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Abstract

Fiducial generalized pivotal quantity and the parametric bootstrap approach are a type
of Monte Carlo method applied on observed data. These approaches can be applied in
situations where samples or sample statistics are not easy to derive. In this paper, we
consider multiple comparison produces for one-way ANOV A under unequal variances.
We compare two methods based on fiducial generalized pivotal quantity and a
parametric bootstrap approach. A Monte Carlo simulation study is conducted to
evaluate type I error probabilities and powers of these methods under different
scenarios.
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multiple comparison.

1. Introduction

Consider the usual one-way fixed-effects model:
Xij = U + gij; i= 1, ...,m;k = 1, e 1

where the ¢;; are independent N (0, al-z) random variable. The means p; and variances

of are assumed to be unknown. When variances are all equal, the one-way layout has
been studied extensively in the literature. The existing methods for such cases include
Scheffe’s method, Bonferroni inequality-based method and Tukey-Kramer method,
etc. When the variances are unequal, research of multiple comparisons is limited.
Games and Howell (1976) developed a method for constructing simultaneous
confidence interval based on the Behrens-Fisher statistic and an estimated degree of
freedom. Kaiser and Bowden (1983) discussed simultaneous confidence intervals for
all linear contrasts in a one-way layout with unequal variance. Witkovsky (2002)
developed the methods to calculate the p-values required for deriving the conservative
joint confidence interval estimates for the pairwise mean differences, referred to as the
generalized Scheffé intervals. Chang et al. (2009) proposed simultaneous fiducial
generalized confidence intervals for pairwise comparisons of means in the one-way
fixed-effect model. Li (2009) investigated an exact method that extends Dunnett's
method on the multiple comparisons with a control (MCC) to the case of unequal error
variances when the ratios of population variances of knew treatments to that of the
control group are known from previous experience. Xiong and Mu (2009) developed
two kinds of simultaneous confidence intervals for one-way layout based on
generalized pivotal quantities. Zhang (2015) presented the parametric bootstrap
approach to a multiple comparison procedure. Sezer et al. (2015) compared confidence
intervals based on classical and generalized approach for The Behrens-Fisher problem.

In this research, we compare two methods based on generalized approach by Xiong
and Mu (2009) and the parametric bootstrap approach by Zhang (2015) for one-way
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fixed-effects model under heteroscedasticity and unequal sample size. A Monte Carlo
simulation study is conducted to evaluate type I error probabilities and powers of these
methods under different scenarios.

2. A review of the procedures

Let Xjy, ..., Xin, be random variable from N(ui, aiz),i =1,..., k. Suppose that all X;
are independent, k = 1, ...,n;. The parameters of interest are y; —u; for all i <j.

Denote,
m n; n;
_ 1 ) 1 _
N=Zni, Xiz—ZXik andSi = Z(Xik_Xi) ,=1,...,m (1)
: n n;—1
=1 k=1 k=1
Recall that
X —w n; — 1)S?
Jni la. a ~N(0,1), %ﬁ(ﬁ,l_l,i =1,..,m 2

3 i

are jointly independent.
2.1 Two methods based on fiducial generalized pivotal quantity (FGPQ)

Weerahandi (1993) defines a generalized pivotal quantity as a statistic that has a
distribution free of unknown parameters and an observed value that does not depend
on nuisance parameters. The possibility of exact confidence interval can be achieved
by extending the definition of confidence interval. The generalized pivotal quantity is
allowed to be a function of nuisance parameters. Combining Fisher’s fiducial
arguments and the generalized p-value approach, Hannig (2009) and Hannig et al.
(2006) developed a fiducial recipe for generalized confidence intervals. Using the
FGPQ, Xiong and Mu (2009) present two new kinds of simultaneous confidence
interval of all-pairwise differences.

Let E;~N(0,1),C?~ X"Zli_l’ i =1,...,m, bejointly independent and be independent
of the observation Xj,i = 1,...,m,k = 1, ...,n;. Using Equation (2), the FGPQs for

Y; and GL-Z, i =1,...,m are obtained as

_ n; — 1S;E; (n; — 1)S? _
R, =X;— f , R,=——"  i=1,..m
Hi ' n G ot c?

