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Abstract

This paper considers the problem of variance estimation of a U-statistic. Extrapolation techniques
are proposed to overcome the drawback of having negative values when using the unbiased U-
statistic variance estimator (Wang and Lindsay, 2014). Following the proposal of the linearly ex-
trapolated variance estimator (Wang and Chen, 2015), we consider nonlinear extrapolation method
and devise a variance estimator that is nearly second-order unbiased. Simulation studies indicate
that the second-order extrapolated variance estimator has smaller mean squared error compared to
the unbiased variance estimator and the jackknife variance estimator across a wide selection of dis-
tributions. We also discuss the advantage of the proposal compared to its jackknife counterpart in
regression analysis and model selection.

Key Words: Hoeffding-decomposition, linear extrapolation, nonlinear extrapolation, variance es-
timation, unbiased, U-statistic

1. Introduction

Let X4,..., X, be an independent, identically distributed sample from some distribution.
A U-statistic with kernel functiorn of £ components is defined as (Hoeffding, 1948)

Un:<Z>_1 Y (X Xy

1<i1 << <n

Without loss of generality, lep be a symmetric function that is permutation invariant in
its £ components. Since functiog is often scalar-valued in applications, we focus on
the case thap € R. We call k the kernel size ot/,,; it is the smallest integer such that
E{¢(X1,...,Xr)} = 0, whered is the parameter of interest. The kernel sizes also
referred to as the degree bf,. U-statistic is an unbiased estimator for paramétein
the context of nonparametric inference where the set of order stafiffigs . .., X(,,)) is
the complete sufficient statistic (Fraser, 1994),is the minimum-variance unbiased esti-
mator. Because most unbiased estimators in common use have a U-statistic representation,
obtaining a reliable estimator for the variancelf is crucial in statistical inference and
practical applications.

Hoeffiding (1948) gives the closed-form expression for the varianég, of

Var(U,) = <Z> - zi: (i) (Z - ’Z) o2, (1.1)

1

whereo? = Var{¢.(X1, ..., X.)}, andee(z1, . .., v.) = B{$(X1, ..., Xp) X1 = 21, - - .,

X, =z} for1 < ¢ < k. It was also shown thal/,, admits an asymptotic normal
distribution with asymptotic variance?s? /n, provided thatp is twice integrable and <

0? < oo. However, the exact U-statistic variance (1.1) is complicated in form, and the

asymptotic variance of/,, is not necessarily reliable when the kernel sizes not small

*Part of the research was done when the author was an Assistant Professor of Statistics at Williams College
in Williamstown, Massachusetts.
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compared to the sample size Wang and Lindsay (2014) propose an unbiased variance
estimator ofU/,,, denoted a¥/,, that is of a simple quadratic form and is applicable as long
as the ratick/n < 1/2.

Let N. be the number of pairs of subsamples of sizthat have at most overlaps
(0 < c¢<k),and letO(S,, Sy) be the number of overlaps between subsgtandS;,. The
unbiased variance estimator (Wang and Lindsay, 2014) is defined as

Va = Q(k) = Q(0), (1.2)

whereQ(c) = Nt 220(Sa,8y)<c ?(Sa)#(Sp) for 0 < ¢ < k. The investigation of an
unbiased variance estimatori@f has occurred in some previous literature, such as Folsom
(1984) and Maesono (1998). It can be shown that the various proposals of the unbiased
variance estimator df,, are equivalent. However, the definitionldf in Wang and Lindsay
(2014) is of a much simpler form.

Although V,, is unbiased and easy to compute with the help of partition resampling
scheme (Wang and Lindsay, 2014), it is possible forto yield negative values (see
Example 2 in Wang and Lindsay (2014)). To overcome this drawback, Wang and Chen
(2015) propose a general class of linearly extrapolated variance estimators that are non-
negative. The class of linearly extrapolated variance estimators (Wang and Chen, 2015)
can be viewed as generalization of the leave-one-out jackknife variance estimator (Efron
and Stein, 1981), but they are more computationally efficient than the jackknife estimator
in half-sampling cross-validation problems. L&, denote a U-statistic computed based
on a subsample of siz&. Building upon the linear extrapolation method, we extend the
approximate relationship between V&},) and Va(U,,) from linear to a nonlinear form.

