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Abstract
This paper considers the problem of variance estimation of a U-statistic. Extrapolation techniques
are proposed to overcome the drawback of having negative values when using the unbiased U-
statistic variance estimator (Wang and Lindsay, 2014). Following the proposal of the linearly ex-
trapolated variance estimator (Wang and Chen, 2015), we consider nonlinear extrapolation method
and devise a variance estimator that is nearly second-order unbiased. Simulation studies indicate
that the second-order extrapolated variance estimator has smaller mean squared error compared to
the unbiased variance estimator and the jackknife variance estimator across a wide selection of dis-
tributions. We also discuss the advantage of the proposal compared to its jackknife counterpart in
regression analysis and model selection.

Key Words: Hoeffding-decomposition, linear extrapolation, nonlinear extrapolation, variance es-
timation, unbiased, U-statistic

1. Introduction

Let X1, . . . ,Xn be an independent, identically distributed sample from some distribution.
A U-statistic with kernel functionφ of k components is defined as (Hoeffding, 1948)

Un =

(

n

k

)−1
∑

1≤i1<···<ik≤n

φ(Xi1 , . . . ,Xik).

Without loss of generality, letφ be a symmetric function that is permutation invariant in
its k components. Since functionφ is often scalar-valued in applications, we focus on
the case thatφ ∈ R. We callk the kernel size ofUn; it is the smallest integer such that
E{φ(X1, . . . ,Xk)} = θ, whereθ is the parameter of interest. The kernel sizek is also
referred to as the degree ofUn. U-statistic is an unbiased estimator for parameterθ. In
the context of nonparametric inference where the set of order statistics(X(1), . . . ,X(n)) is
the complete sufficient statistic (Fraser, 1954),Un is the minimum-variance unbiased esti-
mator. Because most unbiased estimators in common use have a U-statistic representation,
obtaining a reliable estimator for the variance ofUn is crucial in statistical inference and
practical applications.

Hoeffiding (1948) gives the closed-form expression for the variance ofUn:

Var(Un) =

(

n

k

)−1 k
∑

c=1

(

k

c

)(

n− k

k − c

)

σ2
c , (1.1)

whereσ2
c = Var{φc(X1, . . . ,Xc)}, andφc(x1, . . . , xc) = E{φ(X1, . . . ,Xk)X1 = x1, . . .,

Xc = xc} for 1 ≤ c ≤ k. It was also shown thatUn admits an asymptotic normal
distribution with asymptotic variancek2σ2

1/n, provided thatφ is twice integrable and0 <
σ2
1 < ∞. However, the exact U-statistic variance (1.1) is complicated in form, and the

asymptotic variance ofUn is not necessarily reliable when the kernel sizek is not small
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compared to the sample sizen. Wang and Lindsay (2014) propose an unbiased variance
estimator ofUn, denoted aŝVu, that is of a simple quadratic form and is applicable as long
as the ratiok/n ≤ 1/2.

Let Nc be the number of pairs of subsamples of sizek that have at mostc overlaps
(0 ≤ c ≤ k), and letO(Sa, Sb) be the number of overlaps between subsetsSa andSb. The
unbiased variance estimator (Wang and Lindsay, 2014) is defined as

V̂u = Q(k)−Q(0), (1.2)

whereQ(c) = N−1
c

∑

O(Sa,Sb)≤c φ(Sa)φ(Sb) for 0 ≤ c ≤ k. The investigation of an
unbiased variance estimator ofUn has occurred in some previous literature, such as Folsom
(1984) and Maesono (1998). It can be shown that the various proposals of the unbiased
variance estimator ofUn are equivalent. However, the definition ofV̂u in Wang and Lindsay
(2014) is of a much simpler form.

Although V̂u is unbiased and easy to compute with the help of partition resampling
scheme (Wang and Lindsay, 2014), it is possible forV̂u to yield negative values (see
Example 2 in Wang and Lindsay (2014)). To overcome this drawback, Wang and Chen
(2015) propose a general class of linearly extrapolated variance estimators that are non-
negative. The class of linearly extrapolated variance estimators (Wang and Chen, 2015)
can be viewed as generalization of the leave-one-out jackknife variance estimator (Efron
and Stein, 1981), but they are more computationally efficient than the jackknife estimator
in half-sampling cross-validation problems. LetUm denote a U-statistic computed based
on a subsample of sizem. Building upon the linear extrapolation method, we extend the
approximate relationship between Var(Un) and Var(Um) from linear to a nonlinear form.
We will show that with the help of second-order extrapolation technique the resulting U-
statistic variance estimator is nearly second-order unbiased. Thus, it is more accurate than
the linearly extrapolated variance estimator.