Some calculations yield that for all i # j,

_ n; — 1S;E; _ n; —1S;E;
— Ry, =X — : L X - i —
t 7 n; Ci le C]

E* (R, —Ry) =% - %,

R

(n; — 1)S? (nj - 1)51'2
Var*(R,. — R,.) = ,
ar ( i #1) n;(n; — 3) + n;(n; — 3)

2 2
o o
=V (E* R, — Ry ):—‘+L
(1] ar (llz #1) n; n;
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(i —1)sE (- 1)S7

Where E* and Var™ represent conditional expectation and conditional variance
conditional on T = (X;, ..., X, SZ, ..., S4), respectively, and R¢,; is the FGPQ of {;;.
Note that the distribution of

Iﬂui — i~ E (Rﬂi - Rﬂj)l

max;<; 72 3)
(Var* (Ru - Rﬂj))
can be approximated by the conditional distributions of
R, —R,,—E"(R,, —R
mi — uy i uy
Q, = maxi«; : ( 1/2 ]) 4)
(Var* (Rm - RH],))
or
R, —R,,—E*"(R,, —R
Hi 1y i~ Sy
Q; = max;; : ( 1) %)

1/2
Rfij

conditional on T. Q;and @, can be computed by the Monte Carlo method.
2.2 The parametric bootstrap (PB) method for multiple comparison

The parametric bootstrap (PB) approach is a type of Monte Carlo method applied on
observed data (Efron and Tibshirani 1993). The parametric bootstrap involves
sampling from the estimated models. That is, samples or sample statistics are generated
from parametric models with the parameters replaced by their estimates.
Krishnamoorthy et al. (2007) developed the PB approach for one-way ANOVA under
unequal variances. The PB approach has been carried out to solve a number of
problems when exact solutions are not available satisfactorily for example in Ma and
Tian (2009), Krishnamoorthy and Lu (2010), Xu et al. (2013).

Zhang (2015) extended the PB approach for a multiple comparison procedure. He
took common mean to be zero and developed the PB method for multiple comparisons

as follows. Let Xg;~N (0, ;) and Sg;~ e L= 1, ..., k. Hence,
_ X — X

T..

7]
2 2
Ssi 4 S8j
n; T’lj

has the same distribution as

(6)
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- £t~ %l

fori <j,i,j=1,..,r 7

St 2 S 2
———Xn1 T~ Xn.—
\]ni(ni_l)xnl ! nj(nj—l)xnl 1
T;;j can be computed by the Monte Carlo method.

3. Simulation

In this section, we use simulation to compare the two methods based on fiducial
generalized pivotal quantity and a parametric bootstrap approach under the assumption
of heteroscedastic variances and unequal sizes. For a given sample size and parameter
configurations, we generated 2000 observed vectors (X, ..., X3; 5%, ...,52) and used
2000 runs to estimate the p-value. The estimates of type I error rates and powers of
tests for pairwise multiple comparisons under heteroscedasticity are presented in
Table 1 and Table 2.

4. Conclusions

In this paper, we consider multiple comparison produces for one-way ANOVA under
unequal variances. We compare two methods based on fiducial generalized pivotal
quantity and a parametric bootstrap approach. Simulation studies show that the type I
error of method based on PB approach are closer to the nominal level. The power of
the method based on equation (4) test is best among the three tests.
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Table 1. Type I error rates of the proposed tests for multiple comparison procedure
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with @ = 0.05 and (uq, 5, u3) = (0,0,0).

