
Ñ

Estimation of Change-point and Post-change Means by Adaptive

CUSUM Procedures

Yanhong Wu
Department of Mathematics, California State University Stanislaus, 

Turlock, CA 95382 USA

ABSTRACT

For a sequence of normal random variables, adaptive CUSUM procedures are 
used to detect mean change by using a sequence of adaptive sequential tests. An 
alarm is made when the adaptive CUSUM process crosses the boundary. We first 
give the asymptotic results for the average in-control and out-of-control run lengths. 
Then the biases of the change-point and post-change means are studied. Particular 
attentions are paid to the cases when the post-change mean is a sudden shift or 
linearly increasing. Nile river flow data and global temperature data are used for 
illustration.

Keywords: Adaptive CUSUM procedure; Biases; Nonlinear renewal theorem; Strong 
renewal theorem.

1 Introduction

For a sequence of independent normal random variables {Xi} for i = 1, 2, ... of unit 
variance with pre-change mean 0 for i ≤ ν and post-change µ for i > ν, the CUSUM 
procedure is defined to make an alarm at the point

= inf{n > 0 : Tn = max(0, Tn−1 + δ(Xn − δ/2)) > d},

for T0 = 0 and δ is selected as a target value for µ. Note that the classical procedure 
can be interpreted as a sequence of sequential probability ratio tests with two-sided 
boundary [0, d). Whenever a test ends with crossing the lower boundary 0, a new 
test starts again until a test ends with crossing the boundary d. The change-point 
is conveniently estimated as the starting point of the last test, and the post-change 
mean is estimated as the sample mean of the last test.

When the post-change mean µ is different from δ, the efficiency becomes low 
in terms of the average delay detection time. Also, it is only restricted to the 
constant post-change mean with a single jump. To overcome these limitation, the 
adaptive CUSUM procedure can be used by using a sequence of adaptive sequential 
tests (Robbins and Siegmund (1973, 1974)) in which the post-change parameters 
are adaptively estimated for each test.

More specifically, we consider a slightly general model by assuming that the post 
change mean µi(θ) for i > ν which depends on some unknown parameter θ and i−ν.

JSM2015 - IMS

3675



Based on the observations {Xk+1, ..., Xn} we define θk+1,n = θ(Xk+1, ..., Xn) as an
estimator of θ and θk+1,k = θ0 = δ for k ≥ 1. Also for notational convenience,
we denote by θn = θ1,n. The following algorithm defines the adaptive CUSUM
procedure:
Adaptive CUSUM Procedure:

(i) Set T0 = 0 and ν0 = 0. Define recursively for n > 0,

Tn = max{Tn−1 + µn(θνn−1+1,n−1)(Xn −
1

2
µn(θνn−1+1,n−1))}.

(ii) If Tn > 0, reset νn = νn−1 and θνn+1,n = θ(Xνn+1, ..., Xn);
(iii) If Tn = 0, update νn = n, and θn+1,n = δ.
(iv) An alarm is made at the time N = inf{n > 0 : Tn > d}. The change-point

and post-change parameter are estimated as

ν̂ = νN ; and θ̂ = θνN+1,N .

A variety of adaptive CUSUM procedures have been discussed. Dragalin (1997)
considered to use the sample mean. Yakir, Krieger, and Pollak (1999) and Krieger,
Pollak, and Yakir (2003) considered the linear post-change model. Capizzi and
Mascrotto (2003) considered an adaptive EWMA procedure. An adaptive Shiryayev-
Roberts procedure using the adaptive estimators is considered in Lorden and Pollak
(2005). Yashchin (1995) and Jiang, Shu, and Apley (2008) used the EWMA as the
adaptive post-change mean estimator. Han, Tsung, and Wang (2010) proposed to
use the last current observation as the estimator for the mean. Window-limited
likelihood-based detection procedures can be seen in Lai (1995) by generalizing
Siegmund and Venkatramen (1993).

In this paper, we consider the inference problem after the alarm by extending the
results of Wu (2004, 2005, 2014). In Section 2, we first present some preliminary
results of renewal theory related to the adaptive sequential test. In particular, a
renewal theorem for a random walk with random drift is stated. The asymptotic
results for average in-control and out-of-control run lengths are given in Section
3. In Section 4, we study the bias of the change point estimation and post-change
parameter estimation. In Section 5, the results are generalized to more general post-
change mean case. In particular, the case when the post-change mean is gradually
linear increasing is considered. Simulation results are presented in Section 6 and
applications to detecting changes in Nile river flow data and global warming are
used for illustration.