The rest of the paper is organized as follows: We first introduce two extrapolated vari-
ance estimators of a U-statistic in Section 2, using first-order and second-order extrapola-
tion techniques respectively. In Section 3 we present a simulation study to confirm that the
extrapolated variance estimators are always non-negative, while the unbiased variance es-
timator in Wang and Lindsay (2014) might yield negative values. In addition, we compare
the performance of the extrapolated variance estimators with the unbiased variance estima-
tor and the conventional jackknife variance estimator in terms of bias, variance, and mean
squared error in a study of assessing the variance of the unbiased sample variance, where
the data are generated from a wide selection of distributions. In Section 4 we discuss the
advantage of the proposed extrapolated variance estimators in comparison to its jackknife
counterpart in the context of regression analysis and model selection. We will conclude
this paper with some discussions in Section 5.

2. Extrapolation Techniques in Variance Estimation

In this section we consider practical solutions for the problem of having possibly negative
values when using the unbiased variance estimatorV̂u (1.2). We propose to first estimate
the variance of a U-statistic at a subsample sizem, also referred to as afictional sample
size, that may be smaller than the original sample sizen, and then extrapolate the vari-
ance estimator fromm to n to remove the bias incurred in the subsampling stage. The
extrapolated variance estimator is always non-negative. Moreover, we anticipate that this
subsampling plus extrapolation methodology can help to reduce the variation of the vari-
ance estimator, similar as what has been seen in the context of kernel density bandwidth
selection in Marron (1987), Hall and Robinson (2009), and Wang and Lindsay (2015).
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2.1 First-order Extrapolation Technique

LetU (−i)
n−1 be a U-statistic defined on a data subset of sizen−1, without theith observation.

The conventional jackknife estimator in the context of U-statistic variance estimation is
defined by

V̂J =
n− 1

n

n
∑

i=1



U
(−i)
n−1 − 1

n

n
∑

j=1

U
(−j)
n−1





2

.

Efron and Stein (1981) consider̂VJ as a linearly extrapolated variance estimator. The term
∑n

i=1

(

U
(−i)
n−1 − 1

n

∑n
j=1U

(−j)
n−1

)2
is viewed as a estimator for Var(Un−1), and(n − 1)/n

is a constant multiplier for adjusting the difference between Var(Un) and Var(Un−1). It is
well known that the jackknife variance estimator is often less computationally expensive
than the bootstrap methods, but it is always biased upwards.

Following the footsteps of Efron and Stein (1981), Wang and Chen (2015) study a gen-
eral class of linearly extrapolated variance estimators. In the context of U-statistic variance
estimation, one first constructs an unbiased variance estimator for a U-statistic at subsam-
ple sizem (m ≤ n/2), denoted aŝVm, and then extrapolates it fromm to n based on a
linear approximate relationship. Denote the U-statistic computed based on a subsampleS
of sizem asUm(S). The first-order extrapolated variance estimator can be expressed as

V̂ex1 =
m

n

{(

n

m

)(

n−m

m

)}−1
∑

O(Sa,Sb)=0

{Um(Sa)− Um(Sb)}2
2

, (2.1)

whereSa andSb are subsamples of sizem, andO(Sa, Sb) is the number of overlapping
elements between these two data subsets. Note that

V̂m :=

{(

n

m

)(

n−m

m

)}−1
∑

O(Sa,Sb)=0

{Um(Sa)− Um(Sb)}2
2

(2.2)

is an unbiased estimator for Var(Um). The condition ofm ≤ n/2 is crucial for the con-
struction of an unbiased variance estimator for a U-statistic at fictional sizem. Whenn and
m are both large, one can approximateV̂ex1 by independently drawingB disjoint pairs of
subsamples(Sb,1, Sb,2) (1 ≤ b ≤ B). Then,V̂ex1 can be approximated by

V̂ B
ex1 =

m

n

1

B

B
∑

b=1

(Um(Sb,1)− Um(Sb,2))
2

2
. (2.3)

Remark 1. By construction the linearly extrapolated variance estimator,V̂ex1 or V̂ B
ex1, is

an average of square differences, and therefore is always non-negative.

