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Abstract 
The tables to compute the exact sample sizes for special nuclear material are provided 
based upon United States Department of Energy (DOE) sampling parameters for physical 
inventories for a population size up to 15,000 items. The paper motivates the exact 
computation of item sizes by showing exact correspondence to integer number of defects 
and enforcing the constraint of exactly attaining the minimum detectable defect rate. This 
is accomplished with a bivariate number of defects population mixture distribution. The 
number of defects in the bivariate mixture being sequential and bracketing the possibly 
non-integer defect number obtained by multiplying the minimum detectable defect rate 
times the population size (expected number of defects). There are allowances described 
and made for populations which would not have at least one defect based upon the 
minimum detectable defect rate. R code and output is provided in easy to follow 
examples. 
 
LANL report numbers: LA-UR-15-23594 (text) and LA-UR-15-20692 (abstract) and LA-
UR-15-25240 (presentation). 
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1. Overview 

 
Los Alamos National Laboratory (LANL) conducts inventories of 100% of the items in 
each material balance area (MBA) except for the vault at Technical Area (TA)-55. Those 
items will be verified as being present and the appropriate tamper indicating device (TID) 
is applied and is intact. Items on inventory must be based on measured values. Items 
without TIDs are subject to a verification measurement dependent on a statistical 
selection. LANL has implemented a bi-monthly inventory for its Category I and II 
processing MBAs. Certain Category I MBAs have deviations that allow extended 
inventory periods. When the inventory is scheduled to commence, affected MBAs are 
locked in Local Area Nuclear Material Accountability Software (LANMAS) so that no 
transactions can be entered. A statistical verification sampling program generates a listing 
of items for verification measurement. A listing of the items is provided to the inventory 
personnel and contains item location, item identification and TID identification. A graded 
approach based on an item's characteristics is used to determine what attributes must be 
verified. 
 
This document is based in part on the document by the similar name but revised March 
2013, see [1]. 
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2. Sampling Methodology 

 
2.1 Defining the Population 

The sample population for verification measurements includes: 
 Materials without Tamper Indicating Devices 
 Containers with Materials without Tamper Indicating Devices 
 Category B and C Summary Material Types (20,40,44,45,50,70,82) materials  

>= 50 grams 

A single population for verification measurements at TA-55 combines all items 
from TA-55 MBAs subject to inventory for the Physical Inventory Period except 
for the items in the vault. 
 
A single population for verification measurements at CMR combines all items 
from all CMR MBAs for the Physical Inventory Period. 
 
For MBAs outside of the TA-55 and CMR facilities a separate inventory 
verification sample is pulled for each outside MBA. 
 
The sample population is stratified by category and the number of randomly 
selected items is based on the population of each category to meet the statistical 
Confidence Levels and minimum defects to meet Federal requirements, such as, 
6.5.1.3 of [2]. Example: if a population of Category I items is 100, then 63 items 
must be verified to meet the 95% Confidence Levels and 3% Detectable Defects, 
see Table 2. 
 
2.2 Defining Sampling Parameters 
The sampling objectives are satisfied by applying a statistical statement about the entire 
Physical Inventory population. Assuming that “0” defects are identified during the 
Physical Inventory, the minimum sample size selected from each physical inventory 
population (Tables 2, 3 and 4) allows LANL to make a statistical statement that at a 95% 
confidence level, at least 97% of the population is “good” (3% minimum detectable 
defects) for Category I, at least 95% of the population is “good” (5% minimum detectable 
defects) for Category II and at least 90% of the population is “good” (10% minimum 
detectable defects) for Category III & IV item populations. These statements correspond 
to each of the different category levels as outlined in DOE-STD-1194-2011 [2], Table 
6.5-1, Minimum Sampling Parameters for Physical Inventories, for the sampling 
parameters as outlined in Table 1 below. 

Table 1: Minimum Sampling Parameters for Verification/Confirmation Measurements 

Category Confidence 

Level 

Minimum Detectable Defects 

I 95% 3% 
II 95% 5% 

III & IV 95% 10% 
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2.3 Sampling Algorithm 
The design of the sampling plan is based on methods from Bowen and Bennett [3]. A 
pure hypergeometric distribution or mixture of two pure hypergeometric distributions 
will be the assumed model and the sample size will be calculated based off of the model. 
Define the following notation: 

p = probability of observing exactly zero defectives in the sample 
n = sample size 
N = finite population size 
d = number of defectives 
! = factorial operator 

 

Using the pure hypergeometric distribution, the probability of observing zero defects 
(denoted as p) is:  

p =
(N − d)! (N − n)!

