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Abstract
The bond percolation threshold of the cubic lattice is shown to be less than 0.447792 by
applying the approach of Wierman and McCarthy (2015) based on the containment principle
and substitution method, but employing a more efficient computational method. The bound
is only a slight improvement of the their uppper bound of 0.452595, and the investigation
suggests that substantial further improvements are unlikely using this approach.
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1. Introduction

Since the introduction of percolation models by Broadbent and Hammersley (1957),
they have become widely adopted by physicists and engineers as simple models for
phase transitions and critical phenomena. The quantity of most interest is the
percolation threshold, which is viewed as a phase transition point, such as a freez-
ing or melting temperature. The mathematical theory is surveyed in the research
monographs by Kesten (1981), Hughes (1996), Grimmett (1999), and Bollobás and
Riordan (2006). Physics and engineering perspectives, respectively, are presented
in the books of Stauffer & Aharony (1991) and Sahimi (1994).

1.1 Definitions

To describe the bond percolation model, consider a graph G which has a countably
infinite vertex set, is connected, and is locally-finite (i.e., each vertex has finite
degree). Each edge is randomly declared to be “open” with probability p, where
0 ≤ p ≤ 1, and is “closed” otherwise. In an application, the vertices may represent
atoms, and open edges may represent bonds between them. The corresponding
probability measure on configurations of edges of G is denoted by Pp. For a vertex
v ∈ G, the connected component of open edges containing v is denoted by Cv, and
is called the open cluster containing v. Denote the number of vertices in Cv by |Cv|.
The bond percolation threshold, denoted pc(G), is the unique value of the parameter
p such that

p < pc(G) =⇒ Pp[∃v such that |Cv| = ∞] = 0

and
p > pc(G) =⇒ Pp[∃v such that |Cv| = ∞] = 1

The exact value of the bond percolation threshold is known for relatively few graphs,
and is highly dependent on the detailed structure of the graph. It is exactly known
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only for certain infinite tree graphs and a class of two-dimensional translation-
invariant lattice graphs which includes the square, triangular, and hexagonal tilings
of the plane. Although three-dimensional lattices are of considerable interest for
physics and engineering applications, the exact bond percolation threshold value is
not known for any three-dimensional lattice graph. In addition, there are very few
mathematically rigorous bounds, and they are not very accurate, so finding more
accurate bounds is a challenge for the theory.

The most important and most-studied three-dimensional example is the bond
percolation model on the cubic lattice. The standard representation is with vertex
set Z3, the set of ordered triples of integers. Two vertices are connected by an
edge if and only if their Euclidean distance is one, i.e. if their coordinates differ in
only one coordinate, by a difference of one. Given its importance, it is surprising
how few rigorous bounds have been obtained for the cubic lattice bond percolation
threshold, and how poor they are, as described in the following subsection.

1.2 Estimates and Bounds

Since nearly all mathematically rigorous results about the values of percolation
thresholds deal with two-dimensional lattice models, yet three dimensional lattices
are important for real-world applications, there is a long history of estimates in
the physics and engineering literature. For example, in the early years of per-
colation theory, a simulation by Domb and Sykes (1961) estimated its bond per-
colation threshold as pc( cubic ) ≈ 0.24. Chao (1982) proposed a theory of dual
lattices in three dimensions and applied it to conjecture that pc( cubic ) = 1/4.
With improvements in algorithms and computing power, more precision has been
obtained, with a recent estimate of Wang, Zhu, Zhang, Garoni, and Deng giving
pc( cubic ) ≈ 0.24881182(10). A mathematically rigourous 99.9999% confidence in-
terval, 0.2485 ≤ pc( cubic ) ≤ 0.2490, was obtained by Ball (2014).

There are only a few previous mathematically rigorous bounds, pointed out
in Wierman and McCarthy (2015): The lower bound pc( cubic ) ≥ 0.213490 is
obtained by bounding the reciprocal of the connective constant of self-avoiding walks
on the cubic lattice. Campanino and Russo (1985) proved that pc( cubic ) < 1/2.
Since the dice lattice is a subgraph of the cubic lattice, the containment principle
proves that pc( cubic ) ≤ pc( dice ) ≤ 0.477606, where the numerical bound was
determined by Wierman, Yu, and Huang (2015).

Figure 1: A subgraph of the dice lattice.
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Wierman and McCarthy (2015) lowered the upper bound to

pc( cubic ) < 0.452595.

The reason for concentrating on improving the upper bound is that it is much
further from the estimated value than the lower bound is.