Lethc (1 ≤ c ≤ k) be thecth orthogonal term in Hoeffding decomposition (Hoeffding,
1948; Lee, 1990), defined by

hc(x1, . . . , xc) = φc(x1, . . . , xc)−
c−1
∑

l=1

∑

(c,l)

hl(xi1 , . . . , xil)− θ,

andh1(x1) = φ1(x1)− θ. The closed-form expression of Var(Un) in (1.1) can be equiva-
lently written as

Var(Un) =
k

∑

c=1

(

n

c

)−1(k

c

)2

δ2c , (2.4)
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whereδ2c = Var(hc) (1 ≤ c ≤ k). Thus, for anym ≤ n

Var(Um) =

k
∑

c=1

(

m

c

)−1(k

c

)2

δ2c .

Because
(

n

c

)−1(k

c

)2

< (m/n)

(

m

c

)−1(k

c

)2

for m < n andc ≥ 2. We have Var(Un) < (m/n)Var(Um). Thus, we introduce some
positive bias by extrapolating the variance fromm to n based on an approximate linear
relationship.

Remark 2. Wang and Chen (2015) express the expectation ofV̂ex1 in terms of the variance
of the orthogonal terms in Hoeffding decomposition:

E(V̂ex1) =
k2

n
δ21 +

m

n

k
∑

c=2

(

k

c

)2(m

c

)−1

δ2c .

Thus,V̂ex1 is first-order unbiased. Its second-order bias can be written as

second-order bias(V̂ex1) =

(

k

2

)2{ 2

n(m− 1)
− 2

n(n− 1)

}

δ22 .

The positive bias becomes larger asm gets smaller for a fixed sample sizen, or when the
sample sizen gets smaller for a fixed ratio ofm/n.

The construction of̂Vex1 is based on an approximate linear relationship between Var(Um)
and Var(Un), which may not be accurate for relatively small value ofn. In the following
we will consider a nonlinear approximate relationship that aims to reduce the bias inV̂ex1,
especially for small sample sizen.

2.2 Second-order Extrapolation Technique

Below we will show how to construct a second-order extrapolated estimator for Var(Un)
by referring to the closed-form expression of the U-statistic variance. Without loss of gen-
erality, we demonstrate the method by extrapolating from two fictional sizes,m = n/2 and
m = n/4.

We first rewrite the U-statistic variance as follows:

Var(Un) =

k
∑

c=1

(

n

c

)−1(k

c

)2

δ2c =
1

n
σ2

{

1 +
a

n− 1
+O(1/n2)

}

,

whereσ2 = k2δ21 , anda = (k−1)2δ22/(2δ
2
1). One can approximate Var(Un) by (1/n)σ2ea/(n−1).

For simplicity of estimating the unknown parametera, we write the approximate variance
at sizen as

Vn := (1/n)σ2ea/n.

At fictional sizesm = n/4 andm = n/2, we have

Vn/4 =
4

n
σ2e4a/n andVn/2 =

2

n
σ2e2a/n.
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Then,Vn/2/Vn/4 = (1/2)e−2a/n andVn/Vn/2 = (1/2)e−a/n. Thus,

Vn =
1

2
Vn/2e

−a/n =
1

2
Vn/2

√

2Vn/2/Vn/4. (2.5)

One can view
√

2Vn/2/Vn/4 as a shrinkage factor; it equals 1 if the ratio ofVn/2/Vn/4 is

exactly 1/2. Denote the second-order extrapolated variance estimator of Var(Un) asV̂ex2.
It is defined by

V̂ex2 = (1/
√
2)V̂

3/2
n/2 V̂

−1/2
n/4 = V̂ex1

√

2V̂n/2/V̂n/4, (2.6)

whereV̂n/2 and V̂n/4 are unbiased estimators for Var(Un/2) and Var(Un/4), as defined in
equation (2.2) when settingm = n/2 andm = n/4 respectively. As the definition of
V̂m (m ≤ n/2) is straightforward, the realization of̂Vex2 is simple in structure and does
not involve higher-order computational cost compared toV̂ex1.

Remark 3. The second-order extrapolated variance estimator can be expressed asV̂ex2=

V̂ex1e
−â/n, wheree−â/n =

√

2V̂n/2/V̂n/4. Because0 < e−â/n < 1, V̂ex2 is smaller than

V̂ex1 and therefore corrects the positive bias inV̂ex1.

