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Abstract 

Fiducial generalized pivotal quantity and the parametric bootstrap approach are a type 
of Monte Carlo method applied on observed data. These approaches can be applied in 
situations where samples or sample statistics are not easy to derive. In this paper, we 
consider multiple comparison produces for one-way ANOVA under unequal variances. 
We compare two methods based on fiducial generalized pivotal quantity and a 
parametric bootstrap approach. A Monte Carlo simulation study is conducted to 
evaluate type I error probabilities and powers of these methods under different 
scenarios. 
 
Keywords: Fiducial generalized pivotal quantity, parametric bootstrap, pairwise 
multiple comparison. 

1. Introduction 

Consider the usual one-way fixed-effects model: 

𝑋𝑖𝑗 = 𝜇𝑖 + 𝜀𝑖𝑗;   𝑖 = 1, … , 𝑚; 𝑘 = 1, … , 𝑛𝑖 

where the 𝜀𝑖𝑗 are independent  𝑁(0, 𝜎𝑖
2) random variable. The means 𝜇𝑖 and variances 

𝜎𝑖
2 are assumed to be unknown. When variances are all equal, the one-way layout has 

been studied extensively in the literature. The existing methods for such cases include 
Scheffe’s method, Bonferroni inequality-based method and Tukey-Kramer method, 
etc.  When the variances are unequal, research of multiple comparisons is limited. 
Games and Howell (1976) developed a method for constructing simultaneous 
confidence interval based on the Behrens-Fisher statistic and an estimated degree of 
freedom. Kaiser and Bowden (1983) discussed simultaneous confidence intervals for 
all linear contrasts in a one-way layout with unequal variance. Witkovsky (2002) 
developed the methods to calculate the p-values required for deriving the conservative 
joint confidence interval estimates for the pairwise mean differences, referred to as the 
generalized Scheffé intervals. Chang et al. (2009) proposed simultaneous fiducial 
generalized confidence intervals for pairwise comparisons of means in the one-way 
fixed-effect model. Li (2009) investigated an exact method that extends Dunnett's 
method on the multiple comparisons with a control (MCC) to the case of unequal error 
variances when the ratios of population variances of knew treatments to that of the 
control group are known from previous experience. Xiong and Mu (2009) developed 
two kinds of simultaneous confidence intervals for one-way layout based on 
generalized pivotal quantities. Zhang (2015) presented the parametric bootstrap 
approach to a multiple comparison procedure. Sezer et al. (2015) compared confidence 
intervals based on classical and generalized approach for The Behrens-Fisher problem. 

In this research, we compare two methods based on generalized approach by Xiong 
and Mu (2009) and the parametric bootstrap approach by Zhang (2015) for one-way 
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fixed-effects model under heteroscedasticity and unequal sample size. A Monte Carlo 
simulation study is conducted to evaluate type I error probabilities and powers of these 
methods under different scenarios. 

2. A review of the procedures 

Let 𝑋𝑖1, … . , 𝑋𝑖𝑛𝑖
 be random variable from 𝑁(𝜇𝑖 , 𝜎𝑖

2), 𝑖 = 1, … , 𝑘. Suppose that all 𝑋𝑖𝑘 
are independent, 𝑘 = 1, … , 𝑛𝑖. The parameters of interest are 𝜇𝑖 − 𝜇𝑗  for all 𝑖 < 𝑗. 
Denote, 

𝑁 = ∑ 𝑛𝑖,   �̅�𝑖 =
1

𝑛
∑ 𝑋𝑖𝑘  and 𝑆𝑖

2 =
1

𝑛𝑖 − 1
∑(𝑋𝑖𝑘 − �̅�𝑖)2

𝑛𝑖

𝑘=1

𝑛𝑖

𝑘=1

𝑚

𝑖=1

, = 1, … , 𝑚            (1) 

Recall that  

√𝑛𝑖

�̅�𝑖 − 𝜇𝑖

𝜎𝑖
~𝑁(0,1),   

(𝑛𝑖 − 1)𝑆𝑖
2

𝜎𝑖
2 ~𝜒𝑛𝑖−1

2 , 𝑖 = 1, … , 𝑚                   (2) 

are jointly independent. 