N! (N − d − n)!
. 

This pure hypergeometric probability formula or equation relates the sample size with a 
given confidence, 1 - p, that a defective will be detected. Though the sample size, n, 
cannot be solved for directly in the above equation, numerical methods are employed to 
find the value of n that satisfies this equality. For a description of the algorithm used, see 
the Appendix 1: Numerical Algorithm for Finding a Sample Size at the end of this 
document. 

The required sample sizes for population sizes from 1 to 15,000 for a given category level 
inventory population are given in Tables 2, 3 and 4 respectively. For a population size 
larger than 15,000 one may use the R code in Appendix 1: R Code to Create Sample Size 
Tables, to determine a sample size. It is likely to be nearly equal to the sample size listed 
for population size 15,000. This is because at some point the finite sample size is large 
enough to be considered infinite. In this case, the sample size is fixed to some value, a 
value that is likely near the largest sample size value in the correct table. For population 
sizes in the range 15,000 to 10,000,000 the sample size needed is the same as that for 
15,000 for all three category levels (99, 59 and 29). This is checked in Mathematica with 
the code in Appendix 3: Mathematica Code to Extend the Sample Size Tables to 
Population Size 10,000,000. This effectively extends the Tables 2, 3 and 4 to populations 
as large as 10,000,000. 

The output of this code, see Appendix 3 Output section, reveals that the probability, 
attained significance level, for the smaller sample size is not adequate (it is greater than 
.05) and that for a sample size one larger the sample size is adequate (attained alpha is 
less than .05). The number of defects in this case is an integer so the pure hypergeometric 
distribution probability equation in the Sampling Algorithm section is used directly. The 
number of defects is an integer so there is no need to use the mixture distribution. The 
smaller sample size produces a probability greater than .05 and the larger sample size (by 
one item) produces a probability less than .05 for each of the three category levels.  
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How do we handle a non-integer number of defects? One could simply evaluate the pure 
hypergeometric distribution probability with a non-integer number of defects. This is 
possible and requires one to generalize the factorial in the formula to non-integer values. 
Mathematicians have done this using the Gamma function. However, that methodology, 
simply generalizing the evaluation of the pure hypergeometric probability formula for p, 
by using the non-integer value of r in the formula, as we will see below may not produce 
the correct sample size. Instead we will employ a mixture distribution methodology when 
the number of defects is a non-integer. This mixture methodology brackets the non-
integer number of defects by nearest smaller and larger integers and then uses these 
integer numbers in a mixture of two pure hypergeometric distributions as described in the 
appendix Numerical Algorithm for Finding a Sample Size to find the appropriate sample 
size. This way we never need to use the hypergeometric probability formula on a non-
integer number of defects. In fact we will also see that when we have a number of defects 
less than one then we will instead use one defect, an integer number, to solve both this 
non-integer problem and another problem to be described later. 

Let us look at an example. Consider the case N = 78 and r = .03. Then d = N x R = 78 x 
.03 = 2.34. Notice that if we incorrectly use the pure hypergeometric probability formula 
directly in Mathematica we obtain a sample size of size 56, see Appendix 4. This is 
because Mathematica generalizes the factorial to the Gamma function which does not 
hold here. As previously noted we cannot have 2.34 defects. Instead we use the mixture 
distribution of two hypergeometric distributions to solve this problem. Form the mixture 
distribution with 66% having 2 defects and 34% having 3 defects. This still gives the 
correct expected number of defects as: 2 x .66 + 3 x .34 = 1.32 + 1.02 = 2.34 and defect 
rate = .03 for a population of size 78. However, now instead of finding the sample size 
which gives 95% confidence and a non-integer defect number we determine the sample 
size for the mixture distribution which uses integer numbers of defects. In this case we 
want the sample size which provides less than 5% probability of 2 defects 66% of the 
time and 3 defects 34% of the time. The Mathematica code to compute this (correctly) is 
provided in Appendix 4.  

