it is implied. For the case of less
than full rank, we could work out the relevant formulas using generalized inverses. When
the covariance matrices are unknown, the literature on the estimation of variance compo-
nents is extensive.

3. Power Analysis for One Quadratic Growth Curve

Two specific quadratic models for the growth curves from model (1) are explored, one
is a mixed model with second-order polynomial and random intercept, named the random
intercept model; the other is a mixed model with second-order polynomial and both random
intercept and random slope, named the random slope model. They are defined as follows:

Second-order mixed model with random intercept (random intercept model),

yi j = β0 +β1ti j +β2t2
i j +α0i + εi j i = 1, ...,N j = 1, ...,ni (5)

where N is the number of individuals, ni is the number of occasions for the ith individual,
β0,β1 and β2 are fixed regression coefficients, assuming β2 6= 0, α0i is random effect of the
ith individual, α0i ∼ N(0,σ2

α0
), εi j is the random error term of the ith individual at the jth

occasion, εi j ∼ N(0,σ2
e ), α0i and εi j are independent, i.e. Cov(α0i,εi j) = 0 for all i, yi j is

the response at jth occasion of ith individual, and ti j is a time measurement.
To derive the covariance structure for the random intercept model (5), the variance for

each response and the marginal covariance and correlation between any pair of responses,
yi, j and yi, j′ , are,

Var(yi j) = Var(Xi jβ+α0i + εi j) = σ
2
α0
+σ

2
e .

Cov(yi, j,yi, j′) = Cov(Xi jβ+α0i + εi j, Xi j′β+α1i + εi j′) = σ
2
α0
,

The intraclass correlation is,

ρ =Corr(yi, j,yi, j′) =
σ2

α0

σ2
α0
+σ2

e
.

Therefore the marginal covariance matrix of the repeated measurements has the following
compound symmetry pattern, Σyi = σ2

e I+σ2
α0
J .
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Second-order mixed model with random intercept and random slope (random
slope model),

yi j = β0 +β1ti j +β2t2
i j +α0i +α1iti j + εi j i = 1, ...,N j = 1, ...,ni (6)

where α0i and α1i are random effects of individual i, α0i ∼ N(0,σ2
α0
), α1i ∼ N(0,σ2

α1
) and

Cov(α0i,α1i) = σα0α1 ; εi j, β0,β1, β2, ni, N, yi j and ti j are defined the same as in model (5),
α0i, and α1i are independent of εi j, i.e. Cov(α0i,εi j) = 0 and Cov(α1i,εi j) = 0 for all i.

To derive the covariance structure for the random slope model (6), the variance of each
response, and the marginal covariance and correlation between any pair of responses, yi, j

and yi,k, are

Var(yi j) = Var(Xi jβ+Zi jαi+ εi j) = g11 +2ti jg12 + t2
i jg22 +σ

2
e ,

Cov(yi, j,yi,k)=Cov(Xi jβ+Zi jαi+εi j,Xikβ+Zikαi+εik)= g11+(ti j+tik)g12+ti jtikg22,

where Var(εi j) = σ2
e , g11 = σ2

α0
, g22 = σ2

α1
and g12 = σα0α1 ; g11 and g22 are the diagonal

elements ofG, and g12 is the off diagonal element ofG. The intraclass correlation is,

ρ =Corr(Yi, j,Yi,k) =
g11 +(ti j + tik)g12 + ti jtikg22√

g11 +2ti jg12 + t2
i jg22 +σ2

√
g11 +2tikg12 + t2

ikg22 +σ2

which is close to the unstructured covariance pattern.
For the random intercept model (5) and the random slope model (6), denote b′ =

(b0,b1,b2) as the maximum likelihood estimator (MLE) , defined in equation (2), of fixed
regression coefficients β′ = (β0,β1,β2). As proved in Section 2, under some situations
such as all the covariance parameters of random effects are known, the distribution of b
is exactly normal. More generally, such as the covariance parameters of random effects
are unknown, b is approximately normally distributed in large samples with mean β and
covariance Σb, defined in equation (3), Σb = (∑

i
X ′i Σ

−1
yi
Xi)

−1 . The corresponding esti-

mated covariance of Σb is, Σ̂b = (∑
i
X ′i Σ̂

−1
yi
Xi)

−1. Denote Ωb =
1
N (∑

i
X ′i Σ

−1
yi
Xi)

−1, then
√

N(b−β) L→ N3(0,Ωb).
Power analysis plays an important role to reject the null hypothesis if it specifies a

vertex point that is actually not the true vertex point for quadratic growth curve. Consider
the hypotheses,

H0 : V = V0 v.s. Ha : V = Va (7)

where Va is the true vertex and V0 is the hypothesized vertex point under the null hypothe-
sis. The power function of a statistical test is the probability that the test statistic falls in the
rejection region R [Kenward and Roger, 1997]. The chi-square approximation can be used
to obtain a direct method to test the hypothesis (7). The power function of the test will be
presented in Section 3.3.