 2.1 Two methods based on fiducial generalized pivotal quantity (FGPQ) 

Weerahandi (1993) defines a generalized pivotal quantity as a statistic that has a 
distribution free of unknown parameters and an observed value that does not depend 
on nuisance parameters. The possibility of exact confidence interval can be achieved 
by extending the definition of confidence interval. The generalized pivotal quantity is 
allowed to be a function of nuisance parameters. Combining Fisher’s fiducial 
arguments and the generalized p-value approach, Hannig (2009) and Hannig et al. 
(2006) developed a fiducial recipe for generalized confidence intervals. Using the 
FGPQ, Xiong and Mu (2009) present two new kinds of simultaneous confidence 
interval of all-pairwise differences.  

Let 𝐸𝑖~𝑁(0,1), 𝐶𝑖
2~𝜒𝑛𝑖−1

2 , 𝑖 = 1, … , 𝑚, be jointly independent and be independent 
of the observation 𝑋𝑖𝑘 , 𝑖 = 1, … , 𝑚, 𝑘 = 1, … , 𝑛𝑖. Using Equation (2), the FGPQs for 
𝜇𝑖  and 𝜎𝑖

2, 𝑖 = 1, … , 𝑚 are obtained as  

𝑅𝜇𝑖
= �̅�𝑖 − √

𝑛𝑖 − 1

𝑛𝑖

𝑆𝑖𝐸𝑖

𝐶𝑖
,    𝑅𝜎𝑖

2 =
(𝑛𝑖 − 1)𝑆𝑖

2

𝐶𝑖
2 , 𝑖 = 1, … , 𝑚 

Some calculations yield that for all 𝑖 ≠ 𝑗, 

𝑅𝜇𝑖
− 𝑅𝜇𝑗

= �̅�𝑖 − √
𝑛𝑖 − 1

𝑛𝑖

𝑆𝑖𝐸𝑖

𝐶𝑖
− (�̅�𝑗 − √

𝑛𝑗 − 1

𝑛𝑗

𝑆𝑗𝐸𝑗

𝐶𝑗
) 

𝐸∗ (𝑅𝜇𝑖
− 𝑅𝜇𝑗

) = �̅�𝑖 − �̅�𝑗, 

Var∗ (𝑅𝜇𝑖
− 𝑅𝜇𝑗

) =
(𝑛𝑖 − 1)𝑆𝑖

2

𝑛𝑖(𝑛𝑖 − 3)
+

(𝑛𝑗 − 1)𝑆𝑗
2

𝑛𝑗(𝑛𝑗 − 3)
, 

𝜁𝑖𝑗 = Var (𝐸∗ (𝑅𝜇𝑖
− 𝑅𝜇𝑗

)) =
𝜎𝑖

2

𝑛𝑖
+

𝜎𝑗
2

𝑛𝑗
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𝑅𝜁𝑖𝑗
=

(𝑛𝑖 − 1)𝑆𝑖
2

𝑛𝑖𝐶𝑖
2 +

(𝑛𝑗 − 1)𝑆𝑗
2

𝑛𝑗𝐶𝑗
2  

Where 𝐸∗ and Var∗ represent conditional expectation and conditional variance 
conditional on 𝑇 = (�̅�1, … , �̅�𝑚, 𝑆1

2, … , 𝑆𝑚
2 ), respectively, and 𝑅𝜁𝑖𝑗

 is the FGPQ of 𝜁𝑖𝑗. 
Note that the distribution of  

𝑚𝑎𝑥𝑖<𝑗 ||
𝜇𝑖 − 𝜇𝑗 − 𝐸∗ (𝑅𝜇𝑖

− 𝑅𝜇𝑗
)

(Var∗ (𝑅𝜇𝑖
− 𝑅𝜇𝑗

))
1 2⁄ ||                                           (3) 

can be approximated by the conditional distributions of  

𝑄1 = 𝑚𝑎𝑥𝑖<𝑗 ||
𝑅𝜇𝑖

− 𝑅𝜇𝑗
− 𝐸∗ (𝑅𝜇𝑖

− 𝑅𝜇𝑗
)

(Var∗ (𝑅𝜇𝑖
− 𝑅𝜇𝑗

))
1 2⁄ ||                                   (4) 

or 

𝑄2 = 𝑚𝑎𝑥𝑖<𝑗 |
𝑅𝜇𝑖

− 𝑅𝜇𝑗
− 𝐸∗ (𝑅𝜇𝑖

− 𝑅𝜇𝑗
)

𝑅𝜁𝑖𝑗

1 2⁄
|                                   (5) 

conditional on 𝑇. 𝑄1and 𝑄2 can be computed by the Monte Carlo method.  