1.3 Result and Outline

This article improves the computational efficiency of the Wierman and McCarthy
(2015) approach, using the containment principle and the substitution method, to
find the slightly improved upper bound

pc( cubic ) ≤ 0.447792.

The approach, and modifications from the Wierman and McCarthy approach, are
described in Section 2. The limitations of the approach are discussed in Section 3,
and a possible growth process approach is mentioned.

2. The Improved Upper Bound

2.1 The Substitution Method

The substitution method has been used to derive many of the most precise rigorous
bounds for percolation thresholds. It was introduced in Wierman(1990), and further
developed and applied by May and Wierman (2005, 2007), Wierman (1995, 2001,
2002, 2002a), and Wierman, Yu, and Huang (2015). The method is described in
Chapter 6 of Bollobás and Riordan (2006).

The substitution method compares probabilities of connections on a finite “sub-
stitution region” of a lattice for which the percolation threshold is unknown with
those on a substitution region of a lattice for which the percolation threshold is
exactly known, and computes mathematically rigorous bounds for the percolation
threshold of the unsolved lattice. The substitution regions of the two lattices must
have the same number of boundary vertices, i.e. vertices through which a path
could enter or leave the region from the rest of the lattice. Each lattice must be
an edge-disjoint union of isomorphic copies of its substitution region. The valid-
ity of the method relies on the equivalence of stochastic ordering and coupling in
probability theory. Here we will describe the method as necessary to discuss its
application to our problem.

2.1.1 Substitution Regions

We have considered several different subgraphs of the cubic lattice and compared
them with different exactly-solved bond percolation models using the substitution
method. In this section, we describe only the application which provided the small-
est upper bound for the cubic lattice bond percolation threshold.

For our smallest upper bound, we consider a subgraph constructed from “flat-
tened” cubes. We represent a stack of two cubes in the cubic lattice as planar
“flattened cubes” as shown in Figure 2. We compute bond percolation threshold
bounds for a subgraph of the cubic lattice which is isomorphic to the lattice L rep-
resented in Figure 3, corresponding to sets of cubes from four levels of the cubic
lattice. Neighboring cubes are in different levels so that the cubes are edge-disjoint,
and thus the events of their edges being open are stochastically independent.
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Figure 2: A planar representation of two cubes, for comparison to planar bond
percolation models.

Figure 3: A subgraph G of the cubic lattice containing some flattened cubes from
four layers. Cubes marked “+” are above the (x, y)-plane, and cubes marked “−”
are below the plane, so the cubes are edge-disjoint.

We compare the lattice L with the square lattice shown in Figure 4, with the
substitution region being a 4-cycle. The square lattice is also an edge-disjoint union
of isomorphic copies of its substitution region graph. A celebrated result of Kesten
(1981) proved that the bond percolation threshold of the square lattice is exactly
1
2 .

In Figures 2 and 4, the boundary vertices of the substitution regions are labelled
A, B, C, and D counterclockwise starting with the upper left corner.

2.1.2 Partition Probability Functions

A configuration is a designation of every edge of a substitution region as open or
closed. Each configuration determines a partition of the set of boundary vertices
into blocks which are connected by open edges within the substitution region. A
partition is denoted by listing the boundary vertices in blocks, with blocks separated
by vertical bars. For example, AB|CD denotes the partition in which A and B are in
the same connected component and C andD are in a different connected component.
The probability of a configuration is pm(1 − p)n, where m is the number of open
edges and n is the number of closed edges. The probability of a partition is the sum
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Figure 4: The substitution region for the square lattice (left) and the square lattice
shown to be the edge-disjoint union of isomorphic copies of the substitution region
(right). The dashed lines show that the entire plane may be tiled with edge-disjoint
copies of the region.

of the probabilities of the configurations in it, and thus is a polynomial function of
p.

Consideration of partitions instead of configurations considerably reduces the
amount of computation required. Since there are 20 edges in the substitution region
of flattened cubes, there are 220 = 1,048,576 configurations, while there are only
24 = 16 configurations for the square lattice substitution region. However, there are
only Bell(4) = 15 partitions of the boundary vertices for our substitution regions.
The substitution method compares the probabilities of these 15 partitions, but must
compute the partition probabilities from the configurations.

2.1.3 Stochastic Ordering

The boundary partitions form a partially ordered set, ordered by refinement: π ≤ ν
if each block of π is contained in a block of ν. The resulting partially ordered set
on n boundary vertices is the partition lattice Pn.

Stochastic ordering is used to compare the two probability measures defined on
the partition lattice Pn. A subset U of Pn is an upset if ∀f, g ∈ Pn, if f ∈ U and
f ≤ g, then g ∈ U . If P and Q are two probability measures on a set Pn, we say P
is stochastically smaller than Q, denoted P ≤st Q, if P (U) ≤ Q(U) for all upsets U
of Pn.