An indirect method to test the hypotheses (7) would use an F statistic with respect to
β’s, since the x and y-coordinates of the vertex are nonlinear functions of β’s. Transform
the hypotheses (7) to the hypotheses with regard to β’s; the new hypotheses are stated as
follows,

H0 :
(

Vx

Vy

)
=

(
−1

2 β0,1β
−1
0,2

β0− 1
4 β 2

0,1β
−1
0,2

)
v.s.

(
Vx

Vy

)
6=

(
−1

2 β0,1β
−1
0,2

β0− 1
4 β 2

0,1β
−1
0,2

)
where Vx and Vy are the coordinates of V . Alternatively, the null hypothesis may be simply
stated as,

H0 : β = β0, (8)
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where β′0 = (β0,0,β0,1,β0,2) and V0x =−1
2 β0,1β

−1
0,2 and V0y = β0,0− 1

4 β 2
0,1β

−1
0,2 . Power func-

tions of the indirect F test will be presented in Section 3.1 and Section 3.2 for the random
intercept model (5) and the random slope model (6).

The two null hypotheses (7) and (8) are not necessarily equivalent. For the x−coordinate
of the vertex, Vx = −1

2 β1β
−1
2 ; if β2 is shifted by amount ∆, Vx can remain unchanged by

changing β1 with certain amount ∆ , i.e. the change of β2 can be offset by the change of
β1. Similarly, for the y−coordinate of the vertex, Vy = β0− 1

4 β 2
1 β
−1
2 ; if the ratio β 2

1 β
−1
2 is

shifted amount ∆, Vy can remain the same by shifting the same amount ∆ for β0, i.e. the
change of ratio β 2

1 β
−1
2 can be offset by the change of β0. In conclusion, “do not reject

H0 : β = β0” implies “do not reject H0 : V = V0”, while “reject H0 : β = β0” does not
necessarily imply “reject H0 : V = V0”.

3.1 Power Function of F Test for Random Intercept Model

To derive the power function for testing the hypothesis (8) with respect to β for the random
intercept model (5), a randomized block design with random block can be presented since
it is applicable to model the longitudinal data. Repeated measurements on a single sample
from a population can be represented by a randomized block model,

yi j = µ..+α0i + τ j + εi j (9)

where, yi j is the response at jth occasion for ith subject with E(yi j) = µ..+τ j , µ.. is a con-
stant for grand mean of all the observations, α0i is the random effect, and α0i are indepen-
dent N(0,σ2

α0
), τ j is the fixed effect, and τ j’s are constants subject to the restriction Στ j = 0,

εi j are independent N(0,σ2
e ), and independent of the α0i, i = 1,2, ...,N; j = 1,2, ...ni. N is

sample size, and ni is number of occasions assuming to be same for all the subjects as n.
Testing hypothesis (8) for random intercept model (5) is equivalent to testing a potential

quadratic trend for the randomized block model (9). The null hypothesis of no potential
trend for model (9) can be stated as H0 : τ = 0. Under the assumption of the compound
symmetry covariance structure, Σyi = σ2

e ·In×n +σ2
α0
·Jn×n, the test statistic for H0 : τ = 0

is an F statistic based on sum of squares error and sum of squares treatment (occasion),
where SS(Occasion) = N ·∑ j(ȳ. j− ȳ..)2 and SS(Error) = ∑i ∑ j(yi j− ȳi.− ȳ. j + ȳ..)2 . The
F statistic is exact and uniformly most powerful (UMP) [Casella and Berger, 2002]. Sum of
squares occasion can be partitioned into sum of squares for polynomial trend using Gram-
Schmidt orthonormalization or the Cholesky factorization ofX ′iXi, whereXi is the model
matrix for subject i.

The null hypothesis H0 :βq×1 =β0, testing a potential (q−1)th order polynomial trend,
is a component of the null hypothesis H0 : τ = 0, testing all polynomial trends; then the
sum of squares for H0 : β = β0 can be obtained from H0 : Lτ = 0 by reparametrization,
where L contains coefficients for orthogonal polynomial contrasts. Denote lm as the mth
row for L, the sum of squares for each contrast is,

SS(Contrastk) =
N · (∑ j lm jȳ. j)2

∑ j l2
m j

=
(
Lβ̂
)′ (
L(X ′X)−1L′

)−1 (
Lβ̂
)
.

SS(Contrastk)/σ2 ∼ χ2(n,λ ), where λ =
(
Lβ̂
)′ (
L(X ′X)−1L′

)−1 (
Lβ̂
)
/(2σ2). Then

the test is based on F = MS(Contrastk)
MS(Error) ; it is an exact test [Khuri et al., 2011].

The generalized F statistic for testing H0 : βq×1 = β0 is,

F =
(b−β0)

′((∑iX
′
i Σ
−1
yi
Xi)

−1)−1(b−β0)

q
, (10)
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where the numerator degrees of freedom is ndf1 = q and the denominator degrees of free-
dom is ddf1 =N ·(n−1)−(q−1); it is an approximate test. The non-centrality parameter is
λ1 = (β−β0)

′((∑iX
′
i Σ
−1
yi
Xi)

−1)−1(β−β0). Under H0, λ1 = 0; on the other hand, given
Ha is true, λ1 > 0. Therefore the power function is

Power≈ Prob{F(ndf1, ddf2, λ1)> F1−α, ndf1, ddf1}

where λ1 is the value of the non-centrality parameter and F1−α is the critical value of the
central F at the designated α level.