2 Adaptive sequential tests and a nonlinear renewal
theorem

In this section, we briefly review some basic results on the adaptive sequential tests
which are presented in Robbins and Siegmund (1973, 1974). Lorden and Pollak
(2005) also presented some basic results.

For given S0 and µ0, we define for n ≥ 1,

Sn = S0 +
n∑
i=1

µi−1(Xi − µi−1/2),
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where µi = µi(µ0, X1, ..., Xi) is estimated adaptively from the historyHi = σ(µ0, X1, ..., Xi).
To present the results clearly, in this section, we denote by P0(.) the probability mea-
sure when the mean of Xi’s is µ = 0, and by Pµ(.) when the mean is equal to µ.

We are interested in evaluating the boundary crossing probability P0(τd <∞|Hk),
where

τd = inf{n > 0 : Sn > d}.
Define a changed measure P ∗0 (.|Hk) by

dP ∗0 (.|Hk) = exp(Sn − Sk)dP0(.|Hk).

We are interested in evaluating the probability P0(τd <∞|Hk) as d→∞. Suppose
under P ∗0 (.|Hk), µk+1,n → µk+1,∞ almost surely as n→∞. The following theorem
is due Woodroofe (1990) which states that the renewal theorem still holds by con-
ditioning on the value of µk+1,∞.

Theorem 1: As d → ∞, assume µk+1,n converges to µk+1,∞ almost surely given
Hk. Given µk+1,∞ = µ, define S∗n =

∑n
i=1 µ(X∗i − µ/2) where X∗1 , ..., X

∗
n, ... are

conditional i.i.d. N(ν, 1) random variables, and

τ∗d = inf{n > 0 : S∗n > d}.

Then as d→∞ in distribution,

(µk+1,τd , Sτd − d)→ (µk+1,∞, R
∗
∞),

where R∗∞ = limR∗d = lim(Sτ∗
d
− d).

By using the renewal theorem, we can find

limP0(τd <∞|Hk) = limE∗0 [exp(−(Sτd − Sk)|Hk]

= e−d+SkE∗0 [ν(µk+1,∞)]

= e−d−r1(Hk)+Sk ,

where r1(Hk) = − lnE∗0 [ν(µk+1,∞)].

Example 1: (Recursive Mean Estimation ) Let {X1, ..., Xn, ...} be i.i.d. normal
random variables with mean µ and variance σ2. For given tuning value t > 0 and
initial estimator µk = δ given Hk, we define

µk+1,n(t, δ) =
t

t+ n− k
δ +

n− k
t+ n− k

X̄k+1,n,

where X̄k+1,n = (Xk+1 + ... + Xn)/(n − k). In special, when k = 0, we denote by
µn = µn(t, δ) = µ1,n(t, δ). Recursively, one can show that

µk+1,n(t, δ) = µk +
n∑

j=k+1

1

t+ j − k
(Xj − µj−1)

= µk+1,n−1 +
1

t+ n− k
(Xn − µk+1,n−1).

As n → ∞, it can be shown that µk+1,n(t, δ) almost surely converges to a normal
variable with mean µk and variance σ2k =

∑∞
j=1 1/(t+ k + j)2. Thus,

e−r1(Hk) =

∫
ν(y)

1

σk
φ

(
y − µk
σk

)
dy =

∫
ν(µk + σky)φ(y)dy.
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3 Average run lengths

Define for S0 = x,

Nx = inf{n > 0 : Sn ≤ 0, or Sn > d},

where Sn = S0 +
∑n
i=1 µi−1(Xi− µi−1/2) and µi = µi(µ0, X1, ..., Xi−1) with µ0 = δ.