The mixture distribution properly proportions the two pure hypergeometric distributions, 
using an integer number of defects each, to give the correct assumed defect rate of 3%. 
The output of this is {0.0520979,0.0468531} showing that a sample size of 57 gives less 
than 95% confidence (1-.0520979) and a sample size of 58 gives greater than 95% 
confidence (1-.0468531). Thus, we have found that the correct sample size for N=78, 
r=.03 and 95% confidence is 58. This is larger than the direct use of the non-integer value 
in the pure hypergeometric probability formula which we calculated is 56. The direct use 
of the hypergeometric probability formula with non-integer defect number values yields 
the wrong answer, 56 instead of 58. This is the reason to use the mixture distribution to 
provide the correct sample size for the assumed defect rate(s). 

This example shows that the direct use of the non-integer defect number in the 
probability formula yields a sample size that is too small. This should not be a surprise as 
the probability formula uses the hypergeometric distribution which assumes an integer  
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Table 2: Sample Size 
Required for Cat I NM 
Inventory 

 
 

95% Confidence / 3% defects* 

Population (N) Sample Size 

1 through 19 N 

20 through 36 N-1 

37 through 43 N-2 

44 through 47 N-3 

48 through 51 N-4 

52 through 53 N-5 

54 through 55 N-6 

56 through 57 N-7 

57 through 58 50 

59 through 62 51 

63 through 67 52 

68 through 69 53 

70 through 71 54 

72 through 73 55 

74 through 75 56 

76 through 77 57 

78 through 79 58 

80 through 81 59 

82 through 84 60 

85 through 87 61 

88 through 92 62 

93 through 101 63 

102 through 103 64 

104 through 106 65 

107 through 109 66 

110 through 113 67 

114 through 118 68 

119 through 124 69 

125 through 135 70 

136 through 139 71 

140 through 143 72 

144 through 149 73 

150 through 159 74 

160 through 170 75 

171 through 177 76 

178 through 185 77 

186 through 202 78 

203 through 210 79 

211 through 224 80 

225 through 240 81 

241 through 256 82 

257 through 276 83 

277 through 302 84 

303 through 323 85 

324 through 351 86 

352 through 386 87 

387 through 434 88 

435 through 478 89 

479 through 542 90 

543 through 619 91 

620 through 725 92 

726 through 871 93 

872 through 1076 94 

1077 through 1409 95 

1410 through 2031 96 

2032 through 3553 97 

3554 through 13761 98 

13762 through 15000 99 

* - At least one defect in the population 
 

 Table 3: Sample Size Required 
for Cat II NM Inventory 
 

 
 

95% Confidence / 5% Defects* 

Population (N) Sample Size 

1 through 19 N 

20 through 26 N-1 

27 through 30 N-2 

30 through 31 28 

32 through 33 29 

34 through 35 30 

36 through 40 31 

41 through 42 32 

43 through 44 33 

45 through 46 34 

47 through 48 35 

49 through 51 36 

52 through 55 37 

56 through 61 38 

62 through 64 39 

65 through 68 40 

69 through 73 41 

74 through 82 42 

83 through 87 43 

88 through 94 44 

95 through 104 45 

105 through 113 46 

114 through 126 47 

127 through 142 48 

143 through 161 49 

162 through 182 50 

183 through 207 51 

208 through 244 52 

245 through 293 53 

294 through 366 54 

367 through 482 55 

483 through 690 56 

691 through 1202 57 

1203 through 4233 58 

4234 through 15000 59 

* - At least one defect in the population 
 

 Table 4: Sample Size 
Required for Cat III & IV NM 
Inventory 

 
 

95% Confidence / 10% Defects* 

Population (N) Sample Size 

1 through 13 N 

14 through 16 N-1 

16 through 18 15 

19 through 21 16 

22 through 23 17 

24 through 26 18 

27 through 31 19 

32 through 36 20 

37 through 43 21 

44 through 52 22 

53 through 63 23 

64 through 81 24 

82 through 108 25 

109 through 156 26 

157 through 274 27 

275 through 937 28 

938 through 15000 29 

* - At least one defect in population 
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value of the number of defects. However, the computer code to compute the factorial will 
do so for a non-integer value as well. What we have shown is that the improper use of 
this formula for non-integer defect numbers may yield an incorrect sample size for the 
problem solution. 