Theorem 1. Let V̂ex2 be the second-order extrapolated variance estimator as defined in
equation(2.6). Under weak regularity conditions so that̂Vm (2.2) has finite variance,
V̂ex2 is nearly second-order unbiased. Thus, it has smaller bias compared to the linearly
extrapolated variance estimator̂Vex1.

For proof, please see Appendix.

Remark 4. Hinkley (1977) and Wu (1986)) show that the jackknife variance estimator
yields poor performance with large positive bias in regression analysis. The numerical
study in Wang and Chen (2015) reveals that the first-order extrapolated variance estima-
tor has much smaller bias than its jackknife counterpart in assessing the variance of a
U-statistic risk estimate for a parametric model. In addition, the linearly extrapolated
variance estimator has significant computational advantage than the jackknife method in
half-sampling cross-validation problems. The computational cost ofV̂ex2 is of the same
order as that forV̂ex1. Thus, the second-order extrapolated variance estimator is supe-
rior to the conventional jackknife method in the regression context. We will demonstrate a
simulation comparison in regression risk estimation in Section 4.

3. Simulation Study

In this section we study the numerical performance of the proposed second-order extrapo-
lated variance estimator in comparison to the linearly extrapolated variance estimatorV̂ex1,
the unbiased variance estimatorV̂u, and the jackknife variance estimatorV̂J . We consider
a simple but practical scenario where the the parameter of interestθ is the variance of the
underlying distribution. The U-statistic estimate for the variance is the unbiased sample
variance, i.e.Un = S2 = {1/(n − 1)}∑n

i=1(Xi − X̄)2. Our goal is to evaluate the
variance of the unbiased sample variance, denoted as Var(Un).
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Table 1: A list of distributions under consideration

Name Description
Standard Normal Normal with mean 0 and standard deviation 1
Mixture 1 Binomal normal mixture:0.5N(−1.5, 1) + 0.5N(1.5, 1)
Mixture 2 Normal mixture with an outlying mode:0.5N(0, 1) + 0.5N(0, 0.1)
Gamma(5,2) Gamma with shape parameter 5 and scale parameter 2
t(10) t distribution with 10 degrees of freedom

We randomly generateR = 500 samples of sizen (n = 10, 30, 50, 100) from some
distribution. To investigate whether the proposed variance estimator is robust to outlying,
bimodal, skewed, or heavy-tailed features of the data, a list of five different distributions
are considered with descriptions shown in Table 1. Here we choose relatively small sample
sizen, as the difference between various variance estimators diminishes asn gets large.
For each given sample of sizen, we compute the proposed first-order and second-order
extrapolated variance estimators. In the realization ofV̂ex1 (2.3), we setB = 1000 and
consider subsample sizesm = n/2 andm = n/4. The calculation of̂Vex2 is based on
formula (2.6). We also compute the unbiased variance estimatorV̂u proposed in Wang
and Lindsay (2014). The unbiased variance estimatorV̂u is realized based on equation
(1.2) forn = 10 andn = 30. Whenn = 50 or 100, the calculation ofQ(0) in equation
(1.2) involves an average of

(n
2

)(n−2
2

)

terms, which is computational expensive to realize.
Therefore, forn = 50 and100 we approximateQ(0) usingC randomly generated pairs
of disjoint subsets of size two. We consider four different values ofC, i.e. 1000, 10000,
100000, and 1000000, in the following simulation comparison.

3.1 Possible negative values in V̂u

Table 2: Number of negative values produced byV̂u out of 500 samples

Sample size Normal Mixture 1 Mixture 2 Gamma(5,2) t(10)
n = 10 0 1 0 0 0
n = 30 0 0 0 0 0