When there is no change, each time the CUSUM process Tn comes back to zero
consists a renewal point. Similar to the proof for the regular CUSUM procedure
(Siegmund(1985, Ch.2)), the average in-control run length is equal to

ARL0 = E0[N ] = E0[N0]/P0(SN0 > d),

as N is in distribution equal to N
(1)
0 + ..., N

(K)
0 , where K = inf{i > 0 : S

N
(i)
0

> d}

and N
(i)
0 are i.i.d. copies of N0. Since

P0(SN0 > d) = P0(τd <∞)− P0(τd <∞;SN0 ≤ 0)

= E∗0 [e−Sτd ]− E0[P0(τ <∞|SN0);SN0 ≤ 0]

= e−d−r1 − E0[e
−d−r1(HN0

)+SN0 ;SN0 ≤ 0]

= e−d(e−r1 − E∗0 [e−r1(HN0
);SN0 ≤ 0])

≈ e−d(e−r1 − E∗0 [e−r1(Hτ− ); τ− <∞]),

as d→∞. Similarly, we can see

E0[N0] = E∗0 [N0e
−SN0 ]

≈ E∗0 [τ−e
−Sτ− ; τ− <∞].

Thus,

ARL0 ≈ ed
E∗0 [τ−e

−Sτ− ; τ− <∞]

e−r1 − E∗0 [e−r1(HN0
);SN0 ≤ 0]

.

To evaluate ARL1, we can write

ARL1 = Eµ[N0]/Pµ(SN0 > d).

From Robbins and Siegmund (1974), {
∑m
n=1 µn−1(Xn − µ)} is a martingale. Thus

Eµ

 N0∑
n=1

µn−1Xn

 = µEµ

 N0∑
n=1

µn−1

 .
Rewriting it, we have

E0[N0] =
2

µ2

Eµ
 N0∑
n=1

µn−1(Xn − µn−1/2)

 +
1

2
Eµ

 N0∑
n=1

(µn−1 − µ)2


=

2

µ2

Eµ[SN0 ] +
1

2

N0∑
n=1

(µn−1 − µ)2


=

2

µ2
[Eµ[SN0 |SN0 > d]Pµ(SN0 > d) + Eµ[SN0 ;SN0 ≤ 0]

+
1

2
Eµ

 N0∑
n=1

(µn−1 − µ)2

 .

JSM2015 - IMS

3678



As d→∞, we have the following approximation for ARL1,

ARL1 =
2

µ2
Eµ[SN0 |SN0 > d]

+
2

µ2
Eµ[SN0 ;SN0 ≤ 0] + 1

2Eµ[
∑N0
n=1(µn−1 − µ)2]

Pµ(SN0 > d)

≈ 2

µ
(d+ ρ(µ)) +

2

µ2
Eµ[Sτ− ; τ− <∞]

Pµ(τ− =∞)
+

1

µ2
Eµ[

∑N0
n=1(µn−1 − µ)2]

Pµ(SN0 > d)
,

where
ρ(µ) = lim

d→∞
Eµ[SN0 − d|SN0 > d].

The last term is the one caused the difference between the regular CUSUM procedure
when µ is known and the adaptive CUSUM procedure for the same control limit d
and needs more careful treatment, we first can write

Eµ[
∑N0
n=1(µn−1 − µ)2]

Pµ(SN0 > d)
≈ Eµ

 N0∑
n=1

(µn−1 − µ)2|SN0 > d

+
Eµ[

∑τ−
n=1(µn−1 − µ)2; τ− <∞]

Pµ(τ− =∞)
.

Given SN0 > d, we see that N0/d ≈ 1/(µ2/2), Thus, since Eθ(µn−1−µ)2 = O(1/n),

the first term will be at the order of
∑d/(µ2/2)
n=1 (1/n) = O(ln(d/(µ2/2))). Thus, we see

that the adaptive CUSUM procedure is efficient at the first order, but not on the sec-
ond order. Unfortunately, it seems difficult to develop second order approximations
for the related quantities, so we only show simulated results for comparison.

4 Biases of estimation

In this section, we study the biases of the estimation for the change point and post-
change mean in the recursive mean estimation case. The main ideas follow the lines
of Srivastava and Wu (1999) and Wu(2004).

4.1 Bias of ν̂

From the renewal theorem, as ν → ∞, (ν − νn, Tn) converges in distribution to
(L,M) where L follows distribution

P0(L = k) = P0(τ− ≥ k)/E0τ−, for k ≥ 0,

and given L = k, M follows the same distribution as Sk given S1 > 0, ..., Sk > 0 and
µ0 = δ. In particular, if L = 0, M = 0. Similar to Wu (2004), we can write

Eν [ν̂ − ν|N > ν] = Eν [ν̂ − ν; ν̂ > ν|N > ν]− Eν [ν − ν̂; ν̂ < ν|N > ν].