As mentioned earlier the Tables 2, 3 and 4 were computed using the R code in Appendix 
2. The Mathematica code in Appendix 5: Mathematica Code to Replicate/Verify Tables 
Created by R Code was used to check that this code gave the same result for Table 4 and 
for the first 100 population sizes of Tables 2 and 3. This verification means we have 
computed the sample sizes with two different codes on two different software packages, 
R and Mathematica, and, we obtain the same resulting sample sizes. 

The mixture formula only applies when the expected number of defects is greater than or 
equal to one. This issue was alluded to previously. For this reason and for the peculiar 
nature of assuming a defect rate that is smaller than the alpha level we choose to work 
with one defect in the population when the defect rate times the population would yield 
less than one defect. This has the benefit of being calculable by the pure hypergeometric 
probability formula and in the case where the defect rate is less than or equal to the 
attained alpha level (1 - confidence level) it removes the peculiar case when N is equal to 
one and it increases by one the similarly peculiar cases when N is greater than one. This 
choice of how to handle defect rates which provide a value of less than one defect is 
thereby conservative. It provides a census (the entire population) as the sample for all 
population sizes which have an expected number of defects less than one. 

The sample items are identified using the procedures described in S4-DTG-060, 
“Generation of the Physical Inventory Sample”. The inventory process is carried out 
according to S4-DTG-003, “Physical Inventory.” 

3. Appendices 

 
3.1 Appendix 1: Numerical Algorithm for Finding a Sample Size 
This appendix describes the algorithm used for the selection of the sample size needed for 
the design of the sampling plan. Let X denotes the random variable associated with the 
number of defects in a random sample of size n drawn from a population of size N with d 
defective items. Then X follows a hypergeometric distribution. Assume that the 
population size (N) is fixed and assume a value of the proportion of defects in the 
population (r). In order to use the equation in the mathematics section, we need d, the 
number of defective items in the population. This value is calculated as d = N x r. Notice, 
however, that this value may not always be integer valued.  
 
The direct use of the pure hypergeometric distribution requires an integer number of 
defects in the population. The following example illustrates the methodology. In this 
example, the population size is 90, N = 90. The prescribed defect rate, r, is 3%. This 
results in 90 x 3% or 2.7 defects in the population. In the real world there cannot be a 
fractional number of defects. An item is either defective or not. Correspondingly, in order 
to utilize the pure hypergeometric probability function the number of defects must also be 
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an integer. To accommodate this integer restriction we utilize a mixture distribution. This 
mixture distribution has a probability of a population with 2 defects and the remaining 
probability of a population with 3 defects. The fraction of all items in the mixture 
population with 2 defects is 30% and that with 3 defects is 70%. These numbers are 
chosen so that the expected number of defects in the mixture distribution is 2.7. This is 
accomplished mathematically by solving the equation for the fraction, f, f x 2 + (1 - f) x 3 
= 2.7 yielding f = 30%. In summary, we may think of this as having a population 
distribution, each with a total of 90 items, 30% of which have 2 defects and 70% of 
which have 3 defects. This provides a distribution which we may utilize to determine the 
required sample size to be 95% confident of less than 3% defects. Call this mixture 
distribution M. The mixture distribution M matches the one when N x r is an integer and 
provides a monotonic path from integer value to integer value for the integer number of 
defects. 
 
M is a distribution of 90 items 30% of which have 2 defects and 70% of which have 3 
defects. If we choose a sample of size s from the distribution M then we want the 
probability that we observe zero defects at random or by chance to be less than 5% 
(100% - 95%). This means that when we actually observe zero defects in a sample of size 
s that we can be 95% confident that the defect rate is less than 3%. Writing this 
mathematically we want the smallest sample size s so that the Probability( zero defects  | 
random sample of size s from M) to be at most 5%. The random sample is chosen without 
replacement. Using the fact that M is a mixture distribution find the smallest s so that 
30% x Probability( zero defects | random sample of size s from a size 90 distribution with 
2 defects) + 
70% x Probability( zero defects | random sample of size s from a size 90 distribution with 
3 defects) 
 ≤ 5%.  
 