C = 1000

n = 50 0 0 0 1 12
n = 100 2 23 0 33 79

C = 10000

n = 50 38 89 7 18 25
n = 100 130 166 67 97 94

C = 100000

n = 50 0 4 0 0 0
n = 100 13 36 1 7 3

C = 1000000

n = 50 0 0 0 0 0
n = 100 0 0 0 0 0

We first look at the number of negative values produced byV̂u out of the 500 replications.
Table 2 shows that it is possible for the unbiased variance estimator to yield negative values.
Even when the exact formula (1.2) is used for small sample sizen = 10, one sample gen-
erated from the bimodal normal mixture distribution yields a negative value ofV̂u. When
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n = 50 or 100, the number of negative values ofV̂u increases significantly asQ(0) is ap-
proximated by a smaller number of disjoint random subsets. Only whenC increases to
one million do all the values of̂Vu become positive. Although Wang and Lindsay (2014)
discuss possible fix-ups for the issue of having negative values ofV̂u, the forced-positive
variance estimator is quite liberal with very small value. This may lead to undesirable large
probability of committing Type I error when used to construct a test statistic in a statisti-
cal hypothesis test setting. Thus, whenever the unbiased variance estimator gives negative
estimates, the extrapolated variance estimators may be considered. Furthermore, it will
be seen later in Table 3 and Table 4 that even when the unbiased variance estimator pro-
duces positive variance estimates, the second-order extrapolated variance estimator yields
comparable or even better performance in achieving a smaller mean squared error.

3.2 Comparison between Extrapolated Variance Estimators and Unbiased Variance
Estimator

We now compare the performance between the extrapolated variance estimators and the
unbiased variance estimators in terms of mean, standard deviation, and mean squared error.
We summarize in Table 3 and Table 4 the simulation results. Since the jackknife variance
estimator can be viewed as a linearly extrapolated variance estimator, we also include the
results ofV̂J in the tables below. Whenn = 50 or 100 we approximateQ(0) in V̂u using
C = 1000000 disjoint subsamples. From Table 2 we know that withC = 1000000 the
unbiased variance estimatorV̂u yields positive values for all distributions under considera-
tion. However, we will see later that even with positive valuesV̂u does not outperform the
second-order extrapolated variance estimator.

When considering the linearly extrapolated variance estimatorV̂ex1 at different fictional
sizes, usingm = n/2 leads to the best result. This agrees with the fact thatm = n/2
leads to the smallest bias in̂Vex1, as shown in Wang and Chen (2015). The second-order
extrapolated variance estimator seems to correct the positive bias inV̂ex1; its superiority
in terms of bias is significant for small sample sizen. The unbiased variance estimator
tends to have larger variation compared to the second-order extrapolated variance estimator.
Wang and Lindsay (2014) show thatV̂u has a U-statistic expression itself. Thus,V̂u is the
minimum-variance unbiased variance estimator in the context of nonparametric inference.
However, our numerical results indicate that a smaller variance and a smaller mean squared
error could be achieved by relaxing the unbiasedness condition. Moreover, besides the
well-known positive bias of the jackknife variance estimator, the jackknife method seems
more variable than the extrapolated variance estimators. Overall, the second-order extrap-
olated variance estimator is a clear winner in achieving a smaller standard deviation and
mean squared error across different sample sizes and distributions. The advantage of using
second-order extrapolation is particularly obvious when the sample sizen is small. The
performance of these variance estimators become more and more similar as the sample size
n increases.
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Table 3: Comparison of different variance estimators. The smallest mean squared error for each
distribution and sample size is highlighted in bold.

Normal
Sample sizen V̂u V̂ex1 V̂ex2 V̂J

(m = n/2) (m = n/4)