3.2 Power Function of F Test for Random Slope Model

For random slope model (6), the variance of each response and covariance between any two
responses of same subject are given in equation (3). The test of H0 : β = β0 using a F-type
statistic (10) is an approximate test in that the denominator degrees of freedom ddf1a is not
exact. The power function for the approximate F test is

Power≈ Prob{F(ndf1, ddf1a, λ1)> F1−α, ndf1, ddf1a}

where F1−α is the critical value of the central F distribution with the approximate de-
nominator degrees of freedom. Two main methods for computing denominator degrees of
freedom are Satterthwaite and Kenward-Roger Method [Kenward and Roger, 1997].

3.3 Power Function for Chi-Square Test

The non-central chi-square distribution can be applied to compute power for the hypotheses
(7), since V has an asymptotic multivariate normal distribution. V̂ ′Σ−1

V̂
V̂ distributes as a

non-central chi-square with 2 degrees of freedom with the non-centrality parameter λ2 =
(V −V0)

′Σ−1
V̂
(V −V0). Namely, V̂ ′Σ−1

V̂
V̂

a∼ χ2
2,λ2

. Under the null hypothesis, the non-
centrality parameter λ2 = 0. The decision rule is reject the null hypothesis if(

V̂x−V0x

V̂y−V0y

)′
Σ̂
−1
V̂

(
V̂x−V0x

V̂y−V0y

)
> χ

2
1−α,2 , (11)

otherwise do not reject the null hypothesis, where χ2
1−α,2 is the critical value given test

size level α and the estimated covariance Σ̂V̂ , the consistent statistic for ΣV̂ . The power
function for the test is

Power≈ Prob
{

χ
2(2, λ2)> χ

2
1−α,2

}
.

4. Power Analysis for the Difference of Location of Two Quadratic Growth Curves

In this section, we investigate the difference of vertices for growth curves from two inde-
pendent samples, such as the control and treatment groups. Similar to the one sample case,
two growth curve models are explored; one is the second-order random intercept model,
and the other is the second-order random slope model. They are defined as follows,

Second-order mixed model with random intercept (random intercept model),

yi j = β
(mid)
0 +β

(eff)
0 Ii +β

(mid)
1 ti j +β

(eff)
1 Iiti j +β

(mid)
2 t2

i j +β
(eff)
2 Iit2

i j +α0i + εi j (12)

where

Ii =

{
−1 if yi j comes from control group C,
+1 if yi j comes from treatment group T.
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is a dummy variable to indicate the group, i = 1, ...,N, j = 1, ...,ni, N = N1+N2 is the total
number of individuals, N1 and N2 are sample sizes for treatment group and control group,
ni is the number of time measurements for subject i, β ’s are fixed regression coefficients,
α0i is a random effect, α0i ∼ N(0,σ2

α0
), 0 < σ2

α0
< ∞, assuming the variance for individual

across groups are same, i.e. homogeneous variances, εi j is the random error term for the
ith individual at the jth occasion, εi j ∼ N(0,σ2

e ), 0 < σ2
e < ∞, α0i and εi j are independent,

Cov(α0i,εi j) = 0 for all i, yi j denotes response at jth occasion for the ith individual, and
ti j is the time measurement. From model (12), the distinct models for the control and the
treatment groups are

yi j = β
(C)
0 +β

(C)
1 ti j +β

(C)
2 t2

i j +α0i + εi j for group C,

yi j = β
(T)
0 +β

(T)
1 ti j +β

(T)
2 t2

i j +α0i + εi j for group T,

where
β

(C)
k = β

(mid)
k −β

(eff)
k for k = 0,1,2,

β
(T)
k = β

(mid)
k +β

(eff)
k for k = 0,1,2.

Second-order mixed model with random intercept and random slope (random
slope model),

yi j = β
(mid)
0 +β

(eff)
0 Ii +β

(mid)
1 ti j +β

(eff)
1 Iiti j +β

(mid)
2 t2

i j +β
(eff)
2 Iit2

i j +α0i +α1iti j + εi j, (13)

where

Ii =

{
−1 if yi j comes from control group C,
+1 if yi j comes from treatment group T,

is a dummy variable to indicate the group. α0i and α1i are random effects, α0i ∼ N(0,σ2
α0
),

α1i ∼ N(0,σ2
α1
), 0 < σ2

α0
< ∞, assuming the variances for individual are homogeneous. εi j,

β0’s, n, N, yi j and ti j are defined the same as in model (12), α0i, α1i are independent of εi j,
Cov(α0i,εi j) = 0, and Cov(α1i,εi j) = 0. From model (13), the distinct models for control
and treatment group are,

yi j = β
(C)
0 +β

(C)
1 ti j +β

(C)
2 t2

i j +α0i +α1iti j + εi j for group C,

yi j = β
(T)
0 +β

(T)
1 ti j +β

(T)
2 t2

i j +α0i +α1iti j + εi j for group T,

where
β

(C)
k = β

(mid)
k −β

(eff)
k for k = 0,1,2,

β
(T)
k = β

(mid)
k +β

(eff)
k for k = 0,1,2.