We will show that with the help of second-order extrapolation technique the resulting U-
statistic variance estimator is nearly second-order unbiased. Thus, it is more accurate than
the linearly extrapolated variance estimator.

The rest of the paper is organized as follows: We first introduce two extrapolated vari-
ance estimators of a U-statistic in Section 2, using first-order and second-order extrapola-
tion techniques respectively. In Section 3 we present a simulation study to confirm that the
extrapolated variance estimators are always non-negative, while the unbiased variance es-
timator in Wang and Lindsay (2014) might yield negative values. In addition, we compare
the performance of the extrapolated variance estimators with the unbiased variance estima-
tor and the conventional jackknife variance estimator in terms of bias, variance, and mean
squared error in a study of assessing the variance of the unbiased sample variance, where
the data are generated from a wide selection of distributions. In Section 4 we discuss the
advantage of the proposed extrapolated variance estimators in comparison to its jackknife
counterpart in the context of regression analysis and model selection. We will conclude
this paper with some discussions in Section 5.

2. Extrapolation Techniquesin Variance Estimation

In this section we consider practical solutions for the problem of having possibly negative
values when using the unbiased variance estinigtal.2). We propose to first estimate

the variance of a U-statistic at a subsample sizealso referred to as fictional sample

size that may be smaller than the original sample sizeand then extrapolate the vari-
ance estimator fromn to n to remove the bias incurred in the subsampling stage. The
extrapolated variance estimator is always non-negative. Moreover, we anticipate that this
subsampling plus extrapolation methodology can help to reduce the variation of the vari-
ance estimator, similar as what has been seen in the context of kernel density bandwidth
selection in Marron (1987), Hall and Robinson (2009), and Wang and Lindsay (2015).
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2.1 First-order Extrapolation Technique

Let Uf;? be a U-statistic defined on a data subset of sizel, without theith observation.
The conventional jackknife estimator in the context of U-statistic variance estimation is

defined by

2
n

. on—1 PN LI
=" o - Ly
j=1

=1

Efron and Stein (1981) considé{r] as a linearly extrapolated variance estimator. The term
Yoy ( Z) L w1 U ) is viewed as a estimator for Vdr,,_;), and(n — 1)/n

isa constant multiplier for adjusting the difference betweer{&¥gy and Va(U,,_1). Itis

well known that the jackknife variance estimator is often less computationally expensive
than the bootstrap methods, but it is always biased upwards.

Following the footsteps of Efron and Stein (1981), Wang and Chen (2015) study a gen-
eral class of linearly extrapolated variance estimators. In the context of U-statistic variance
estimation, one first constructs an unbiased variance estimator for a U-statistic at subsam-
ple sizem (m < n/2), denoted ad/,,, and then extrapolates it from to n based on a
linear approximate relationship. Denote the U-statistic computed based on a subSample
of sizem asU,,,(S). The first-order extrapolated variance estimator can be expressed as

()5 B

Sa,Sp)=0

whereS, and S, are subsamples of size, andO(S,, S;) is the number of overlapping
elements between these two data subsets. Note that

O, e

»)=0

is an unbiased estimator for \(&f,,). The condition ofm < n/2 is crucial for the con-
struction of an unbiased variance estimator for a U-statistic at fictionahsix&henn and
m are both large, one can approximafg, by independently drawingp disjoint pairs of
subsample$Sy, 1, .5p2) (1 < b < B). Then,Vex1 can be approximated by

8, = ™ L5~ Un(Sh) = Un($h2))*

5 (2.3)

Remark 1. By construction the linearly extrapolated variance estimatay, or Vxl, is
an average of square differences, and therefore is always non-negative.

