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Abstract
Large dimension of both state vector and data is a well-known challenge in environmental

modeling (e.g., numerical weather forecast) and, in particular, in data assimilation. The
Ensemble Kalman Filter addresses this problem by estimating the current system state
and its uncertainty via their sample counterparts. However, sample covariance matrix
based on a small ensemble is not a sufficiently good estimate of the true covariance. In
this paper, we deal with techniques relying on transformation of the state to the spectral
space and assuming a particular covariance structure based on the Laplace operator.
Parameters, which this special structure depends on, are estimated by a least squares
method and a maximum likelihood method. The behavior of both estimators is illustrated
by a simulation. Both methods have a smaller error in Frobenius norm than the sample
covariance, moreover, the latter method performs better than the former one, which
corresponds to its stronger assumptions.

Key Words: Data assimilation, discrete Fourier transform, spectral, diagonal covariance,
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1. Data assimilation into numerical weather model

In numerical weather models, the state of the atmosphere is understood as a
collection of several (generally 3D) random fields of variables, such as pressure,
temperature, wind vectors, etc. In practice, the model domain is represented as a
discrete grid, with a vector of values of meteorological variables at each gridpoint. If
we let the model evolve one time step, say, from t− 1 to t, it provides a forecast for
time t, Xf

t, which is a prior estimate of the true state X∗t of the atmosphere. Now at
time t, some variables yt are observed, often not directly and with an error. There
exist a large number of mathematical and statistical techniques for incorporating
the observations into the model [4].

Data assimilation as a mathematical discipline encompasses these techniques
together with a number of supporting methods. From the point of view of statistics,
assimilation of data means finding a posterior estimate of the state. This posterior
estimate is called “analysis” in meteorology. One of the classical schemes of data
assimilation is the update step of the Kalman filter [3]

Xa
t = Xf

t +G(yt −HXf
t)

Ca = cov{Xa
t } = (I −GH)C f
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where Xa
t is the analysis, the matrix G = C fH>(HP fH> + R)−1 is called

Kalman gain, C f , resp. R, stand for the covariance matrix of forecast errors,
resp. observation errors, and H denotes an observation operator (HXf

t is a model
counterpart of yt). The Kalman filter relies on many assumptions like linearity of
the observation operator and unbiasedness of the forecast. Xa

t is the best linear
unbiased estimator of X∗t [9].

In meteorology, the dimensions of the 3D grid are tens to hundreds. As a result,
the dimension of the state vector is about 106 and the matrices C f and Ca cannot
be stored in the memory of a computer and treated in a usual manner. The aim is
to estimate them cheaply, but with a sufficient accuracy.

In the rest of the paper we will consider the system state in one particular time
so we will omit the subscript t.

2. Ensemble Kalman Filter

For the sake of simplicity, we shall deal with one variable on a 2D grid in a
spatial domain D. Thus, let X be a centered random field describing spatial
distribution of some meteorological variable (e.g. temperature) on a horizontal
grid with dimensions M × N which can be ordered to a vector of length MN if
necessary.

One version of the Kalman filter that addresses the “dimension problem” is the
Ensemble Kalman filter [1], where the distribution of system state is represented by
an ensemble X = [X1, . . . ,XS ], S << MN . The ensemble represents a sample of
stochastically independent draws from the distribution of X.

The forecast system state is estimated through the ensemble mean

X̄f =
1

S

S∑
s=1

Xf
s

and the covariance matrix is estimated by the sample covariance

Ĉ f =
1

S − 1

S∑
s=1

(Xf
s − X̄f)(Xf

s − X̄f)> =
1

S − 1
Xf(I − 1

S
11>)(Xf)>

= Zf(Zf)>,

where Zf denotes the matrix of forecast ensemble perturbations (its size is MN×S).
Because of high computational cost, the size of the ensemble is small in real tasks

(usually a few tens of members). It is well known that the sample covariance matrix
suffers from low rank and so called spurious correlations arise, causing artefacts in
the meteorological analysis. Methods like localization and covariance inflation (e.g.,
[2]) have been developed to deal with this problem, however, they always contain
some heuristics (choice of the localization length, choice of the inflation factor).
More robust and less heuristic estimates can be designed after introducing some
further assumptions.

3. Laplace operator as a base for construction of covariance operators

The key idea is to model C f through an operator. From now, we will focus mainly
on a forecast ensemble and its covariance matrix, so we will omit the index f.
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The covariance matrix C is only a discretization of covariance function.
Covariance function is defined as

C(z, z′) = E{X(z)X(z′)}

for z, z′ ∈ D. We will use C for both the covariance matrix and function. The
covariance operator C associated with the covariance function C is defined as

(Ch)(z) =

∫
D
C(z′, z)h(z′)dz′

for every h ∈ L2(D).
In [8, 10], the covariance operator C = e∆ was considered and suggested as

suitable for weather prediction applications. Here ∆ stands for the Laplace operator,
which in two dimensions has the form

∆ =
∂2

∂x2
+

∂2

∂y2
.

In these papers, it has been shown that this choice of C results in a Gaussian
covariance function, which is homogeneous and isotropic. Moreover, the action of
covariance operator e∆ is equivalent to solving the classical diffusion equation, which
brings many computational benefits.