The event {ν̂ > ν} is asymptotically equivalent to τM <∞ with initial state (L,M).
Given ν̂ > ν, ν̂ − ν is equivalent to τM plus the total length of cycles of Tn coming
back to zero afterwards with total expected length

Eµ[τ−; τ− <∞]

Pµ(τ− =∞)
.
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On the other hand, given ν̂ < ν, ν − ν̂ is asymptotically equal to L. Thus, we have
the following result:

Theorem 3: As ν, d→∞,

Eν [ν̂ − ν|N > ν]→ E0[Eµ[τ−M ; τ−M <∞|L,M ]]

+ E0[Pµ(τ−M <∞|L,M)]
Eµ[τ−; τ− <∞]

Pµ(τ− =∞)
− E0[LPµ(τ−M =∞|L,M)].

4.2 Bias of µ̂

To evaluate the bias of µ̂, we again write

Eν [µ̂− µ|N > ν] = Eν [µ̂− µ; ν̂ > ν|N > ν] + Eν [µ̂− µ; ν̂ < ν|N > ν].

For the recursive mean estimation, given ν̂ > ν, µ̂ = µN0(t) conditioning on SN0 > d
with µ0 = δ and S0 = 0. On the other hand, given ν̂ < ν, µ̂ is equivalent to µN0(t+L)
with initial mean

µ′L =
δt+ LX̄ ′L
t+ L

,

with S0 = M , where L,M, and µ′L are defined from another independent copy
{X ′1, ..., X ′n, ..., } of {X1, ..., Xn, ...}. Therefore, as ν, d→∞,

Eν [µ̂− µ|N > ν]→ Eµ[µN0 − µ|SN0 > d]E0[Pµ(τ−M <∞|L,M)]

+E0[Eµ[µN0(t+ L)− µ|SN0 > d;S0 = M ;µ0 = µ′L]Pµ(τ−M <∞|L,M)].

It seems difficult to derive the second order approximation for the bias, and we only
give the first order result:

Theorem 4: As ν, d→∞, uniformly for µ in a compact positive interval,

Eν [µ̂− µ|N > ν] =
1

d

[
µ2

2
t(δ − µ) + µ+

µ2

2
E0[L(X̄ ′L − µ)Pµ(τ−M =∞)]

+
µ

2

P0µ(τ−M <∞)

Pµ(τ− =∞)

∂

∂µ
Pµ(τ− =∞) +E0[

∂

∂µ
P0µ(τ−M =∞)]

]
(1 + o(1)).

Proof. Note that conditioning on SN0 > d, uniformly for µ in a compact positive
interval, as d→∞,

N0 = (d/µ2/2)(1 + op(1)),

and

µN0 =
t

t+N0
δ +

N0

t+N0
X̄N0

=

(
t(δ − µ)

N0
+ X̄N0

)
(1 + op(1)).

Thus, we can write

Eµ[µN0 − µ;SN0 > d] =
t(δ − µ)

2

µ2

2
Pµ(SN0 > d)
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+
1

d

∂

∂µ

(
µ2

2
Pµ(SN0 > d)

)
(1 + o(1)).

Thus, we have

Eµ[µN0 − µ|SN0 > d] =
1

d

[
µ2

2
t(δ − µ) + µ+

µ2(∂/∂µ)Pµ(SN0 > d)

2Pµ(SN0 > d)

]
(1 + o(1))

=
1

d

[
µ2

2
t(δ − µ) + µ+

µ2(∂/∂µ)Pµ(τ− =∞)

2Pµ(τ− =∞)

]
× (1 + o(1)).

Similarly,

E0[Eµ[µN0(t+ L)− µ;SN0 > d]]

= E0

[
Eµ

[
tδ + LX̄ ′L +NMX̄NM

NM + t+ L
− µ;SNM > d

]]

=
1

d

[
tµ2

2
(δ − µ)P (τ−M =∞) +

µ2

2
E[L(X̄ ′L − µ); τ−M =∞]

+
∂

∂µ
(
µ2

2
P (τ−M =∞))

]
(1 + o(1)).