Leth. (1 < ¢ < k) be thecth orthogonal term in Hoeffding decomposition (Hoeffding,
1948; Lee, 1990), defined by

he(z1, ... xe) = de(T1, ..., Tc ZZhl TigyeosT4y) — 0,

=1 (c,l)

andhi(z1) = ¢1(z1) — 0. The closed-form expression of \&f,,) in (1.1) can be equiva-

lently written as
k -1 Lk 2
\ 2 2.4
ar(U Z( ) () 5. (2.4)

c=1

3534



JSM 2015 - Section on Nonparametric Statistics

wheres? = Var(h.) (1 < ¢ < k). Thus, for anym < n

var(U,,) = zk: <TZ> - <IZ>26§

c=1

—1 2 -1 2
n k m k
() (o) <tm() ()
for m < nandec > 2. We have VafU,,) < (m/n)Var(U,,). Thus, we introduce some

positive bias by extrapolating the variance fremto n based on an approximate linear
relationship.

Because

Remark 2. Wang and Chen (2015) express the expectatidriafin terms of the variance
of the orthogonal terms in Hoeffding decomposition:

- K2, m YN fm\ 9
E(Vex]_) == ?61 + g Z c c 56'
c=2

Thus,Vex, is first-order unbiased. Its second-order bias can be written as

second-order bia@ex1) = £Y 22 o3
o= \2 nm—1) nn-1)f %
The positive bias becomes largerasgets smaller for a fixed sample sizgor when the
sample sizer gets smaller for a fixed ratio ofi/n.

The construction oFey; is based on an approximate linear relationship betweef@\ar
and VafU,,), which may not be accurate for relatively small valuexofin the following
we will consider a nonlinear approximate relationship that aims to reduce the Hiag,in
especially for small sample size

2.2 Second-order Extrapolation Technique

Below we will show how to construct a second-order extrapolated estimator fGVar
by referring to the closed-form expression of the U-statistic variance. Without loss of gen-
erality, we demonstrate the method by extrapolating from two fictional sizes,n /2 and
m = n/4.
We first rewrite the U-statistic variance as follows:

=52 (1) () et {1y o).

wheres? = k262, anda = (k—1)203 /(267). One can approximate \@dr,,) by (1/n)o2e/ (=1,
For simplicity of estimating the unknown parameigme write the approximate variance
at sizen as

V,, i= (1/n)o%e¥™.

At fictional sizesm = n/4 andm = n/2, we have

4 2
Vs = Zo2etal/n andV,, , = Z o220/,
n n
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Then,V,, 2/ Vy, /s = (1/2)e=2/™ andV,, /V,, ;o = (1/2)e=%/". Thus,

1 —a/n

1
Vo = 3 Ve =5 Vn2y/ 2Voy2/ Vs (2.5)

One can view, /2V;, »/V;, /4 as a shrinkage factor; it equals 1 if the ratiolQfy, /V, /4 is
exactly 1/2. Denote the second-order extrapolated variance estimator(6f,Yars Vexo-

It is defined by
Vexz = (1/V2)V23V 12 = Vea\/2Vr s/ Vi, (2.6)

whereV, /2 @nd f/n/4 are unbiased estimators for V&, ,) and VafU,, ,,), as defined in
equation (2.2) when setting. = n/2 andm = n/4 respectively. As the definition of
Vi (m < n/2) is straightforward, the realization dvfexz is simple in structure and does
not involve higher-order computational cost comparetiga.

Remark 3. The second-order extrapolated variance estimator can be expresdéghas
Vexie ™%/, wheree=4/" = [2V], 5 /V, ;. Becausd) < e~%/™ < 1, Veyois smaller than
Vex1 and therefore corrects the positive biasligy.

Theorem 1. Let Veyo be the second-order extrapolated variance estimator as defined in
equation(2.6). Under weak regularity conditions so th&t, (2.2) has finite variance,

Vexz is nearly second-order unbiased. Thus, it has smaller bias compared to the linearly
extrapolated variance estimat®fy,.

For proof, please see Appendix.