Power analysis plays an important role to reject the null hypothesis of identical vertex
for two groups given that the vertices of two groups are actually different. The power
function is interesting to be developed for testing the difference of two vertices. Consider
the null hypothesis,

H0 : V (C) = V (T) v.s. Ha : V (C) 6= V (T) (14)

where V (C) and V (T) are distinct vertices of control and treatment groups. Since the ver-
tices are nonlinear functions of β, the null hypothesis can also be expressed as

H0 :

 −β
(C)
1

2β
(C)
2

β
(C)
0 −

[β (C)
1 ]2

4β
(C)
2

=

 −β
(T)
1

2β
(T)
2

β
(T)
0 −

[β (T)
1 ]2

4β
(T)
2

 .
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Under some conditions,

H0 : β(C) = β(T) v.s. Ha : β(C) 6= β(T) (15)

is an equivalent hypothesis to (14). Therefore the difference of two vertices may be tested
either indirectly by an F test with respect to regression coefficients β’s or directly by a
chi-square test with regard to vertices V ’s.

Comparing the hypotheses (14) and (15), provided that the quadratic terms of two pop-
ulations are equal, β

(C)
2 = β

(T)
2 = β2, the null hypothesis (15) becomes

H0 :

 −β
(C)
1

2β2

β
(C)
0 −

[β (C)
1 ]2

4β2

=

 −β
(T)
1

2β2

β
(T)
0 −

[β (T)
1 ]2

4β2

 .

For the x−coordinate of the vertex, if β
(C)
1 = β

(T)
1 , then V (C)

x = V (T)
x and vice versa. Simi-

larly, for the y−coordinate of the vertex, if the β
(C)
1 = β

(T)
1 and β

(C)
0 = β

(T)
0 then V (C)

y =V (T)
y .

Therefore the two null hypotheses H0 : β(C) = β(T) and H0 : V (C) = V (T) are necessarily
equivalent. More specifically, comparing a chi-square statistic χ2

p with p degrees of free-
dom, and a F statistic Fp, q with numerator degrees of freedom p and denominator degrees
of freedom q, when q tends to infinity, χ2

p → p ·Fp, q [Casella and Berger, 2002]. On the
other hand, if the quadratic terms of two samples are different, β

(C)
2 6= β

(T)
2 , the two null

hypothesis H0 : β(C) = β(T) and H0 : V (C) = V (T) are not necessarily equivalent. Since for

the x−coordinate of vertex, the ratio β
(C)
1

β
(C)
2

=
β

(T)
1

β
(T)
2

leads to V (C)
x =V (T)

x , i.e. even β
(C)
1 6= β

(T)
1

and β
(C)
2 6= β

(T)
2 may result in V (C)

x = V (T)
x . Similarly, for the y−coordinate of the vertex,

the difference of the ratios [β (C)
1 ]2

β2
and [β (T)

1 ]2

β2
can be offset by the difference of β

(C)
0 and β

(T)
0 .

Namely, even β
(C)
0 6= β

(T)
0 , β

(C)
1 6= β

(T)
1 and β

(C)
2 6= β

(T)
2 may not preclude V (C)

y =V (T)
y .

4.1 Power Function of F Test for Growth Curves with Common Quadratic Term

Repeated measurements on two independent samples, control and treatment, can be pre-
sented by a split plot design model,

yi jk = µ...+α0i(k)+ τ j + γk +(τγ) jk + εi jk, (16)

where yi jk is the response at jth occasion for ith subject from group k, µ... is a constant for
grand mean of all the observations, α0i(k) is the random effect for subject i nested within
group k, and α0i(k) ∼ N(0,σ2

α0
), τ j is the fixed time effect and τ j’s are constants subject

to the restriction ∑τ j = 0, γk is the fixed group effect and γk’s are constants subject to
the restriction ∑γk = 0, εi jk ∼ N(0,σ2

e ), and independent of the α0i(k), i = 1,2, ...,N; N =
N1 +N2; j = 1,2, ...ni; and k = 1,2. N is the total sample size, N1 and N2 are sample sizes
for control and treatment groups and ni is the number of occasions assuming to be same for
all the subjects as n.

The corresponding 2nd order random intercept model with compound symmetry covari-
ance structure with respect to model (16) is model (12), Given the common quadratic term
for control and treatment groups, β

(C)
2 = β

(T)
2 = β2, the equivalent null hypothesis to test

H0 : β(C) = β(T) with regard to the F test is H0 :C1β = 0, where

C1 =

(
1 0 −1 0 0
0 1 0 −1 0

)
, β =


β

(C)
0

β
(C)
1

β
(T)
0

β
(T)
1
β2


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The F test statistic is,

F =

(C1β̂)
′[C1(∑

i
X ′i Σ̂

−1
yi
Xi)

−1C ′1]
−1(C1β̂)

rank(C1)
, (17)

with the non-centrality parameter λ3 =(C1β)
′[C1(∑

i
X ′i Σ

−1
yi
Xi)

−1C ′1]
−1(C1β), where Σyi =

σ2
e ·In×n +σ2

α0
·Jn×n andXi is the model matrix for control group and treatment group,

X (C)
i =


1 ti1 0 0 t2

i1
1 ti2 0 0 t2

i2
1 ti3 0 0 t2

i3
...