5 Generalizations

The main advantage for the adaptive CUSUM procedure is that it can not only be
flexibly adapted to more general post-change mean models, but also be used for
unknown initial mean case.

5.1 Unknown initial mean

Let µ0 and µ be the pre-change and post-change means which are unknown and
µ− µ0 > 0 be the change magnitude. We can update the estimate for µ0 after each
sequential test when it goes below zero and trace the change magnitude recursively
when a new sequential test is formed. More specifically, with a little abuse of

notations, let µ
(0)
0 = µ0 and δ

(0)
0 be the assigned starting value for the pre-change

mean and change magnitude. Define

N (i) = inf{n > 0 : S(i)
n =

n∑
j=1

δ
(i−1)
j−1 (X

(i)
j − µ

(i−1)
0 − δ(i−1)j−1 /2) ≤ 0; or > d},

where
δ
(i−1)
j−1 = µ(δ0, X

(i)
1 − µ

(i−1)
0 , X

(i)
2 − µ

(i−1)
0 , ..., X

(i)
j−1 − µ

(i−1)
0 ),

and if S
(i)
N(i)
≤ 0, we update µ

(i−1)
0 to

µ
(i)
0 =

(N (1) + ...+N (i−1))µ
(i−1)
0 +X

(i)
1 + ...+X

(i)

N(i)

N (1) + ...+N (i)
.

An alarm will be made at N (1) + ...+N (K) where

K = inf{i ≥ 1 : S
(i)

N(i) > d}.
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The change-point ν and post-change mean will be estimated as

ν̂ = N (1) + ...+N (K−1), and µ̂ = µ
(K−1)
0 + δ

(K)

N(K) ,

with µ
(K−1)
0 being the pre-change mean estimation.

5.2 Restricted adaptive estimations

For practical application, a shortcoming of the recursive post-mean estimation is
that it may become negative. Robbins and Siegmund (1974) proposed to use

max(δ, µk+1,n(δ, t))

as the adaptive estimation where δ is treated as the minimum shift amount to detect.
Sparks (2000) and Jiang,Shu, and Apley (2008) proposed to use restricted ex-

ponentially weighted moving average as the adaptive estimation. More specifically,
instead of using the sample mean we define

µk+1,n(δ, β) = (1− β)µk+1,n−1(δ, β) + βxn,

as the exponentially weighted moving average and use max(δ, µk+1,n(δ, β)) as the
adaptive estimation. The EWMA as a control charting tool has been extensively
studied in the literature and an adaptive EWMA procedure can be seen in Capizzi
and Mascrotto (2003). An advantage of EMMA estimation is that it gives the
current mean estimation for more flexible post-change mean structures.

5.3 Detecting slope change

Suppose the means follow the model

µk(ν) = I[k≤ν] + β(k − ν)I[k>ν].

Following the same idea as for the mean shift case, we define the adaptive estimator
for β based on Xk+1, ..., Xn as

βk+1,n(β0, t) =
tβ0 +

∑n
j=k+1(j − k)Xi

t+
∑n
j=k+1(j − k)2

= βk+1,n−1 +
n− k

t+
∑n
j=k+1(j − k)2

(Xn − (n− k)βk+1,n−1),

where βk+1,k = β0 by default. The CUSUM process can be defined as

Tn = max{0, Tn−1 + βνn−1+1,n−1(n− νn−1)(Xn −
1

2
βνn−1+1,n−1(n− νn−1))},

where the adaptive change-point estimation is updated as νn = νn−1 if Tn > 0, and
ν = 0 if Tn = 0. After an alarm is raised at N , the change-point is estimated as νN ,
and the post-change slope is estimated as

βνN+1,N =
tβ0 +

∑N
j=νN+1(j − νN )Xi

t+
∑N
j=νN+1(j − νN )2

.
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Table 1: Simulated ARL0 for recursive mean estimation with d = 4.8

(δ,t) A B C ARL0

(1.0,0.0) 0.519 0.395 1.885 1117.5
(1.0,0.5) 0.518 0.447 1.890 993.7
(0.5,0.0) 0.367 0.442 2.132 1596.2
(0.5,0.5) 0.343 0.490 2.198 1589.1

6 Simulation study and application

In this section, we run some simulation studies to show the performance of the
adaptive CUSUM procedure in the simple recursive mean estimation case and then
apply the procedure to the Nile river flow data and global warming data by fitting
into mean shift and piecewise linear change models.