We compute probability measures on the partition lattice Pn. A family of prob-
abilty measures parameterized by p, denoted PL

p , describes the connection prob-
abilities for the substitution region for the unsolved lattice L. The probability
measure PS describes the connection probabilities for the substitution region for
the solved square lattice at its percolation threshold value 1

2 . Any value of p for
which PS ≤st P

L
p is an upper bound for the percolation threshold of G, so we find

the smallest such p. Similarly, the largest p for which PL
p ≤st P

S provides a lower
bound for the percolation threshold of L.

Note that, although the definition of stochastic ordering involves upset probabil-
ity inequalities, we may convert the problem into one of checking upset probability
equations. For each non-trivial upset U , the partition probability function PL

p (U)
is a strictly increasing function of p which increases from 0 to 1, so there exists a
unique solution pU to the equation PL

p (U) = PS(U). If p is greater than or equal

to all the upset equation solutions, then PL
p ≥st P

S , while if p is less than or equal
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to all the upset equation solutions, PL
p ≤st PS . Therefore, the upper and lower

bounds for the percolation threshold of L are the maximum and minimum of the
upset equation solutions, respectively.

2.1.4 Reduction of Computations for Checking Stochastic Ordering

There are a couple computational reductions that make checking of stochastic or-
dering more efficient.

The first is restriction to partitions which are called “non-crossing,” which only
slightly reduces the computations. Note that, because both substitution regions
are planar graphs, the partition AC|BD cannot occur. This is because if A is
connected to C by an open path, and C is connected to D by an open path, the
paths must cross, making A, B, C, and D all connected to each other, producing the
partition ABCD. Such a partition is called a “crossing partition.” Since it has zero
probability for both substitution regions, it does not play a role in any of the upset
inequalities that are involved in checking stochastic ordering. Note also that, due to
the form of the square lattice model’s substitution region, the partitions AC|B|D
and A|BD|C also have probability zero, but must be considered because they have
non-zero probability in the two flattended cube substitution region.

The second reduction is by grouping the non-crossing partitions into classes.
Within each class, each partition may be transformed into any other partition by
reflection and rotation, and thus share the same partition probability function. We
consider the “class lattice,” a partially ordered set ordered by refinement, in which
class A is a refinement of class B if there exists a partition in class A which is
a refinement of a partition in class B. The Hasse diagram of the class lattice is
shown in Figure 5. May and Wierman (2005) proved that the upsets in the original
partition lattice which produce the smallest upper bound and the largest lower
bound must correspond to upsets in the class lattice, that is, must contain either all
or no partitions of each class. Reducing to seven equivalence classes decreases the
number of relevant upset probability inequalities from over 400 to 8. The following
provides the upset probability description for each of the 8 non-trivial upsets in the
class lattice, using one representative from each class for brevity:

P [ABCD]
P [ABCD] + 4P [ABC|D]
P [ABCD] + 2P [AB|CD]
P [ABCD] + 4P [ABC|D] + 2P [AB|CD]
P [ABCD] + 4P [ABC|D] + 2P [AB|CD] + 4P [AB|C|D]
P [ABCD] + 4P [ABC|D] + 2P [AC|B|D]
P [ABCD] + 4P [ABC|D] + 2P [AB|CD] + 2P [AC|B|D]
P [ABCD] + 4P [ABC|D] + 2P [AB|CD] + 4P [AB|C|D] + 2P [AC|B|D]

2.2 Computing the Improved Bound

2.2.1 Class Probabilities for the Square Lattice

The partition probabilities for the square lattice bond percolation model at criti-
cality (pc =

1
2) are easily computed by hand. Grouped into the seven classes, they

are given by:
Class 1: PS [ABCD] = 5/16,
Class 2: PS [ABC|D] = PS [A|BCD] = PS [ACD|B] = PS [ABD|C] = 1/16,
Class 3: PS [AB|CD] = PS [AD|BC] = 1/16,
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A|B|C|D

ABCD

ABC|D
A|BCD
ACD|B
ABD|C

AB|CD
AD|BC AC|BD

AB|C|D
AD|B|C
A|BC|D
A|B|CD

AC|B|D
A|BD|C

Figure 5: The Hasse diagram of the class lattice.

Class 4: PS [AC|BD] = 0,
Class 5: PS [AB|C|D] = PS [AD|B|C] = PS [A|BC|D] = PS [A|B|CD] = 1/16,
Class 6: PS [AC|B|D] = PS [A|BD|C] = 0,
Class 7: PS [A|B|C|D] = 1/16.