Remark 4. Hinkley (1977) and Wu (1986)) show that the jackknife variance estimator
yields poor performance with large positive bias in regression analysis. The numerical
study in Wang and Chen (2015) reveals that the first-order extrapolated variance estima-
tor has much smaller bias than its jackknife counterpart in assessing the variance of a
U-statistic risk estimate for a parametric model. In addition, the linearly extrapolated
variance estimator has significant computational advantage than the jackknife method in
half-sampling cross-validation problems. The computational cost.gfis of the same
order as that forVe. Thus, the second-order extrapolated variance estimator is supe-
rior to the conventional jackknife method in the regression context. We will demonstrate a
simulation comparison in regression risk estimation in Section 4.

3. Simulation Study

In this section we study the numerical performance of the proposed second-order extrapo-
lated variance estimator in comparison to the linearly extrapolated variance estitgator

the unbiased variance estimatdy, and the jackknife variance estimatdy. We consider

a simple but practical scenario where the the parameter of inteisshe variance of the
underlying distribution. The U-statistic estimate for the variance is the unbiased sample
variance, i.e.U, = 5% = {1/(n — 1)} > ,(X; — X)% Our goal is to evaluate the
variance of the unbiased sample variance, denoted &8 yar
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Table 1: A list of distributions under consideration

Name Description
Standard Norma| Normal with mean 0 and standard deviation 1
Mixture 1 Binomal normal mixture0.5N (—1.5,1) + 0.5N(1.5,1)
Mixture 2 Normal mixture with an outlying mode.5N (0,1) + 0.5N(0,0.1)
Gamma(5,2) Gamma with shape parameter 5 and scale parameter 2
t(10) t distribution with 10 degrees of freedom

We randomly generat& = 500 samples of sizex (n = 10, 30, 50, 100) from some
distribution. To investigate whether the proposed variance estimator is robust to outlying,
bimodal, skewed, or heavy-tailed features of the data, a list of five different distributions
are considered with descriptions shown in Table 1. Here we choose relatively small sample
sizen, as the difference between various variance estimators diminishegeis large.

For each given sample of size we compute the proposed first-order and second-order
extrapolated variance estimators. In the realizatiogf (2.3), we setB = 1000 and
consider subsample sizes = n/2 andm = n/4. The calculation ofVeyo is based on
formula (2.6). We also compute the unbiased variance estintgt@roposed in Wang
and Lindsay (2014). The unbiased variance estimétpis realized based on equation
(1.2) forn = 10 andn = 30. Whenn = 50 or 100, the calculation of9(0) in equation
(1.2) involves an average ¢f) (", ) terms, which is computational expensive to realize.
Therefore, forn = 50 and100 we approximate)(0) usingC' randomly generated pairs
of disjoint subsets of size two. We consider four different value§'oiie. 1000, 10000,
100000, and 1000000, in the following simulation comparison.

3.1 Possible negative valuesin V,

Table 2: Number of negative values produced By out of 500 samples

Sample size  Normal Mixture 1l Mixture2 Gamma(5,2) t(10)

n =10 0 1 0 0 0
n =30 0 0 0 0 0
C = 1000
n = 50 0 0 0 1 12
n = 100 2 23 0 33 79
C = 10000
n =50 38 89 7 18 25
n = 100 130 166 67 97 94
C = 100000
n =50 0 4 0 0 0
n = 100 13 36 1 7 3
C' = 1000000
n =50 0 0 0 0 0
n = 100 0 0 0 0 0

We first look at the number of negative values producedpgut of the 500 replications.
Table 2 shows that it is possible for the unbiased variance estimator to yield negative values.
Even when the exact formula (1.2) is used for small samplersizel0, one sample gen-
erated from the bimodal normal mixture distribution yields a negative valiié ofVhen
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n = 50 or 100, the number of negative values Bf increases significantly a3(0) is ap-
proximated by a smaller number of disjoint random subsets. Only wWhercreases to

one million do all the values of, become positive. Although Wang and Lindsay (2014)
discuss possible fix-ups for the issue of having negative valués,ahe forced-positive
variance estimator is quite liberal with very small value. This may lead to undesirable large
probability of committing Type | error when used to construct a test statistic in a statisti-
cal hypothesis test setting. Thus, whenever the unbiased variance estimator gives negative
estimates, the extrapolated variance estimators may be considered. Furthermore, it will
be seen later in Table 3 and Table 4 that even when the unbiased variance estimator pro-
duces positive variance estimates, the second-order extrapolated variance estimator yields
comparable or even better performance in achieving a smaller mean squared error.