(02,02,0%) PB Ql Q2 PB Q1 Q2
(ny,ny,n3) = (5,5,5) (ny,n5,n3) = (10,10,10)
1,1,1) 0.044 0.103 0.130 0.061 0.086 0.091
(2,2,2) 0.044  0.103 0.130 0.061 0.086 0.091
(1,2,3) 0.050  0.102 0.126 0.055 0.078 0.094
3,2,1) 0.038  0.102 0.127 0.060 0.081 0.101
(1,3,5) 0.056 0.107 0.132 0.060 0.083 0.095
(5,3,1) 0.039 0.110 0.134 0.059 0.083 0.094
(nq,ny,n3) = (10,20,30) (ny,n5,n3) = (25,50,75)
(1,1,1) 0.056  0.069 0.075 0.047 0.053 0.058
(2,2,2) 0.056  0.068 0.075 0.047 0.053 0.058
(1,2,3) 0.048 0.061 0.063 0.053 0.057 0.058
(3,21 0.059 0.079 0.089 0.043 0.050 0.056
(1,3,5) 0.043 0.051 0.058 0.056 0.056 0.059
(5,3,1) 0.057  0.082 0.092 0.044 0.053 0.057
(ny,n5,n3) = (30,30,30) (ny,ny,n3) = (50,50,50)
1,1,1) 0.048 0.054 0.055 0.048 0.054 0.055
(2,2,2) 0.048 0.054 0.053 0.045 0.054 0.055
(1,2,3) 0.048  0.054 0.057 0.049 0.048 0.053
3,2,1) 0.052  0.058 0.064 0.046 0.051 0.053
(1,3,5) 0.046  0.053 0.056 0.049 0.053 0.054
(5,3,1) 0.053 0.056 0.063 0.045 0.052 0.053
(ny,n,,n3) = (50,100,150) (nq,n,,n3) = (100,100,100)
(1,1,1) 0.041  0.044 0.046 0.042 0.045 0.044
(2,2,2) 0.041  0.044 0.046 0.042 0.045 0.044
(1,2,3) 0.043  0.043 0.052 0.046 0.051 0.051
(3,2,1) 0.042 0.047 0.044 0.042 0.043 0.044
(1,3,5) 0.040 0.043 0.051 0.056 0.057 0.058
(5,3,1) 0.048 0.051 0.051 0.047 0.049 0.049
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Table 2. The powers of the proposed tests for multiple comparison procedure with ¢ =
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0.05.
(02,0%,03) | (uy, iz 13) B — ?51_5’5) Q PBn — (1(3,110,10)@
(050,00 | 0.094 0.181 0213 | 0.174 0225 0.248
wLiD) (1,0,0) | 0247 0388 0435 | 0.546 0.622 0.661
" (1.5,0,0) | 0.496 0.664 0.706 | 0.896 0917 0.928
(2,00) | 0.745 0.869 0.903 | 0.994 0.996 0.997
(050,00 | 0.161 0280 0325 | 0312 0392 0414
(1,0,0) | 0495 0.644 0686 | 0.877 0.909 0.919
(0.2,0.4,0.6)

(150,00 | 0.824 0928 0942 | 0.999 1.00  1.00

(2,000 | 0971 0995 0998 | 1.00 1.00  1.00

n = (10,20,30) n = (20,20,20)
(050,00 | 0236 0271 0294 | 0380 0.421 0431
L) (1,00) | 0.678 0.730 0.746 | 0.940 0.952 0.956
" (1.5,0,0) | 0963 0973 0979 | 1.00 1.00  1.00
(2,000 | 0999 0999 0999 | 1.00 1.00  1.00
(0.50,0) | 0.508 0.669 0.560 | 0.630 0.544 0.560
(1,00) | 0980 098 0988 | 1.00 0.986 0.988
(0.2,0.4,06) (1.5,0,0) | 1.00 1.00 100 | 1.00 1.00 1.00
(2,0,0) 100 1.00 1.00 | 1.00 100 1.00
n = (25,50,75) n = (50,50,50)

(0.50,0) | 0.505 0.526 0533 | 0.696 0.704 0.713

L) (1,00) | 0984 0988 0988 | 1.00 1.00  1.00
o (1.50,0) | 1.00 1.00 100 | 1.00 1.00 1.00
(2,0,0) 100 1.00 1.00 | 1.00 1.00 1.00
(0.50,0) | 0.905 0916 0913 | 0.957 0957 0.958

(0.204,06) (1,0,0) .00 1.00 1.00 | 1.00 100 1.00
m (1.50,0) | 1.00 1.00 100 | 1.00 1.00 1.00
(2,0,0) 100 1.00 1.00 | 1.00 1.00 1.00
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