6.1 Simulation study

For δ = 1.0, 0.5 and t = 0.0, 0.5, we let d = 4.8. Table 1 gives the simulated results
for ARL0 where we use the adaptive importance sampling technique by simulating
ARL0 as

ARL0 =
E∗0 [N0e

−SN0 ]

E∗0 [e−SN0 ;SN0 > d]
= ed

C

A×B
,

where A = P ∗0 (SN0 > d), B = E∗0 [e−(SN0
−d)|SN0 > d], and C = E∗0 [N0e

−SN0 ]. The
simulation is replicated for 10,000 times. The results show that the effect of t is not
significant.

Table 2 gives the correspondingARL1 for several typical values of µ where E[RN0 |.] =
E[SN0 − d|SN0 > d].

Finally, we simulate the biases for the change-point and post-change mean es-
timators. For the same designs given in Table 2, the simulation is replicated 5000
times and and only those stopping times with N > ν are counted to calculate the
conditional expectations. Reported also includes the average delay detection time

ADT = Eν [N − ν|N > ν],

as an alternative to ARL1. By comparing Table 3 with Table 2, we see that there
are very little differences between ALR1 and ADT . Also, the bias for the change-
point estimation gets larger when the post-change mean gets smaller, so is the bias
for the post-change mean estimation.

6.2 Nile river flow data

The Nile river flow data from 1871 to 1970 are reproduced from Cobb(1978) ( also
see Wu (2005, pg. 27)). A plot shows that there is obvious decrease after year 1900.
To use the adaptive CUSUM procedure, we use the first 20 data from year 1871 to
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Table 2: Simulated ARL1 for recursive mean estimation with d = 4.8

µ Pµ(SN0 > d) Eµ[N0] Eµ[RN0 |.] ARL1

δ = 1.0 t = 1.0
0.50 0.119 4.786 0.542 40.32
0.75 0.277 5.322 0.669 19.19
1.00 0.437 5.11 0.861 11.69

δ = 1.0 t = 0.5
0.50 0.134 5.205 0.500 38.76
0.75 0.302 5.516 0.657 18.30
1.00 0.482 5.348 0.837 11.10

δ = 0.5 t = 0.0
0.50 0.121 5.423 0.521 44.74
0.75 0.265 5.583 0.666 21.07
1.00 0.433 5.436 0.833 12.55

δ = 0.5 t = 0.5
0.50 0.154 6.198 0.494 40.35
0.75 0.337 6.654 0.643 19.74
1.00 0.511 6.096 0.788 11.92

Table 3: Simulated bias at ν = 75 with d = 4.8

(δ,t) µ ADT E[ν̂ − ν|.] E[µ̂− µ|.]
(1.0,0.0) 0.50 38.61 12.96 0.448

0.75 17.93 1.75 0.348
1.00 10.98 -0.72 0.266

(1.0,0.5) 0.50 36.51 11.14 0.417
0.75 17.39 1.47 0.319
1.00 10.42 -1.05 0.226

(0.5,0.0) 0.50 41.98 14.83 0.394
0.75 19.47 2.60 0.315
1.00 11.57 -0.59 0.233

(0.5,0.5) 0.50 38.88 10.290 0.337
0.75 18.43 0.86 0.246
1.00 11.33 -1.54 0.147
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1890 as the training sample to estimate the pre-change mean and stdev as 1070 and
143, respectively. We standardize the data by letting

xi = −(yi − 1070)/143,

and a negative sign is added in order to detect an increase in mean. For t = 0.5
and δ = 0.5 and 1.0 with d = 30, the adaptive CUSUM procedure gives N = 52
and ν̂ = 28, which is the same as using the regular CUSUM procedure with known
post-change mean (Wu (2005)). Also, the post-change mean is estimated as 1.62,
which gives post-change mean 1070 − 143 ∗ 1.62 ≈ 838. Figure 1 plots the data
and the CUSUM processes. Note that we implicitly assumed that the post-change
variance is the same as the pre-change variance.