3.2 Comparison between Extrapolated Variance Estimatorsand Unbiased Variance
Estimator

We now compare the performance between the extrapolated variance estimators and the
unbiased variance estimators in terms of mean, standard deviation, and mean squared error.
We summarize in Table 3 and Table 4 the simulation results. Since the jackknife variance
estimator can be viewed as a linearly extrapolated variance estimator, we also include the
results ofV/; in the tables below. When = 50 or 100 we approximate(0) in V,, using
C' = 1000000 disjoint subsamples. From Table 2 we know that with= 1000000 the
unbiased variance estimatby yields positive values for all distributions under considera-
tion. However, we will see later that even with positive valliggloes not outperform the
second-order extrapolated variance estimator.

When considering the linearly extrapolated variance estimiatarat different fictional
sizes, usingn = n/2 leads to the best result. This agrees with the fact that n/2
leads to the smallest bias iy, as shown in Wang and Chen (2015). The second-order
extrapolated variance estimator seems to correct the positive bidsainits superiority
in terms of bias is significant for small sample size The unbiased variance estimator
tends to have larger variation compared to the second-order extrapolated variance estimator.
Wang and Lindsay (2014) show thét has a U-statistic expression itself. Thiig, is the
minimum-variance unbiased variance estimator in the context of nonparametric inference.
However, our numerical results indicate that a smaller variance and a smaller mean squared
error could be achieved by relaxing the unbiasedness condition. Moreover, besides the
well-known positive bias of the jackknife variance estimator, the jackknife method seems
more variable than the extrapolated variance estimators. Overall, the second-order extrap-
olated variance estimator is a clear winner in achieving a smaller standard deviation and
mean squared error across different sample sizes and distributions. The advantage of using
second-order extrapolation is particularly obvious when the samplersigesmall. The
performance of these variance estimators become more and more similar as the sample size
n increases.
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Table 3: Comparison of different variance estimators. The smallest mean squared error for each
distribution and sample size is highlighted in bold.

Normal

Sample sizer Vu Vexi Ve Vy
(m=mn/2) | (m=n/4)
10 Mean | 0.2025 0.2291 0.4615 0.1650| 0.2286
SD | 0.2350 0.2530 0.4476 0.1973| 0.2514

(Truth: 0.2222) | MSE | 0.0556 0.0641 0.2576 0.0422 | 0.0633
30 Mean | 0.0653 0.0677 0.0791 0.0628| 0.0677

SD | 0.0455 0.0457 0.0522 0.0430| 0.0464
(Truth: 0.0690) | MSE | 0.0021 0.0021 0.0028 0.0019 | 0.0022
50 Mean | 0.0395 0.0405 0.0441 0.0388| 0.0405

SD | 0.0209 0.0212 0.0225 0.0207| 0.0211
(Truth: 0.0408) | MSE | 0.0004 0.0004 0.0005 0.0004 | 0.0004
100 Mean | 0.0197 0.0199 0.0203 0.0198| 0.0200

SD | 0.0078 0.0075 0.0075 0.0075| 0.0074
(Truth: 0.0202) | MSE | 0.0001 0.0001 0.0001 0.0001 | 0.0001
Mixture 1
10 Mean | 1.3863 1.6941 4,1513 1.1193]| 1.6881
SD 1.3992 1.5177 2.9510 1.1538| 1.5027