Both probabilities in this minimization formula are pure hypergeometric probabilities 
which can be computed using the pure hypergeometric probability equation provided in 
the Sampling Algorithm section. Using this pure hypergeometric probability equation we 
obtain: 
 

. 3 
(90 − 2)! (90 − 𝑠)!

(90)! (90 − 2 − 𝑠)!
+  .7

(90 − 3)! (90 − 𝑠)!

(90)! (90 − 3 − 𝑠)!
≤ 5% 

 
Running this calculation in R we calculate the left hand side for s = 62 as 
 .3 * (factorial(90 - 2) * factorial(90 - s)) / (factorial(90) * factorial(90 – 2 - s)) + .7 * 
(factorial(90 - 3)  * factorial(90 - s)) / (factorial(90) * factorial(90 – 3 - s)) equal to 
0.04783453 which is less than 5%. Then running this calculation in R we calculate the 
left hand side, for s = 61, equal to 0.0521842 which exceeds 5%. Thus the sample size for 
N=90, defect rate = 3% at 95% confidence is 62. 
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The methodology used in this example may be used for any defect rate that has a mixture 
distribution with at least one defect. For those with less than one defect there is a 
modification because the Probability( zero defects | random sample of size s from a size 
N distribution with 0 defects) is identically equal to 1 for any sample size. In this case the 
overall probability is driven entirely by the second term in the sum, that is, (1 - f) x 
Probability( zero defects | random sample of size s from a size N distribution with 1 
defect). However, in what we need here we can ignore this issue because we are going to 
require at least one defect in the population. 
 
Another complication appears. Notice that for N=1, defect rate = 3% and 95% confidence 
we would have a sample size of zero. This is because the defect rate is already less than 
5% so if we assume the defect rate is 3% we do not need to sample to get 95% 
confidence. In fact we have 97% confidence. This is not a common sense thing to do. It is 
related to the fact that the minimum number of non-zero defects that we can have is in 
fact an integer and the integer one. In order to overcome this anomaly we will use the 
defect rate that corresponds to one defect whenever the assumed defect rate would imply 
a number of defects that is less than one. The result of this for the parameters needed here 
is to increase some of the lower population sample sizes by one. In other words it only 
results in a slightly larger sample (by one) while removing the above nonsensical result. 
For this reason we call the sample sizes computed in Tables 2-4 “adjusted”. The sample 
size is adjusted up by one for some of the smaller population sizes. 
 
In summary the algorithm to compute the desired sample size S in general is as follows: 
 

1. Determine the population size N, the defect rate r and the desired confidence 
level c. 

2. Compute the expected number of defects = N x r. 
3. Determine the mixture distribution M. If the expected number of defects is less 

than one then set the lower number of defects, L, equal to one, the upper number 
of defects, U, equal to 2 and the fraction f = 1.0 otherwise set the lower number 
of defects L = floor(N x r), the upper number of defects U = floor(N x r) + 1 and 
solve f x L + (1-f)  x U = N x r for f . 

4. For s = 1, …, N compute  

𝛼(𝑠) = 𝑓 
(𝑁 − 𝐿)! (𝑁 − 𝑠)!

(𝑁)! (𝑁 − 𝐿 − 𝑠)!
+ (1 − 𝑓)

(𝑁 − 𝑈)! (𝑁 − 𝑠)!

(𝑁)! (𝑁 − 𝑈 − 𝑠)!
 

5. Choose the sample size S as the smallest s for which α(s) ≤ 1 – c. 
 

Here floor() is the function that truncates the decimal part of the real number. In step (3) 
when the expected number of defects is one we actually solve the problem with a 
different defect rate than the prescribed one of r. In this case, the new defect rate turns out 
to be r* = 1/N. Thus, r* x N = 1, giving one defect in the population of size N. 
 
In step 4 the quantity 𝛼(𝑠) is monotonically decreasing. This means that we only need to 
find the cutoff point or sample size s where 𝛼(𝑠 − 1) > 1 − 𝑐 and 𝛼(𝑠) < 1 − 𝑐 to 

JSM2015 - Section on Statistics in Defense and National Security

3581



determine the s value which gives a confidence of size c. In practice one may not need to 
compute 𝛼(𝑠) for all N+1 values of s (0, 1, 2, …, N). For example, one could start from 
the smallest (or largest) s and increase (or decrease) s by 1 until the cutoff point is 
determined. 
 