2.2.2 Class Probability Functions for L

The partition probability functions for the unsolved lattice L were computed using
MATLAB on a Windows-based personal computer. The computational burden of
doing this increases with the number of configurations, which is exponential in
the number of edges in the substitution region. Using the standard approach that
was employed by Wierman and McCarthy for the single flattened cube substitution
region, the calculation would take approximately 10 days. The advance that allowed
the improved bound to be obtained is the following conditioning approach, which
performs 5 separate calculations and combines them, taking a total of approximately
13 hours.

We now describe the conditioning argument in more detail.
Suppose that three or four of the edges in the top level of the two stacked cubes

are open, an event that occurs with probability p4 + 4p3(1 − p). In this event,
all four vertices on the top level are connected, so we can consider them to be
identified as a single vertex, as illustrated by the graph in Figure 5 at the upper
left. A partition probability measure P4 on partitions of the boundary vertices may
be computed using this graph. Since the graph has only 16 edges instead of 20,
the computational time required is much less than that for computing partition
probabilities for the full substitution region.

Similarly, condition on the top level containing two adjacent open edges, two
opposite open edges, one open edge, and no open edges, illustrated by the other
four graphs in Figure 5. Using subscripts to denote the sizes of sets of connected
vertices on the top level, we obtain partition probability measures P3, P2,2, P2, and
P0.
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Figure 6: The computations are substantially reduced by conditioning on the con-
figuration of open edges on the top level of the two cubes, with the boundary vertices
being on the bottom level. There are five cases, which correspond to generators with
fewer edges. Upper left: The generator equivalent to three or four of the edges open
on the top level. Upper right: A generator equivalent to two adjacent open edges
on the top level. Lower left: A generator equivalent to two non-adjacent open edges
on the top level. Lower middle: A generator equivalent to only one open edge on
the top level. Lower right: The generator equivalent to no open edges on the top
level.

We desire to combine the conditional probability measures, weighted by the
probabilities of their conditioning events, to obtain the probability measure for
the substitution region for two flattened cubes. However, this is not completely
straightforward, because rotations of the conditioning events and rotations of the
partitions both need to be taken into consideration.

Two of the conditioned substitution regions – that corresponding to three or
four open edges on the top level, and that corresponding to no open edges on the
top level – have four-fold rotational symmetry. Therefore, within each of the the
seven classes, the partitions have equal probabilities.

For the other conditioned substitution regions, which are not symmetric, par-
titions in a class may have unequal probabilities. For example, for the probability
measure P3,

P [ABC|D] = P [ACD|B] = 32p15 − 262p14 + 915p13 − 1752p12 + 1946p11 − 1179p10

+264p9 + 66p8 − 21p7 − 9p6 − 2p5 + 3p4 − 2p3 + p2,

P [ABD|C] = 32p15−260p14+896p13−1671p12+1746p11−871p10−32p9+231p8−61p7

−13p6 + p5 + 3p4 − 2p3 + p2,
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and

P [A|BCD] = 32p15 − 260p14 + 896p13 − 1675p12 + 1772p11 − 940p10 + 62p9 + 165p8

−43p7 − 10p6 − p5 + 3p4 − 2p3 + p2.

We must consider four rotations of the measure P3. Let P
A
3 denote the measure

for the substitution region when the vertex above A is not connected to the top
vertex, and define PB

3 , PC
3 , and PD

3 (=P3) similarly. By considering rotations of
the partitions, notice that

PA
3 [ABC|D] = PB

3 [A|BCD],

PA
3 [ABD|C] = PB

3 [ABC|D],

PA
3 [ACD|B] = PB

3 [ABD|C],

and
PA
3 [A|BCD] = PB

3 [ACD|B].

Thus, the sum of the four partition probabilities in the class is the same under PA

and PB, and by similar reasoning, also the same as under PC and PD. Similar
reasoning also applies to each class, and to the probability measures P2,2 and P2.

Therefore, the desired class probability measure for the two flattened cube sub-
stitution region is given for a class C by

(4p3−3p4)P4(C)+p2(1−p)2P3(C)+p2(1−p)2P2,2(C)+p(1−p)3P1(C)+(1−p)4P0(C).