...
...

...
...

1 tin 0 0 t2
in

 , X (T)
i =


0 0 1 ti1 t2

i1
0 0 1 ti2 t2

i2
0 0 1 ti3 t2

i3
...

...
...

...
...

0 0 1 tin t2
in

 .

The numerator degrees of freedom is ndf2 = rank(C1), and the between-within denomina-
tor degrees of freedom ddf2 = N · (n−1)− rank(C1), and the power function is,

Power≈ Prob{F(ndf2, ddf2, λ3)> F1−α, ndf2, ddf2} ,

where F1−α is the critical value for the central F distribution with Type I error rate α.
For the 2nd order random slope model (13), the test of H0 : β(C) = β(T) using an F-

type statistic (17) is approximate since the denominator degrees of freedom ddf2a are not
known. The commonly used methods to compute the denominator degrees of freedom are
Satterthwaite and Kenward-Roger. The power function for the approximate F test is

Power≈ Prob{F(ndf2, ddf2a, λ3)> F1−α, ndf2, ddf2a} ,

where F1−α is the critical value of the central F distribution with the approximate denomi-
nator degrees of freedom.

4.2 Power Function of F Test for Growth Curves with Heterogeneity of the Quadratic
Term

Assume the quadratic terms of two growth curves are not identical, β
(C)
2 6= β

(T)
2 , for the 2nd

order random intercept model (12), the equivalent null hypothesis to test H0 : β(C) = β(T)

is H0 :C2β = 0 where

C2 =

 1 0 0 −1 0 0
0 1 0 0 −1 0
0 0 1 0 0 −1

 , β =



β
(C)
0

β
(C)
1

β
(C)
2

β
(T)
0

β
(T)
1

β
(T)
2


The F test statistic and the corresponding non-centrality parameter is,

F =

(C2β̂)
′[C2(∑

i
X ′i Σ̂

−1
yi
Xi)

−1C ′]−1(C2β̂)

rank(C2)
, (18)

λ4 = (C2β)
′[C2(∑

i
X ′i Σ

−1
yi
Xi)

−1C ′2]
−1(C2β),
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where Σyi =σ2
e ·In×n+σ2

α0
·Jn×n andXi is the model matrix for control group or treatment

group,

X (C)
i =


1 ti1 t2

i1 0 0 0
1 ti2 t2

i2 0 0 0
1 ti3 t2

i3 0 0 0
...

...
...

...
...

...
1 tin t2

in 0 0 0

 , X (T)
i =


0 0 0 1 ti1 t2

i1
0 0 0 1 ti2 t2

i2
0 0 0 1 ti3 t2

i3
...

...
...

...
...

...
0 0 0 1 tin t2

in

 .

The numerator degrees of freedom is ndf3 = rank(C2), and the denominator degrees of
freedom ddf3 =N ·(n−1)−rank(C2) for between-within method [Schluchter and Elashoff,
1990], and the power function is,

Power≈ Prob{F(ndf3, ddf3, λ4)> F1−α, ndf3, ddf3} ,

where F1−α is the critical value for the central F distribution with Type I error rate α.
For the 2nd order random slope model (13), the F distribution for test statistic (18)

becomes approximate in that the denominator degrees of freedom is not exact. The approx-
imate power function is,

Power≈ Prob{F(ndf3, ddf3a, λ4)> F1−α , ndf3, ddf3a} ,

where ddf3a is the approximate denominator degrees of freedom that can be calculated by
the Satterthwaite or Kenward-Roger method.

4.3 Power Function for Chi-Square Test

The non-central chi-square distribution is used to compute power for the null hypothesis for
a direct test H0 : V (C) = V (T). Since V̂ (diff) a∼ N2

(
V (diff),ΣV̂ (diff)

)
, V̂ (diff)′Σ−1

V̂ (diff)V̂
(diff) dis-

tributes approximately as a non-central chi-square with 2 degrees of freedom with the non-
centrality parameter λ5 = V

(diff)′Σ−1
V̂ (diff)V

(diff). That is, V̂ (diff)′Σ−1
V̂ (diff)V̂

(diff) a∼ χ2
2,λ5

. Under
null hypothesis, the non-centrality parameter λ5 = 0. The approximate power function is,

Power≈ Prob
{

χ
2(2,λ5)> χ

2
1−α,2

}
,

where χ2
1−α,2 is the critical value given test size level α . Using Σ̂V̂ (diff) , the consistent

statistic for ΣV̂ (diff) , the decision rule is, reject the null hypothesis if(
V (T)

x −V (C)
x

V (T)
y −V (C)

y

)′
Σ̂
−1
V̂ (diff)

(
V (T)

x −V (C)
x

V (T)
y −V (C)

y

)
> χ

2
1−α,2,

otherwise do not reject the null hypothesis.