(Truth: 1.2872) | MSE | 1.9674 2.4689 16.9120 | 1.3594 | 2.4188
30 Mean | 0.3876 0.4134 0.5168 0.3706| 0.4138

SD | 0.1908 0.1980 0.2293 0.1862| 0.1968
(Truth:0.3673) | MSE | 0.0368 0.0413 0.0749 0.0347 | 0.0409
50 Mean | 0.2303 0.2393 0.2708 0.2252| 0.2391

SD | 0.0922 0.0906 0.0985 0.0881| 0.0907
(Truth: 0.2286) | MSE | 0.0085 0.0083 0.0115 0.0078 | 0.0083
100 Mean | 0.1125 0.1134 0.1181 0.1113| 0.1114

SD | 0.0385 0.0289 0.0301 0.0289| 0.0287
(Truth:0.1113) | MSE | 0.0015 0.0008 0.0010 0.0008 | 0.0008
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Table 4. Comparison of different variance estimators. The smallest mean squared error for each
distribution and sample size is highlighted in bold.

Mixture 2

Sample sizer Vu Vet Ve \%}
(m=mn/2) | (m=n/4)
10 Mean | 0.1580 0.1649 0.2535 0.1343]| 0.1651
SD | 0.3470 0.3525 0.4764 0.3062| 0.3519

(Truth: 0.1504) | MSE | 0.1205 0.1244 0.2376 0.0940 | 0.1241
30 Mean | 0.0451 0.0458 0.0507 0.0437| 0.0457

SD | 0.0486 0.0492 0.0531 0.0475]| 0.0489
(Truth: 0.0421) | MSE | 0.0024 0.0024 0.0029 0.0023 | 0.0024
50 Mean | 0.0266 0.0267 0.0284 0.0260| 0.0267

SD | 0.0216 0.0214 0.0224 0.0210| 0.0214
(Truth: 0.0250) | MSE | 0.0005 0.0005 0.0005 0.0004 | 0.0005
100 Mean | 0.0127 0.0128 0.0128 0.0127| 0.0128

SD | 0.0066 0.0065 0.0066 0.0066| 0.0065
(Truth: 0.0125) | MSE | 0.0000 0.0000 0.0000 0.0000 | 0.0000
Gamma(5,2)
10 Mean | 0.5325 0.5288 0.9429 0.4058| 0.5766
SD | 1.2445 1.0993 1.6048 0.9296| 1.2845

(Truth:0.5345) | MSE | 1.5488 1.2084 2.7423 0.8807 | 1.6517
30 Mean | 0.1592 0.1607 0.1831 0.1509]| 0.1630

SD | 0.2363 0.2176 0.2415 0.2072| 0.2379
(Truth:0.1704) | MSE | 0.0559 0.0474 0.0585 0.0433 | 0.0566
50 Mean | 0.0917 0.0933 0.1007 0.0901| 0.0928

SD | 0.1004 0.0974 0.1034 0.0949| 0.1003
(Truth:0.1014) | MSE | 0.0102 0.0096 0.0107 0.0091 | 0.0101
100 Mean | 0.0483 0.0491 0.0497 0.0489| 0.0489

SD | 0.0416 0.0385 0.0388 0.0386| 0.0412
(Truth: 0.0504) | MSE | 0.0017 0.0015 0.0015 0.0015 | 0.0017
t(10)
10 Mean | 0.5518 0.5964 1.0462 0.4585| 0.5962
SD | 2.0676 2.1075 2.8910 1.8100| 2.1020

(Truth:0.5049) | MSE | 4.2770 4.4501 8.6508 3.2783 | 4.4269
30 Mean | 0.1569 0.1606 0.1824 0.1507| 0.1607

SD | 0.2439 0.2461 0.2677 0.2360| 0.2456
(Truth:0.1595) | MSE | 0.0595 0.0606 0.0722 0.0558 | 0.0603
50 Mean | 0.0970 0.0985 0.1059 0.0951| 0.0986