10
Mean 0.2025 0.2291 0.4615 0.1650 0.2286
SD 0.2350 0.2530 0.4476 0.1973 0.2514

(Truth: 0.2222) MSE 0.0556 0.0641 0.2576 0.0422 0.0633

30
Mean 0.0653 0.0677 0.0791 0.0628 0.0677
SD 0.0455 0.0457 0.0522 0.0430 0.0464

(Truth: 0.0690) MSE 0.0021 0.0021 0.0028 0.0019 0.0022

50
Mean 0.0395 0.0405 0.0441 0.0388 0.0405
SD 0.0209 0.0212 0.0225 0.0207 0.0211

(Truth: 0.0408) MSE 0.0004 0.0004 0.0005 0.0004 0.0004

100
Mean 0.0197 0.0199 0.0203 0.0198 0.0200
SD 0.0078 0.0075 0.0075 0.0075 0.0074

(Truth: 0.0202) MSE 0.0001 0.0001 0.0001 0.0001 0.0001
Mixture 1

10
Mean 1.3863 1.6941 4.1513 1.1193 1.6881
SD 1.3992 1.5177 2.9510 1.1538 1.5027

(Truth: 1.2872) MSE 1.9674 2.4689 16.9120 1.3594 2.4188

30
Mean 0.3876 0.4134 0.5168 0.3706 0.4138
SD 0.1908 0.1980 0.2293 0.1862 0.1968

(Truth: 0.3673) MSE 0.0368 0.0413 0.0749 0.0347 0.0409

50
Mean 0.2303 0.2393 0.2708 0.2252 0.2391
SD 0.0922 0.0906 0.0985 0.0881 0.0907

(Truth: 0.2286) MSE 0.0085 0.0083 0.0115 0.0078 0.0083

100
Mean 0.1125 0.1134 0.1181 0.1113 0.1114
SD 0.0385 0.0289 0.0301 0.0289 0.0287

(Truth: 0.1113) MSE 0.0015 0.0008 0.0010 0.0008 0.0008
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Table 4: Comparison of different variance estimators. The smallest mean squared error for each
distribution and sample size is highlighted in bold.

Mixture 2
Sample sizen V̂u V̂ex1 V̂ex2 V̂J

(m = n/2) (m = n/4)

10
Mean 0.1580 0.1649 0.2535 0.1343 0.1651
SD 0.3470 0.3525 0.4764 0.3062 0.3519

(Truth: 0.1504) MSE 0.1205 0.1244 0.2376 0.0940 0.1241

30
Mean 0.0451 0.0458 0.0507 0.0437 0.0457
SD 0.0486 0.0492 0.0531 0.0475 0.0489

(Truth: 0.0421) MSE 0.0024 0.0024 0.0029 0.0023 0.0024

50
Mean 0.0266 0.0267 0.0284 0.0260 0.0267
SD 0.0216 0.0214 0.0224 0.0210 0.0214

(Truth: 0.0250) MSE 0.0005 0.0005 0.0005 0.0004 0.0005

100
Mean 0.0127 0.0128 0.0128 0.0127 0.0128
SD 0.0066 0.0065 0.0066 0.0066 0.0065

(Truth: 0.0125) MSE 0.0000 0.0000 0.0000 0.0000 0.0000
Gamma(5,2)

10
Mean 0.5325 0.5288 0.9429 0.4058 0.5766
SD 1.2445 1.0993 1.6048 0.9296 1.2845

(Truth: 0.5345 ) MSE 1.5488 1.2084 2.7423 0.8807 1.6517

30
Mean 0.1592 0.1607 0.1831 0.1509 0.1630
SD 0.2363 0.2176 0.2415 0.2072 0.2379

(Truth: 0.1704 ) MSE 0.0559 0.0474 0.0585 0.0433 0.0566

50
Mean 0.0917 0.0933 0.1007 0.0901 0.0928
SD 0.1004 0.0974 0.1034 0.0949 0.1003

(Truth: 0.1014) MSE 0.0102 0.0096 0.0107 0.0091 0.0101

100
Mean 0.0483 0.0491 0.0497 0.0489 0.0489
SD 0.0416 0.0385 0.0388 0.0386 0.0412

(Truth: 0.0504 ) MSE 0.0017 0.0015 0.0015 0.0015 0.0017
t(10)