2.2 The parametric bootstrap (PB) method for multiple comparison 

The parametric bootstrap (PB) approach is a type of Monte Carlo method applied on 
observed data (Efron and Tibshirani 1993). The parametric bootstrap involves 
sampling from the estimated models. That is, samples or sample statistics are generated 
from parametric models with the parameters replaced by their estimates.  
Krishnamoorthy et al. (2007) developed the PB approach for one-way ANOVA under 
unequal variances.  The PB approach has been carried out to solve a number of 
problems when exact solutions are not available satisfactorily for example in Ma and 
Tian (2009), Krishnamoorthy and Lu (2010), Xu et al. (2013).  

Zhang (2015) extended the PB approach for a multiple comparison procedure. He 
took common mean to be zero and developed the PB method for multiple comparisons 

as follows. Let �̅�𝐵𝑖~𝑁 (0,
𝑆𝑖

2

𝑛𝑖
) and 𝑆𝐵𝑖

2 ~
𝜒𝑛𝑖−1

2

(𝑛𝑖−1)
  , 𝑖 = 1, … , 𝑘. Hence,  

𝑇𝑖𝑗 =
|�̅�𝐵𝑖 − �̅�𝐵𝑗|

√
𝑆𝐵𝑖

2

𝑛𝑖
+

𝑆𝐵𝑗
2

𝑛𝑗

                                                                       (6) 

has the same distribution as  
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𝑇𝑖𝑗 =
|�̅�𝐵𝑖 − �̅�𝐵𝑗|

√
𝑆𝑖

2

𝑛𝑖(𝑛𝑖 − 1)
𝜒𝑛𝑖−1

2 +
𝑆𝑗

2

𝑛𝑗(𝑛𝑗 − 1)
𝜒𝑛𝑗−1

2

 for 𝑖 < 𝑗, 𝑖, 𝑗 = 1, … , 𝑟          (7) 

𝑇𝑖𝑗 can be computed by the Monte Carlo method. 

3. Simulation 

In this section, we use simulation to compare the two methods based on fiducial 
generalized pivotal quantity and a parametric bootstrap approach under the assumption 
of heteroscedastic variances and unequal sizes. For a given sample size and parameter 
configurations, we generated 2000 observed vectors (�̅�1, … , �̅�3; 𝑠1

2, … , 𝑠3
2) and used 

2000 runs to estimate the p-value. The estimates of type I error rates and powers of 
tests for pairwise multiple comparisons under   heteroscedasticity are presented in 
Table 1 and Table 2. 

4. Conclusions 

In this paper, we consider multiple comparison produces for one-way ANOVA under 
unequal variances. We compare two methods based on fiducial generalized pivotal 
quantity and a parametric bootstrap approach. Simulation studies show that the type I 
error of method based on PB approach are closer to the nominal level. The power of 
the method based on equation (4) test is best among the three tests.  
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Table 1. Type I error rates of the proposed tests for multiple comparison procedure 
with 𝛼 = 0.05 and (𝜇1, 𝜇2, 𝜇3) = (0,0,0). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(𝜎1
2, 𝜎2

2, 𝜎3
2) PB Q1 Q2 PB Q1 Q2 

 (𝑛1, 𝑛2, 𝑛3) = (5,5,5) (𝑛1, 𝑛2, 𝑛3) = (10,10,10) 
(1,1,1) 0.044 0.103 0.130 0.061 0.086 0.091 
(2,2,2) 0.044 0.103 0.130 0.061 0.086 0.091 
(1,2,3) 0.050 0.102 0.126 0.055 0.078 0.094 
(3,2,1) 0.038 0.102 0.127 0.060 0.081 0.101 
(1,3,5) 0.056 0.107 0.132 0.060 0.083 0.095 
(5,3,1) 0.039 0.110 0.134 0.059 0.083 0.094 

 (𝑛1, 𝑛2, 𝑛3) = (10,20,30) (𝑛1, 𝑛2, 𝑛3) = (25,50,75) 
(1,1,1) 0.056 0.069 0.075 0.047 0.053 0.058 
(2,2,2) 0.056 0.068 0.075 0.047 0.053 0.058 
(1,2,3) 0.048 0.061 0.063 0.053 0.057 0.058 
(3,2,1) 0.059 0.079 0.089 0.043 0.050 0.056 
(1,3,5) 0.043 0.051 0.058 0.056 0.056 0.059 
(5,3,1) 0.057 0.082 0.092 0.044 0.053 0.057 