4.4 Power Results for Growth Curves with Common Quadratic Term

In this section, we investigate the indirect F test for H0 : β(C) = β(T) and the direct chi-
square test for H0 :V C =V (T), assuming β

(C)
2 = β

(T)
2 . For the random intercept model (12)

and parameter sets I, II, and III as shown in Table 1, twelve combinations of datasets are
considered with different regression coefficients, variances of random effect, sample sizes,
but the same time points. The six time points are ti j = 0,1,2,3,4,5; and sample sizes are
selected to be 20 and 50. Two variance parameters chosen for the random effect are 10 and
80 with apparent difference between them. The vertices for parameter sets I, II, and III are
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Table 1: Parameters for Power Analysis

β0 β1 β2 Vertex Within

Parameter I
Control 6.05 3.0 -0.2 (7.5, 17.3) No

Treatment 4.5 3.3 -0.2 (8.25, 18.1125) No

Parameter II
Control 5 1.7 -0.1 (8.5, 12.225) No

Treatment 4 1.9 -0.1 (9.5, 13.025) No

Parameter III
Control 10 1.15 -0.06 (9.5833, 15.51) No

Treatment 9.5 1.45 -0.06 (12.0833, 18.26) No

Parameter IV
Control 2 8 -1 (4, 18) Yes

Treatment 2 8.1 -1 (4.05, 18.4025) Yes

outside the scope of occasions; while the vertices for parameter set IV is within the scope
of occasions.

The simulated power and confidence intervals as well as the theoretical power are dis-
played in Table 2 and 3. In the tables, parameter sets (a) have the variances σ2

α0
= 10,

σ2
e = 5, and parameter sets (b) have σ2

α0
= 80, σ2

e = 5. For parameter sets I, II, and III,
with the smaller random effect variance σ2

α0
= 10, the F test has higher power than the

chi-square test for every combination. When the variance of the random effect is larger,
σ2

α0
= 80, it is more obvious that the F test has higher power than the chi-square test for ev-

ery combination; and the power for both the F and the chi-square tests increases. Then, the
increase of the variance σ2

α0
would result in a decrease of power for both F and chi-square

test. Parameter set IV is for a random intercept model with x-value of the vertex within
the scope of the model. In this condition, the results show that there is a small difference
between the theoretical power of the chi-square test and the F test even for small sample
size. However, for parameter sets I, II, and III, with vertices outside the scope of the oc-
casions, all the asymptotic F power are greater than the power of the chi-square test. As
the vertices move further away from parameter set I to parameter set III, the power for both
the F test and the chi-square test become lower. Hence the further the vertices are away
from the scope of the occasions, the F and chi-square power becomes smaller; and it af-
fects the chi-square power more. The theoretical power of the F test is always between the
lower and upper bounds of the simulated power, for the vertex both within and outside the
scope of occasions. As the sample size increases, the power will increase as a consequence.
However, the theoretical power of chi-square test is between the lower and upper bounds
of the simulated power only when the vertex is within the scope of the model. Even worse,
when the vertex is further outside the occasions, the simulated power of the chi-square test
decreases dramatically; and the difference between the simulated power and the theoretical
power of chi-square test is very large. Therefore, when the vertex is far away from the
scope of occasions, the use of chi-square test should be given more attention. For all the
conditions, increasing sample size will lead to an increase in power. Table 2 and 3 provide
little useful information to compare the denominator degrees of freedom for F test, since
the simulated model is random intercept model which has an exact denominator degrees
of freedom; the three different degrees of freedom methods, between-within, Satterthwaite
and Kenward-Roger, provide similar power.

The random slope models (13) are generated using the fixed regression parameters
listed in Table 1 with variances σ2

e = 5, σ2
α0

= 10, and σ2
α1

= 5. The results are displayed
in Table 4. Compared to Table 2 and 3, in all the conditions, the theoretical power and
simulated power decrease simutaneously. Hence, adding a random slope term in the model
results in a decrease of power for both the F and chi-square tests. Other findings are similar
as the result of random intercept model.
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Table 2: Power for Random Intercept Model with Common Quadratic Term

Parameters Sample Size Method Simulated Power Lower Bound Upper Bound Theoretical Power

I (a)

N = 20

BWF 0.374 0.344 0.404 0.386
KRF 0.366 0.336 0.396 0.379
SATF 0.369 0.339 0.399 0.376
Chisq 0.208 0.183 0.233 0.329

N = 50

BWF 0.771 0.745 0.797 0.785
KRF 0.763 0.737 0.789 0.781
SATF 0.766 0.739 0.792 0.767
Chisq 0.708 0.680 0.736 0.700

I (b)

N = 20

BWF 0.339 0.310 0.368 0.339
KRF 0.327 0.298 0.356 0.333
SATF 0.326 0.297 0.355 0.330
Chisq 0.165 0.142 0.188 0.280

N = 50

BWF 0.725 0.697 0.753 0.718
KRF 0.718 0.690 0.746 0.715
SATF 0.718 0.690 0.746 0.714
Chisq 0.635 0.605 0.665 0.616

II (a)

N = 20

BWF 0.212 0.187 0.237 0.188
KRF 0.204 0.179 0.229 0.185
SATF 0.207 0.182 0.232 0.184
Chisq 0.061 0.046 0.076 0.149