SD | 0.1089 0.1076 0.1136 0.1047| 0.1075
(Truth: 0.0950) | MSE | 0.0119 0.0116 0.0130 0.0110 | 0.0116
100 Mean | 0.0486 0.0489 0.0495 0.0486| 0.0489

SD | 0.0455 0.0447 0.0447 0.0447| 0.0447
(Truth: 0.0473) | MSE | 0.0021 0.0020 0.0020 0.0020 | 0.0020

4. Application to Regression Analysis and Model Selection

In regression analysis one often wants to find the most parsimonious model with sufficient
goodness of fit. Many existing model selection criteria, such as the AIC (Akaike, 1974) and
BIC (Schwarz, 1978) model selection tools, are constructed by estimating the Kullback-
Leibler risk of a fitted model with a certain training sample size (Wang and Lindsay, 2014).
However, every risk estimate suffers sampling variation. Without evaluating the variance
of arisk estimator, one cannot know for sure whether the model with the smallest risk score
is truly the optimal one or not.
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The proposed extrapolated variance estimators have giesatgad value in regression
analysis and model selection. It was discussed in Hindley (1977), Wu (1986), and also
noted in Wang and Chen (2015) that the jackknife variance estimator yields large positive
bias in unbalanced regression situations. When used to assess the variation of a risk esti-
mate for a fitted model, the large positive bias in the jackknife variance estimator is likely
to impact inferential decisions. For instance, under the widely used “one-standard-error”
rule (Hastie et al., 2009), where one selects the most parsimonious model whose risk is
within one standard error of the optimal risk score, using the jackknife variance estimator
may result in choosing an over-parsimonious model.

We consider the same simulation scenario as discussed in Wang and Chen (2015). A
multiple linear regression model is considered whose true relationship is defined as follows:

Y,=1+ 8XZ‘71 + 5Xi,2 + 3Xi,3 + 1Xi,4 + 0.1X¢75 + € (1 <1< 100)

We simulateR = 500 data sets of size = 100. For each data set thevariables are
independently generated from Uniform(0,1), and the random errors are simulated from
Normal distribution with mean 0 and standard deviation 0.1. The parameter of interest is
the true Kullback-Leibler risk of the Least Square fit of the above linear regression model.
The unbiased risk estimate based on Kullback-Leibler distance is of a U-statistic form. For
instance, if the kernel size of the U risk estimatokis= n/2, then the cross-validation
score can be written as

Uy = (7172) B ( > | P(Sn/2);

n,n/2

1
OSn) = —75 DL lowfyem (il %),

2
n/ (%4,Yi)E€Sn /2

where the notatior{n,n/2) means the summation is taken over all subsamglgs of

sizen/2. HereS;/iQ_1 is a deleter data subset of size/2 — 1, x; = (zi1,...,%i;)7,
B=(Bo,...,B5)7, ande is the estimated density function for the respolise

We consider estimating the variance of the Kullback-Leibler risk score using different
variance estimators, including the linearly extrapolated variance estitvigtowith m =
n/2, the second-order extrapolated variance estimidgwith m = n/2 andn/4, and the
jackknife variance estimator. The true variance of the risk score is approximated based on
10,000 random data sets. The following table summarizes the average variance estimate,

the standard deviation , and the mean squared error of each variance estimator.

Table 5: Comparison of different variance estimators in risk analysis

Estimator Mean SD MSE
Truth 0.00552
Vet 0.00595 0.00229 5.43 x 10~6
Vexa  0.00511 0.00217 4.92 x 106
V; 0.00895 0.00331 2.27 x 10>

As noticed in Table 5, the jackknife variance estimator shoars-negligible positive
bias that is over 60% of the true variance in the example under consideration. In addition,
the mean squared error of the jackknife estimator is about four times larger than that of the
extrapolated variance estimators. In comparison, both extrapolation methods yield variance
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estimates that are close to the truth on average and withemsadindard deviation and
mean squared error. The second-order extrapolation seems to provide improvement over
the linear extrapolation technique. The extrapolated variance estimators clearly outperform
the conventional jackknife method in the regression context.