10
Mean 0.5518 0.5964 1.0462 0.4585 0.5962
SD 2.0676 2.1075 2.8910 1.8100 2.1020

(Truth: 0.5049 ) MSE 4.2770 4.4501 8.6508 3.2783 4.4269

30
Mean 0.1569 0.1606 0.1824 0.1507 0.1607
SD 0.2439 0.2461 0.2677 0.2360 0.2456

(Truth:0.1595 ) MSE 0.0595 0.0606 0.0722 0.0558 0.0603

50
Mean 0.0970 0.0985 0.1059 0.0951 0.0986
SD 0.1089 0.1076 0.1136 0.1047 0.1075

(Truth: 0.0950 ) MSE 0.0119 0.0116 0.0130 0.0110 0.0116

100
Mean 0.0486 0.0489 0.0495 0.0486 0.0489
SD 0.0455 0.0447 0.0447 0.0447 0.0447

(Truth: 0.0473 ) MSE 0.0021 0.0020 0.0020 0.0020 0.0020

4. Application to Regression Analysis and Model Selection

In regression analysis one often wants to find the most parsimonious model with sufficient
goodness of fit. Many existing model selection criteria, such as the AIC (Akaike, 1974) and
BIC (Schwarz, 1978) model selection tools, are constructed by estimating the Kullback-
Leibler risk of a fitted model with a certain training sample size (Wang and Lindsay, 2014).
However, every risk estimate suffers sampling variation. Without evaluating the variance
of a risk estimator, one cannot know for sure whether the model with the smallest risk score
is truly the optimal one or not.
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The proposed extrapolated variance estimators have great practical value in regression
analysis and model selection. It was discussed in Hindley (1977), Wu (1986), and also
noted in Wang and Chen (2015) that the jackknife variance estimator yields large positive
bias in unbalanced regression situations. When used to assess the variation of a risk esti-
mate for a fitted model, the large positive bias in the jackknife variance estimator is likely
to impact inferential decisions. For instance, under the widely used “one-standard-error”
rule (Hastie et al., 2009), where one selects the most parsimonious model whose risk is
within one standard error of the optimal risk score, using the jackknife variance estimator
may result in choosing an over-parsimonious model.

We consider the same simulation scenario as discussed in Wang and Chen (2015). A
multiple linear regression model is considered whose true relationship is defined as follows:

Yi = 1 + 8Xi,1 + 5Xi,2 + 3Xi,3 + 1Xi,4 + 0.1Xi,5 + ǫi (1 ≤ i ≤ 100).

We simulateR = 500 data sets of sizen = 100. For each data set thex-variables are
independently generated from Uniform(0,1), and the random errors are simulated from
Normal distribution with mean 0 and standard deviation 0.1. The parameter of interest is
the true Kullback-Leibler risk of the Least Square fit of the above linear regression model.
The unbiased risk estimate based on Kullback-Leibler distance is of a U-statistic form. For
instance, if the kernel size of the U risk estimator isk = n/2, then the cross-validation
score can be written as

Un =

(

n

n/2

)−1
∑

(n,n/2)

φ(Sn/2),

φ(Sn/2) =
1

n/2

∑

(xi,yi)∈Sn/2

log fβ̂(S−i
n/2−1

)(yi | xi),

where the notation(n, n/2) means the summation is taken over all subsamplesSn/2 of
sizen/2. HereS−i

n/2−1 is a delete-i data subset of sizen/2 − 1, xi = (xi,1, . . . , xi5)
T ,

β = (β0, . . . , β5)
T , andfβ̂ is the estimated density function for the responseY .

We consider estimating the variance of the Kullback-Leibler risk score using different
variance estimators, including the linearly extrapolated variance estimatorV̂ex1 with m =
n/2, the second-order extrapolated variance estimatorV̂ex2 with m = n/2 andn/4, and the
jackknife variance estimator. The true variance of the risk score is approximated based on
10,000 random data sets. The following table summarizes the average variance estimate,
the standard deviation , and the mean squared error of each variance estimator.

Table 5: Comparison of different variance estimators in risk analysis

Estimator Mean SD MSE
Truth 0.00552
V̂ex1 0.00595 0.00229 5.43 × 10−6

V̂ex2 0.00511 0.00217 4.92 × 10−6

V̂J 0.00895 0.00331 2.27 × 10−5

As noticed in Table 5, the jackknife variance estimator showsnon-negligible positive
bias that is over 60% of the true variance in the example under consideration. In addition,
the mean squared error of the jackknife estimator is about four times larger than that of the
extrapolated variance estimators. In comparison, both extrapolation methods yield variance
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estimates that are close to the truth on average and with smaller standard deviation and
mean squared error. The second-order extrapolation seems to provide improvement over
the linear extrapolation technique. The extrapolated variance estimators clearly outperform
the conventional jackknife method in the regression context.

5. Discussion

In this paper we consider using extrapolation techniques in U-statistic variance estimation.
In particular, a second-order extrapolated variance estimator is proposed. The second-
order extrapolation technique corrects the positive bias in the linearly extrapolated variance
estimator and leads to a variance estimator that is nearly second-order unbiased.

The construction of the extrapolated variance estimators, as well as the unbiased vari-
ance estimator̂Vu, requires the kernel sizek ≤ n/2 (or k ≤ n/4 for second-order ex-
trapolation). This condition limits the applications of these variance estimators inK-fold
cross-validation problems (K ≥ 2). Wang and Lindsay (2014) show that the kernel size
k of an unbiased risk estimator inK-fold cross-validation is1 + n(K − 1)/K, bigger
thann/2. Bengio and Grandvalet (2004) point out that there is no unbiased variance es-
timator forK-fold cross-validation. That is, neither the unbiased variance estimator nor
the extrapolated variance estimators apply to the commonly used ten-fold or leave-one-out
cross-validation scenarios. In a future project we will study how to find a general variance
estimator for a U-statistic in the context ofK-fold cross-validation.
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Appendix A: Proof for Theorem 1

Proof. BecausêVm (m ≤ n/2) is unbiased for Var(Um) and has finite variance, by Cheby-
shev’s inequalityV̂m converges to Var(Um) in probability. That is,

V̂n/2
P−→ Var(Un/2) andV̂n/4

P−→ Var(Un/4).