N = 50

BWF 0.431 0.400 0.462 0.420
KRF 0.428 0.397 0.459 0.417
SATF 0.429 0.398 0.460 0.406
Chisq 0.163 0.140 0.186 0.317

II (b)

N = 20

BWF 0.169 0.146 0.192 0.170
KRF 0.160 0.137 0.183 0.167
SATF 0.160 0.137 0.183 0.166
Chisq 0.042 0.030 0.054 0.131

N = 50

BWF 0.374 0.344 0.404 0.374
KRF 0.370 0.109 0.151 0.372
SATF 0.369 0.339 0.399 0.370
Chisq 0.130 0.109 0.151 0.270

5. Application: Tell Language Efficacy for Preschoolers with Developmental Speech
and Language Impairment

We apply the direct F test and the indirect chi-square test for vertices on a study of growth
of language and early literacy skills in preschoolers who have developmental speech and
language impairment.

U.S. Department of Education data for the Individuals with Disabilities Education Act
(IDEA) reported that 13% of four-year olds and five-year olds are receiving special educa-
tion services in preschool and that 82% of these children show developmental speech and
language impairment (DSLI) as a primary diagnosis [Wilcox et al., 2011]. One of these
studies is examining the efficacy of “Teaching Early Literacy and Language”(TELL) cur-
riculum in promoting the early literacy and oral language growth trajectories of preschool-
ers with DSLI. The variables in the TELL curriculum include a series of instructions,
scripted teaching activities, materials for implementation of oral language and early lit-
eracy activities, and professional development for teachers. They targeted one specific skill
( e.g., vocabulary, identification of beginning sounds in a word) or small set of skills ( e.g.,
inferential language, print concepts, letter sounds and identification) over a relatively short
period of time ( e.g., weeks). The TELL curriculum has shown positive results in oral
language and early literacy activities in an earlier small randomized controlled trial. Re-
searchers compare those trajectories of children who were enrolled in the TELL curriculum
with those who were randomly assigned to control classes [Wilcox et al., 2011].

We focused on one specific item from TELL curriculum, Curriculum Based Measure-
ment (CBM) Letter Sound Identification (SoundID) in year 2011. Fifty-seven children
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Table 3: Power for Random Intercept Model with Common Quadratic Term

Parameters Sample Size Method Simulated Power Lower Bound Upper Bound Theoretical Power

III (a)

N = 20

BWF 0.345 0.315 0.275 0.337
KRF 0.333 0.304 0.362 0.331
SATF 0.335 0.306 0.364 0.328
Chisq 0.025 0.015 0.035 0.120

N = 50

BWF 0.720 0.692 0.748 0.716
KRF 0.714 0.686 0.742 0.712
SATF 0.716 0.688 0.744 0.698
Chisq 0.110 0.091 0.129 0.239

III (b)

N = 20

BWF 0.359 0.329 0.389 0.332
KRF 0.346 0.316 0.376 0.326
SATF 0.345 0.315 0.375 0.323
Chisq 0.043 0.030 0.056 0.116

N = 50

BWF 0.716 0.688 0.744 0.708
KRF 0.711 0.683 0.739 0.705
SATF 0.711 0.683 0.739 0.703
Chisq 0.089 0.071 0.107 0.228

IV (a)

N = 20

BWF 0.080 0.063 0.097 0.081
KRF 0.079 0.058 0.090 0.081
SATF 0.077 0.060 0.094 0.081
Chisq 0.079 0.062 0.096 0.082

N = 50

BWF 0.141 0.119 0.163 0.134
KRF 0.135 0.114 0.156 0.133
SATF 0.137 0.116 0.158 0.133
Chisq 0.142 0.120 0.164 0.134

IV (b)

N = 20

BWF 0.082 0.065 0.099 0.077
KRF 0.074 0.058 0.090 0.077
SATF 0.074 0.058 0.090 0.077
Chisq 0.083 0.066 0.100 0.078

N = 50

BWF 0.129 0.108 0.150 0.123
KRF 0.129 0.108 0.150 0.122
SATF 0.128 0.107 0.149 0.122
Chisq 0.131 0.110 0.152 0.123

with DSLI nested under teacher are randomly assigned to offer the TELL curriculum or
accept those with business as usual (BAU). The efficacy variable, SoundID test score, was
obtained by six follow-up time measurements (1, 2.25, 3.5, 5.25, 6.5, 7.75 months). The
profile plot and smoothed profile plot for children with DSLI receiving TELL curriculum
and BAU are shown in Figure 1, which indicate the quadratic curve for the trend.