5. Discussion

In this paper we consider using extrapolation techniques in U-statistic variance estimation.

In particular, a second-order extrapolated variance estimator is proposed. The second-
order extrapolation technique corrects the positive bias in the linearly extrapolated variance

estimator and leads to a variance estimator that is nearly second-order unbiased.

The construction of the extrapolated variance estimators, as well as the unbiased vari-
ance estimatof/u, requires the kernel size < n/2 (or k < n/4 for second-order ex-
trapolation). This condition limits the applications of these variance estimatdisfoid
cross-validation problemg{ > 2). Wang and Lindsay (2014) show that the kernel size
k of an unbiased risk estimator iif-fold cross-validation isl + n(K — 1)/K, bigger
thann /2. Bengio and Grandvalet (2004) point out that there is no unbiased variance es-
timator for K -fold cross-validation. That is, neither the unbiased variance estimator nor
the extrapolated variance estimators apply to the commonly used ten-fold or leave-one-out
cross-validation scenarios. In a future project we will study how to find a general variance
estimator for a U-statistic in the context Af-fold cross-validation.
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Appendix A: Proof for Theorem 1

Proof. Becauséd/,, (m < n/2) is unbiased for VAil/,,) and has finite variance, by Cheby-

shev’s inequalityl’,,, converges to VdU,,) in probability. That is,

Vs i Var(U,, 2) andV,, 4 L Var(U,, 4).

Because both Vat/, ») and Va(U,, ,) are non-zero constants, by Slutsky's Theorem we
have R R ,
2V, 2/ Vs — 2Var(Uy, ) /NVar(Uy, /4)-

V22 Vs D>\ J2Var(U, ) NVar (U ).

We write /2V}, 5/ V4 = \/QVar(Un/g)/Var(UnM) + op(1), and thus

Vexz = Vet (/2Var(U, o) Var(Uy, 4) + op (1))

Therefore,
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By the closed-form expression of the U-statistic varianceguation (2.4), we have

2Var(U,, o) 2L () e
VarlUa) k()P
B0+ M 03 + ol1/n?)

k2(k 2
A2 53+ ST 4 o(1/n2)

n(
1+ %5—% +o(1/n)

14+ 2225 4 o(1/n)

14 B0 53 s+ o(1/n)

52
1 +2(k‘ — 1)2 (m + m) é +0(1/n)

14+ (=25 % +o(1/n)

14+ 2005 4 o(1/n)

Lets = (k — 1)262/{(n — 2)02}. The expectation ofe> can be expressed as

R 2 2 _1)2 s o n
Bl = {Sot+ L2 g o)) {\/ fj%i A0 0p<1>}
2 2 _1)2

Denotet = s/(1 + 2s) + o(1/n), and considek/1 — ¢t. Becausg ¢ |< 1, we can apply
Taylor series and expandl — ¢ aroundt¢ = 0 as follows.

t .
Vvi—-t=1- 3 + Remainder
Notice thatt is of orderl/n. Thus, the remainder in the expansiom({$/n), and

E2(k —1)2

3
1\3

E(Vexa) = {—52 - WA ;- +0(1/n2)} {1 (k=153

(k—1)
(n—2) 2(n — 2)6?
L R (R0 RE=DN o s
n { (n—2) 2n(n—2)}52+ (1/n7) + (1/n)op(1)

+o(1/n) + Op(l)}

n\n —

Thus, ) ) )
n {E(Vexz) _ (k 52+ %53 + 0(1/n2)>} LAY

Stochastically, the second-order biadiy, is

<§>2 {n(nQ— 2) n(n2_ 0 } 0% ~ 0.

In comparison, the second-order positive bia¥dg is
k\? 4 2 52
2 nn—2) nn-1)[%
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In addition, from Theorem 2 in Wang and Chen (2015) the jadkkvariance estimator has

second-order bias
k\? [ 4n(n —2) B 2 52
2 (n—1* nn-1))%

Hence, the second-order extrapolation technique successfully corrects the positive bias in
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