3.2 Appendix 2: R Code to Create Sample Size Tables 
This appendix contains the R code for the algorithm used for the selection of the sample 
size needed for the design of the sampling plan, in particular for Tables 2, 3 and 4. 
 
createadjustedtable <- function(desiredconfidence,mdd,startpop,endpop) { 
pop <- startpop 
originalmdd <- mdd 
myfile <- 
paste(getwd(),"/Conf",desiredconfidence*100,"Defect",originalmdd*100,"Initial",startpo
p,"End",endpop,".txt",sep="") 
sink(myfile,append=FALSE,split=TRUE) 
cat("Confidence","  ","Defect Rate","   ","Population  ","Sample Size    ","Attained 
Confidence","\n") 
sink() 
while (pop <= endpop & originalmdd*pop < 1) { 
mdd <- 1/pop 
numdefmin   <- 0 
numdefmax   <- numdefmin+1 
numgoodmin  <- pop-numdefmin 
numgoodmax  <- pop-numdefmax 
largerfraction <- 1-numdefmin 
smallerfraction <- 1 - largerfraction 
testsamplesize <- 0 
maxtestsamplesize <- pop 
starttestsamplesize <- testsamplesize 
samplesize <- 0 
attainedconf <- 0.0 
for  (i in 0:maxtestsamplesize) { 
 if (numdefmin == 0) {attainedconf <- smallerfraction* 
{phyper(0,numdefmin,numgoodmin,i)} + largerfraction*(1-
phyper(0,numdefmax,numgoodmax,i))} 
 if (numdefmin != 0) {attainedconf <- smallerfraction* {1-
phyper(0,numdefmin,numgoodmin,i)} + largerfraction*(1-
phyper(0,numdefmax,numgoodmax,i))} 
   if(attainedconf >= desiredconfidence) {samplesize<-i} 
   if(attainedconf >= desiredconfidence) {break} 
 } 
sink(myfile,append=TRUE,split=TRUE) 
cat("   ",desiredconfidence,"        ",formatC( round( mdd, 3 ), format='f', digits=3 ),"     
",formatC( round( pop, 0 ), format='f', width=6,digits=0 ),"      ",formatC( round( 
samplesize, 0 ), format='f', width=6,digits=0 ),"              ",formatC( round( attainedconf, 3 
), format='f', digits=3 ),"\n") 
sink() 
pop <- pop + 1 
} 
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mdd <- originalmdd 
while (pop <= endpop & originalmdd*pop >= 1) { 
numdefmin   <- floor(mdd*pop) 
numdefmax   <- numdefmin+1 
numgoodmin  <- pop-numdefmin 
numgoodmax  <- pop-numdefmax 
largerfraction <- mdd*pop-numdefmin 
smallerfraction <- 1 - largerfraction 
testsamplesize <- 0 
maxtestsamplesize <- pop 
starttestsamplesize <- testsamplesize 
samplesize <- 0 
attainedconf <- 0.0 
for  (i in 0:maxtestsamplesize) { 
 if (numdefmin == 0) {attainedconf <- smallerfraction* 
{phyper(0,numdefmin,numgoodmin,i)} + largerfraction*(1-
phyper(0,numdefmax,numgoodmax,i))} 
 if (numdefmin != 0) {attainedconf <- smallerfraction* {1-
phyper(0,numdefmin,numgoodmin,i)} + largerfraction*(1-
phyper(0,numdefmax,numgoodmax,i))} 
   if(attainedconf >= desiredconfidence) {samplesize<-i} 
   if(attainedconf >= desiredconfidence) {break} 
 } 
sink(myfile,append=TRUE,split=TRUE) 
cat("   ",desiredconfidence,"        ",formatC( round( mdd, 3 ), format='f', digits=3 ),"     
",formatC( round( pop, 0 ), format='f', width=6,digits=0 ),"      ",formatC( round( 
samplesize, 0 ), format='f', width=6,digits=0 ),"              ",formatC( round( attainedconf, 3 
), format='f', digits=3 ),"\n") 
sink() 
pop <- pop + 1 
} 
} 
 
3.3 Appendix 3: Mathematica Code to Extend the Sample Size Tables to 

Population Size 10,000,000 
Input: 

NN:=10000000 

d:=NN*.03 

p:=((NN-d)!*(NN-n)!)/((NN)!*(NN-d-n)!) 