6.3 Global warming data

In this subsection, we apply the technique to global warming data. The data set in
Figure 2 gives the global average temperature from 1880 to 2013 which is available
at http://data.giss.nasa.gov/gistemp/. A piecewise linear model is used in Karl,
Knight, and Baker (2000) for a smaller data set (1880-1997) by fitting an AR(1)
time series error model with wavelet analysis. It reveals that there are increment
periods.

The scatterplot of the data {yi} for i=1,..., 134 (years 1880-2013) shows that
there are two increment periods. To detect the first change, we use the initial value
µ0 = −0.264 as the mean of the first 30 observations with s.d. =0.096. Then the
data are standardized by letting

xi = (yi + 0.39)/0.13,

which are assumed to be i.i.d. N(0,1) random observations by ignoring the corre-
lations. As it is not clear whether the change is shift or linearly increasing, we use
both procedures. For the mean shift model, we use t = 0.5 and δ = 0.5 to estimate
the post-change mean recursively. For d = 10 as the control limit, the alarm is
raised at year 1937 (N = 58) with change-point at year 1922 (ν̂ = 43 ) and the
post-change mean is estimated as 1.224.

For the linear change model, we use β0 = 0.25 and t = 0.5 and the adaptive
CUSUM procedure with recursive least-square estimation for β gives the alarm
time N = 57 (year 1936) and ν̂ = 43 (which corresponds to the year 1922). And
the post-change slope is estimated as 0.162. That means, the fitted model without
correction is

xi = 0.162(i− 43)+ + εi;

yi = −0.264 + 0.0156(i− 44)+ + 0.096εi,

for i = 1, ..., 57. Figure 3 gives the plots of the CUSUM processes based on the
mean shift and linear change model respectively.

Figure 4 also plots the CUSUM processes based on the Robbins-Siegmund adap-
tive estimator and the EWMA adaptive estimator by treating δ is the minimum
post-change mean. For both processes, ν̂ = 44 and N = 58. The post-change mean
and current mean at detection are estimated as 1.272 and 1.674 respectively.
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To detect the second increment, we start from i = 61(which is year 1940) and
use µ0 = −0.018 as the mean of the temperatures from year 1940 to 1969 with s.d.
=0.09. So the data is normalized as

xi = (yi + 0.018)/0.09,

for i ≥ 41. As a linear post-change mean pattern is so obvious, we use the initial
values β0 = 0.25 with t = 0.5 and d = 10, the adaptive CUSUM procedure with
recursive least-square estimation for β gives the detection time N = 48 (correspond-
ing to year 1987) and ν̂ = 39 (corresponding to year 1978). The post-change slope
is estimated as 0.344. That means, the fitted model without correction is

xi = 0.344(i− 98)+ + εi;

yi = −0.018 + 0.031(i− 39)+ + 0.09εi,

for i = 39, ..., 108. In fact, we see that the slope is larger for the second increment
period. Under the mean shift model with δ = 0.5, t = 0.5 and d = 10, the alarm
time is N = 44 (year 1983) and hatν = 37 (year 1976). Figure 5 gives the plots of
the two CUSUM processes until the alarm time.

Note that the method can also be used to detect the decreasing of intercept
or slope. An analysis under AR(1) model by considering the correlation without
adaptive estimation is conducted in Wu (2015).

7 Conclusion

In this paper, we discussed an adaptive CUSUM procedure in order to deal with
more flexible post-change mean structures. Sudden mean shift and linear increas-
ing post-change means are used for illustration. The convenience for the adaptive
CUSUM procedure is that it is easy to estimate the change-point estimation and
post-change mean comparing with other detecting procedures. Future investigations
are underway to consider generalized exponential family model, the case when both
mean and variance change, and also the dependent observation case in order to fit
longitudinal data, see Wu(2015) for the discussions under AR(1) model. Also more
theoretical comparisons between alternative adaptive CUSUM procedures are under
investigation.
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   Figure 1. Nile river flow data and adaptive CUSUM process 

Figure 2. Global temperature from 1880 to 2013 
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 Figure 3 CUSUM process based on mean shift and linear post-change mean 

Figure 4. CUSUM process based on Robbins-Siegmund and EWMA estimators 

          Figure 5. CUSUM process based on linear post-change and mean shift 
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