2.2.3 Upset Equation Solutions

The eight class upset expressions and the solutions to the corresponding upset equa-
tions, rounded to ten decimal places, are:

P [ABCD]
0.4301434872

P [ABCD] + 4P [ABC|D]
0.4235413264

P [ABCD] + 2P [AB|CD]
0.4392933631

P [ABCD] + 4P [ABC|D] + 2P [AB|CD]
0.4320340643

P [ABCD] + 4P [ABC|D] + 2P [AB|CD] + 4P [AB|C|D]
0.4477916601

P [ABCD] + 4P [ABC|D] + 2P [AC|B|D]
0.4203424277

P [ABCD] + 4P [ABC|D] + 2P [AB|CD] + 2P [AC|B|D]
0.4287124239

P [ABCD] + 4P [ABC|D] + 2P [AB|CD] + 4P [AB|C|D] + 2P [AC|B|D]
0.4374769592
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2.3 The Improved Bound

As mentioned previously, the smallest and largest upset probability equation solu-
tions provide lower and upper bounds, respectively, for the percolation threshold of
L, so (rounded down and up to six decimal place accuracy, respectively) the bounds
obtained are

0.420334 < pc(L) < 0.447792.

Since L is a subgraph of the cubic lattice, by the containment principle the upper
bound for pc(L) is an upper bound for the cubic lattice bond percolation threshold.
The lower bound for pc(L) does not provide any information regarding pc( cubic ),
since it is a lower bound for an upper bound.

Thus, using a substitution region corresponding to two flattened cubes did im-
prove the result of Wierman and McCarthy (2015), but only slightly, from 0.452595
to 0.447791. To extend this approach to flattening a stack of three cubes would take
an estimated 5 to 6 months of computation time, with prospects of improvement of
much less than 0.01.

3. Prospects for Future Improvement

3.1 Limitations of the Current Approach

Wierman and McCarthy considered future research comparing the “double-dice”
lattice to other lattices to be promising. The smallest substitution region that is
appropriate corresponds to one cube in the cubic lattice, and has six boundary
vertices instead of four, and requires substantially more computations. MATLAB
programs that were developed for the Wierman, Yu, and Huang (2015) research
were applied to use the substitution method to compare the double-dice lattice
to the dice lattice, hexagonal lattice, and triangular lattices. The smallest upper
bound obtained was 0.459327, using a comparison to the solved hexagonal lattice
bond model as the reference lattice.

It is somewhat surprising that none of these results produced a better upper
bound for the cubic lattice than the smaller and simpler substitution region used in
Wierman and McCarthy (2015), and that the resulting bounds remain a substantial
distance from the estimated value for the threshold. For these reasons, the approach
of this paper, extending the “flattened cube” substitution region to flattening two
cubes was investigated.

More efficient algorithms for computing the partition probability functions and
class lattices need to be developed in order to do the calculations for larger substi-
tution regions, so substantial improvements in the upper bound for the cubic lattice
are unlikely unless a new approach is found.

3.2 A Possible Growth Prcoess Approach

While the approach of confining comparison processes to thin slabs of the cubic
lattice which are essentially two-dimensional seems unlikely to produce improve-
ments, it suggests trying an approach that does not have such a limitation. Yu and
Wierman are just beginning to examine a possible approach of this type, which lets
a stochastic growth process expand through a random number of levels of the cubic
lattice. The growth process will be related to the bond percolation model on the
two-dimensional square lattice. Preliminary indications suggest that the approach
may produce an upper bound less than 0.40.

JSM2015 - IMS

3619



REFERENCES

Ball, N. (2014) “Rigorous confidence intervals on critical thresholds in 3 dimensions,” Journal of
Statistical Physics, 156, 574–585.

Bollobás, B., and Riordan, O. (2006) Percolation, Cambridge University Press.
Broadbent, S. R., and Hammersley, J. M. (1957) “Percolation processes. I. Crystals and mazes,”

Proceedings of the Cambridge Philosophical Society, 53, 629–641.
Campanino, M., and Russo, L. (1985) “An upper bound on the critical percolation probability for

the three-dimensional cubic lattice,” Annals of Probability, 13, 478–491.
Chao, N. C. (1982) “Duality in three dimensions,” Journal of Physics C, 15, L1263–L1267.
Domb, C., and Sykes, M. F. (1961) “Cluster size in random mixtures and percolation problems,”

Physical Review, 122, 77–78.
Grimmett, G. (1999) Percolation (2nd ed.), Springer.
Hammersley, J. M. (1957) “Percolation processes. Lower bounds for the critical probability,”

Annals of Mathematical Statistics, 28, 791–795.
Hughes, B. (1996) Random Walks and Random Environments, Volume 2: Random Environments,

Oxford University Press.
Kesten, H. (1981) “The critical probability of bond percolation on the square lattice is 1

2
,” Com-

munications in Mathematical Physics, 74, 41–59.
Kesten, H. (1982) Percolation for Mathematicians, Birkhäuser.
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