Table[p,{n,98,99}] 

d:=NN*.05 

p:=((NN-d)!*(NN-n)!)/((NN)!*(NN-d-n)!) 

Table[p,{n,58,59}] 

d:=NN*.10 

p:=((NN-d)!*(NN-n)!)/((NN)!*(NN-d-n)!) 
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Table[p,{n,28,29}] 

Output: 

{0.05053864,0.04902247} 

{0.05053864,0.04902247} 

{0.05233454,0.04710107} 

 
3.4 Appendix 4: Mathematica Code for Example with Population Size 78, 3% 

Reject Rate and  95% Confidence 
Mathematica code using the incorrect formula for a fractional number of rejects. 
 
Input: 

NN:=78 

d:=NN*.03 

p:=((NN-d)!*(NN-n)!)/((NN)!*(NN-d-n)!) 

Table[p,{n,55,56}] 

Output: 

{0.0546156, 0.0490591} 

Mathematica code using the correct formula for a fractional number of rejects. 

1. Input: 

2. NN:=78 

3. d:=NN*.03 

4. d1:=Floor[d] 

5. d2:=d1+1 

6. f2:=d-d1 

7. f1:=1-f2 

8. p:=f1*(((NN-d1)!*(NN-n)!)/((NN)!*(NN-d1-n)!))+f2*(((NN-d2)!*(NN-
n)!)/((NN)!*(NN-d2-n)!)) 

Table[p,{n,57,58}] 

Output: 

{0.0520979, 0.0468531} 

3.5 Appendix 5: Mathematica Code to Replicate/Verify Tables Created by R 

Code 
This code may be used to verify Table 4 except for the largest sample size which may be 
verified using Appendix 3 code. 

Input: 
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f[NN_] := Module[{conf=.95,dr=.10,dstart},(alpha:=1-conf;dstart:=NN*dr ; 

d:=Max[dstart,1];d1:=Floor[d]; 

d2:= d1+1;f2:=d-d1;f1:=1-f2; 

p:=f1*(   ((NN-d1)!*(NN-n)!)   /   ((NN)!*(NN-d1-n)!))+f2*(((NN-d2)!*(NN-
n)!)/((NN)!*(NN-d2-n)!)); 

mylist:=Table[{p,n,NN,dr,conf},{n,0,NN},{NN}]; 

mylist2:=First[Select[Flatten[mylist,1],#[[1]]<=alpha& ]]; 

Print[mylist2])] 

Do[f[pop],{pop,2,938}] 

Output:  

A table containing attained alpha, sample size, population, reject rate, and confidence 
level. 
 

Acknowledgements 

 
Disclaimer: 
Los Alamos National Security, LLC for the National Nuclear Security Administration of 
the U.S. Department of Energy under contract DE-AC52-06NA25396. By approving this 
article, the publisher recognizes that the U.S. Government retains nonexclusive, royalty-
free license to publish or reproduce the published form of this contribution, or to allow 
others to do so, for U.S. Government purposes. Los Alamos National Laboratory requests 
that the publisher identify this article as work performed under the auspices of the U.S. 
Department of Energy. Los Alamos National Laboratory strongly supports academic 
freedom and a researcher's right to publish; as an institution, however, the Laboratory 
does not endorse the viewpoint of a publication or guarantee its technical correctness.  
 
LANL report numbers: LA-UR-15-23594 (text) and LA-UR-15-20692 (abstract) and LA-
UR-15-25240 (presentation). 
 

References 
 
1. SAFE-4 Statistical Inventory / Verification Measurements Sampling Plan: Revised 

March 2013. 
2. DOE Standard: Nuclear Materials Control and Accountability, DOE-STD-1194-

2011, Change Notice No. 2, December 2012. 
3. W. M. Bowen and C. A. Bennett, editors, Statistical Methods for Nuclear Material 

Management, U.S. Nuclear Regulatory Commission, NUREG/CR-4604, U.S. 
Government Printing Office, Washington, D.C., 1988. 

JSM2015 - Section on Statistics in Defense and National Security

3585