(a) Profile Plot for TELL Efficacy Example (b) Smoothed Plot for TELL Efficacy Example

Figure 1: Profile and Smoothed Plots for TELL Efficacy Example

The joint random slope model for the TELL and control group is

yi jkl =β
(mid)
0 +β

(eff)
0 · Il +β

(mid)
1 · ti jkl +β

(eff)
0 · Il · ti jkl +β

(mid)
2 · t2

i jkl +β
(eff)
2 · Il · t2

i jkl

+βc1 · x1i jl + γ0 j(l)+α0i( jl)+α1i( jl)ti jkl + εi jkl,
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Table 4: Power for Random Slope Model with Common Quadratic Term

Parameters Sample Size Method Simulated Power Lower Bound Upper Bound Theoretical Power

I (a)

N = 20

BWF 0.227 0.200 0.253 0.222
KRF 0.186 0.161 0.210 0.210
SATF 0.190 0.166 0.214 0.210
Chisq 0.091 0.073 0.109 0.208

N = 50

BWF 0.482 0.451 0.513 0.499
KRF 0.470 0.439 0.501 0.489
SATF 0.476 0.445 0.507 0.489
Chisq 0.375 0.345 0.405 0.463

II (a)

N = 20

BWF 0.166 0.143 0.189 0.117
KRF 0.140 0.118 0.162 0.112
SATF 0.148 0.126 0.170 0.112
Chisq 0.028 0.018 0.038 0.107

N = 50

BWF 0.247 0.220 0.274 0.232
KRF 0.247 0.220 0.247 0.227
SATF 0.239 0.213 0.265 0.227
Chisq 0.075 0.059 0.091 0.204

III (a)

N = 20

BWF 0.074 0.058 0.090 0.076
KRF 0.061 0.046 0.076 0.074
SATF 0.064 0.049 0.079 0.074
Chisq 0.004 0.001 0.008 0.065

N = 50

BWF 0.124 0.104 0.144 0.119
KRF 0.111 0.091 0.131 0.117
SATF 0.116 0.096 0.136 0.117
Chisq 0.012 0.005 0.019 0.090

IV (a)

N = 20

BWF 0.066 0.051 0.081 0.051
KRF 0.057 0.043 0.072 0.051
SATF 0.060 0.045 0.075 0.051
Chisq 0.061 0.046 0.076 0.051

N = 50

BWF 0.058 0.043 0.073 0.053
KRF 0.054 0.040 0.068 0.053
SATF 0.054 0.040 0.068 0.053
Chisq 0.058 0.043 0.073 0.054

where,

Il =

{
1 if yi jkl comes from the control group,
0 if yi jkl comes from the TELL group.

yi jkl is the sound identification score at the kth time point for child i under teacher j and cur-
riculum l; x1i jl is a covariate of mother’s education for child i under teacher j and curricu-
lum l; γ0 j(l) is the random effect of jth teacher nested under curriculum, γ0 j(l) ∼ N(0, σ2

γ0
);

α0i( jl) and α1i( jl) are the random intercept and random slope effects of ith children nested
under jth teacher and lth curriculum, α0i( jl) ∼N(0, σ2

α0
) and α1i( jl) ∼N(0, σ2

α1
); εi jkl is the

random error term, εi jkl ∼ N(0, σ2
e ). The fitted regression model is

ŷi jkl = 1.766+1.109 · Il +2.914 · ti jkl−0.996 · Il · ti jkl−0.113 · t2
i jk−0.011 · Il · t2

i jk +1.573 · x1i jl ,

with the estimates of variance components, σ2
α0

= 38.209, σ2
α1

= 0.666, and σ2
e = 7.136.

The estimated vertices are (12.745, 20.430) and (7.474, 10.145) for TELL and control
groups respectively.

To compare the vertices from the TELL and the control groups for sound identification
score, hypothesis testing is performed for a direct chi-square test H0 : V (C) = V (T), and a
indirect F test H0 : β(C) = β(T). The test statistic of the chi-square test is χ2

2 = 6.482 with 2
degrees of freedom; and the p-value of the test is 0.039. At the significance level α = 0.05,
we reject the null hypothesis that the vertices from control and TELL group are identical,
since the p-value is less than α . The test statistic of the F test is shown in Table 5 with
different denominator degrees of freedom methods. All three p-values are less than the
significance level α = 0.05, therefore we reject the null hypothesis that the fixed regression
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Table 5: F Test for the Difference of Vertices for Control and TELL Children

DDFM Test Statistic NDF DDF P-value
Between-Within 5.38 3 261 0.0013
Kenward-Roger 5.31 3 112 0.0019

Satterthwaite 5.38 3 112 0.0017

coefficients of TELL and control group are equivalent. The chi-square and F tests conclude
the identical result.

6. Conclusion

Power functions were obtained for the test of difference of vertices in this project. Different
power functions for chi-square and F test are applicable for quadratic growth curves. When
the vertices are within the scope of occasions, both the F test and the chi-square test are
valid to test the equality of the vertices of two groups. When the vertex is outside the scope
of the model, the use of chi-square test should be given more attention. For the random
intercept model, the larger the variance of random intercept, σ2

α0
, the lower the power for

both F and chi-square tests. Increasing the sample size will always help to increase the
power of both tests. For the random slope model, adding a random slope variance, σ2

α0
,

the power of both tests will decrease as a consequence. When the fixed quadratic term, β2,
is close to zero, the vertex of the quadratic growth curve will be further away outside the
occasions which will lead to reduce of power for both the F and the chi-square tests.

An interesting topic for further research can be dealing with vertices of quadratic
growth curves under heterogeneity in the random effects population.
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