Because both Var(Un/2) and Var(Un/4) are non-zero constants, by Slutsky’s Theorem we
have

2V̂n/2/V̂n/4
P−→ 2Var(Un/2)/Var(Un/4).

Therefore,
√

2V̂n/2/V̂n/4
P−→

√

2Var(Un/2)/Var(Un/4).

We write
√

2V̂n/2/V̂n/4 =
√

2Var(Un/2)/Var(Un/4) + oP (1), and thus

V̂ex2 = V̂ex1

(√

2Var(Un/2)/Var(Un/4) + oP (1)
)

.
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By the closed-form expression of the U-statistic variance inequation (2.4), we have

2Var(Un/2)

Var(Un/4)
=

2
∑k

j=1

(k
j

)2(n/2
k

)−1
δ2j

∑k
j=1

(k
j

)2(n/4
k

)−1
δ2j

=

4k2

n δ21 +
4k2(k−1)2

n(n−2) δ22 + o(1/n2)

4k2

n δ21 +
8k2(k−1)2

n(n−4) + o(1/n2)

=
1 + (k−1)2

n−2
δ2
2

δ2
1

+ o(1/n)

1 + 2(k−1)2

n−4
δ2
2

δ2
1

+ o(1/n)

=
1 + (k−1)2

n−2
δ2
2

δ2
1

+ o(1/n)

1 + 2(k − 1)2
(

1
n−2 +

2
(n−2)(n−4)

)

δ2
2

δ2
1

+ o(1/n)

=
1 + (k−1)2

n−2
δ2
2

δ2
1

+ o(1/n)

1 + 2(k−1)2

n−2
δ2
2

δ2
1

+ o(1/n)

Let s = (k − 1)2δ22/{(n − 2)δ21}. The expectation of̂Vex2 can be expressed as

E(V̂ex2) =

{

k2

n
δ21 +

k2(k − 1)2

n(n− 2)
δ22 + o(1/n2)

}

{
√

1 + s+ o(1/n)

1 + 2s + o(1/n)
+ oP (1)

}

=

{

k2

n
δ21 +

k2(k − 1)2

n(n− 2)
δ22 + o(1/n2)

}{√

1− s

1 + 2s
+ o(1/n) + oP (1)

}

Denotet = s/(1 + 2s) + o(1/n), and consider
√
1− t. Because| t |< 1, we can apply

Taylor series and expand
√
1− t aroundt = 0 as follows.

√
1− t = 1− t

2
+ Remainder.

Notice thatt is of order1/n. Thus, the remainder in the expansion iso(1/n), and

E(V̂ex2) =

{

k2

n
δ21 +

k2(k − 1)2

n(n− 2)
δ22 + o(1/n2)

}{

1− (k − 1)2δ22
2(n − 2)δ21

+ o(1/n) + oP (1)

}

=
k2

n
δ21 +

{

k2(k − 1)2

n(n− 2)
− k2(k − 1)2

2n(n− 2)

}

δ22 + o(1/n2) + (1/n)oP (1)

Thus,

n

{

E(V̂ex2)−
(

k2

n
δ21 +

k2(k − 1)2

2n(n − 2)
δ22 + o(1/n2)

)}

P−→ 0.

Stochastically, the second-order bias inV̂ex2 is

(

k

2

)2 { 2

n(n− 2)
− 2

n(n− 1)

}

δ22 ≈ 0.

In comparison, the second-order positive bias inV̂ex1 is

(

k

2

)2{ 4

n(n− 2)
− 2

n(n− 1)

}

δ22 .
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In addition, from Theorem 2 in Wang and Chen (2015) the jackknife variance estimator has
second-order bias

(

k

2

)2{4n(n− 2)

(n− 1)4
− 2

n(n− 1)

}

δ22 .

Hence, the second-order extrapolation technique successfully corrects the positive bias in
V̂ex1 andV̂J .
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