 (𝑛1, 𝑛2, 𝑛3) = (30,30,30) (𝑛1, 𝑛2, 𝑛3) = (50,50,50) 
(1,1,1) 0.048 0.054 0.055 0.048 0.054 0.055 
(2,2,2) 0.048 0.054 0.053 0.045 0.054 0.055 
(1,2,3) 0.048 0.054 0.057 0.049 0.048 0.053 
(3,2,1) 0.052 0.058 0.064 0.046 0.051 0.053 
(1,3,5) 0.046 0.053 0.056 0.049 0.053 0.054 
(5,3,1) 0.053 0.056 0.063 0.045 0.052 0.053 

 (𝑛1, 𝑛2, 𝑛3) = (50,100,150) (𝑛1, 𝑛2, 𝑛3) = (100,100,100) 
(1,1,1) 0.041 0.044 0.046 0.042 0.045 0.044 
(2,2,2) 0.041 0.044 0.046 0.042 0.045 0.044 
(1,2,3) 0.043 0.043 0.052 0.046 0.051 0.051 
(3,2,1) 0.042 0.047 0.044 0.042 0.043 0.044 
(1,3,5) 0.040 0.043 0.051 0.056 0.057 0.058 
(5,3,1) 0.048 0.051 0.051 0.047 0.049 0.049 
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Table 2. The powers of the proposed tests for multiple comparison procedure with 𝛼 =

0.05. 

 

 

 

(𝜎1
2, 𝜎2

2, 𝜎3
2) (𝜇1, 𝜇2, 𝜇3) 

PB Q1 Q2 PB Q1 Q2 
𝑛 = (5,5,5) 𝑛 = (10,10,10) 

(1,1,1) 

(0.5,0,0) 0.094 0.181 0.213 0.174 0.225 0.248 
(1,0,0) 0.247 0.388 0.435 0.546 0.622 0.661 

(1.5,0,0) 0.496 0.664 0.706 0.896 0.917 0.928 
(2,0,0) 0.745 0.869 0.903 0.994 0.996 0.997 

(0.2,0.4,0.6) 

(0.5,0,0) 0.161 0.280 0.325 0.312 0.392 0.414 
(1,0,0) 0.495 0.644 0.686 0.877 0.909 0.919 

(1.5,0,0) 0.824 0.928 0.942 0.999 1.00 1.00 
(2,0,0) 0.971 0.995 0.998 1.00 1.00 1.00 

  𝑛 = (10,20,30) 𝑛 = (20,20,20) 

(1,1,1) 

(0.5,0,0) 0.236 0.271 0.294 0.380 0.421 0.431 
(1,0,0) 0.678 0.730 0.746 0.940 0.952 0.956 

(1.5,0,0) 0.963 0.973 0.979 1.00 1.00 1.00 
(2,0,0) 0.999 0.999 0.999 1.00 1.00 1.00 

(0.2,0.4,0.6) 

(0.5,0,0) 0.508 0.669 0.560 0.630 0.544 0.560 
(1,0,0) 0.980 0.986 0.988 1.00 0.986 0.988 

(1.5,0,0) 1.00 1.00 1.00 1.00 1.00 1.00 
(2,0,0) 1.00 1.00 1.00 1.00 1.00 1.00 

  𝑛 = (25,50,75) 𝑛 = (50,50,50) 

(1,1,1) 

(0.5,0,0) 0.505 0.526 0.533 0.696 0.704 0.713 
(1,0,0) 0.984 0.988 0.988 1.00 1.00 1.00 

(1.5,0,0) 1.00 1.00 1.00 1.00 1.00 1.00 
(2,0,0) 1.00 1.00 1.00 1.00 1.00 1.00 

(0.2,0.4,0.6) 

(0.5,0,0) 0.905 0.916 0.913 0.957 0.957 0.958 
(1,0,0) 1.00 1.00 1.00 1.00 1.00 1.00 

(1.5,0,0) 1.00 1.00 1.00 1.00 1.00 1.00 
(2,0,0) 1.00 1.00 1.00 1.00 1.00 1.00 
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