These facts may serve as a motivation for a natural generalization, namely, to
take C equal to various functions of Laplace operator ∆(or better, equal to functions
of operator (−∆), which has positive eigenvalues). In order to produce smooth
random fields, we require such a function f of (−∆) to be decreasing and positive
on R+ and limy→∞ f(y) = 0. However, how to find the associated covariance
function?

Suppose that λ∗1 ≥ λ∗2 ≥ . . . and ψ1, ψ2, . . . are the eigenvalues and normalized
eigenfunctions of the operator C, i.e.,

λ∗kψk(z) =

∫
D
C(z′, z)ψk(z

′)dz′, k = 1, 2, . . . ,∫
D
ψj(z)ψk(z)dz =

{
1, j = k

0, j 6= k.

Having the eigenvalues and eigenfunctions of operator C, we can express the
covariance function C using the Mercer expansion [7]

C(z, z′) =

∞∑
k=1

λ∗kψk(z)ψk(z
′).

The eigenfunctions of f(−∆) are the same as those of the Laplace operator
and its eigenvalues are λ∗k = f(λk), where λk denote the eigenvalues of (−∆), by
the spectral mapping theorem. This gives us a possibility of widening the class of
available covariance operators in this way.

Apart from global models, a typical weather prediction task works on a
rectangular domain D, say, [0, a] × [0, b]. It is well known that for the operator
(−∆) on the rectangle it holds

λmn =

[(mπ
a

)2
+
(nπ
b

)2
]

ψmn(x, y) = sin
(x
a
mπ
)

sin
(y
b
nπ
)
,
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where (x, y) ∈ D and m,n ∈ N.
We have studied two particular choices of C: (−∆)−α and ce−α(−∆)p . The first

one gives the covariance function

C((x, y), (x′, y′)) =

∞∑
m=1

∞∑
n=1

[(mπ
a

)2
+
(nπ
b

)2
]−α
·

sin
(x
a
mπ
)

sin
(y
b
nπ
)

sin

(
x′

a
mπ

)
sin

(
y′

b
nπ

)
and the second one the covariance function

C((x, y), (x′, y′)) =
∞∑
m=1

∞∑
n=1

ce
−α

[
(mπa )

2
+(nπb )

2
]p
·

sin
(x
a
mπ
)

sin
(y
b
nπ
)

sin

(
x′

a
mπ

)
sin

(
y′

b
nπ

)
,

where (x, y), (x′, y′) ∈ D and m,n ∈ N.
In practice, the random field X is represented by an M × N grid and its

covariance function by a matrix. The Mercer expansion, which determines the
covariance between two nodes [i, j] and [i′, j′] of the grid, has the discrete form

C([i, j], [i′, j′]) =
4

(M + 1)(N + 1)

M∑
m=1

N∑
n=1

dmn ·

sin

(
π

M + 1
im

)
sin

(
π

N + 1
jn

)
· (1)

sin

(
π

M + 1
i′m

)
sin

(
π

N + 1
j′n

)
,

where i, i′ = 1, . . . ,M and j, j′ = 1, . . . , N . In this discrete situation, it is necessary
to use eigenvalues of the discrete version of the chosen operator C. We denoted
these eigenvalues by dmn without giving their explicit forms because these are not
important for what follows.

Expression (1) can be written in a matrix form as

C = Cov(X) = F>DF,

where F is a matrix formed from the eigenvectors of C and D is a diagonal
matrix with eigenvalues dmn on its diagonal. The reader has probably noticed
that eigenvectors of Laplace operator represent the sine transform, therefore matrix
F can be viewed as an orthonormal transformation matrix, which transform objects
to spectral space. Since FF> = I, we have

Cov(FX) = FCF> = D,

so the covariance matrix in the spectral space is diagonal. This gives us a
possibility to truncate the sample covariance matrix as it is shown in [6] and
[5]. The method consists of computing the sample covariance matrix in spectral
space (after applying F to each member Xs, s = 1, . . . , S) and setting all off-
diagonal terms equal to zero. This diagonalized matrix D̃ is then transformed back
to the original space (using operator F>), which results in an improved estimate
F>D̃F . However, we can follow this idea further and try to model the diagonal
terms of matrix D̃ in order to reduce sampling noise.
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4. Fitting parametric models for diagonal elements of the covariance
matrix

In modeling the spectral diagonal covariance, we may easily generalize the base
form C = e∆ towards faster or slower decay of eigenvalues by adopting a parametric
model for the eigenvalues. In particular, we have studied the cases C = (−∆)−α (a
random field less smooth than the base case e−(−∆)) and C = ce−α(−∆)p for p > 1
(a smoother random field). As stated above, the eigenvectors are known while the
eigenvalues are known up to the parameters α, resp. (c,α). We can estimate them
and use them to model the diagonal of matrix D̃. The resulting matrix will be
denoted as D̂.

Consider the smoother case C = ce−α(−∆)p and look at the estimation in more
detail. The first method used for estimating the parameters is the weighted least
squares method applied to the logarithms of the diagonal terms. This method does
not require any additional assumptions and its estimation criterion has the form

min
c,α

MN∑
k=1

(log c− αλpk − log d̃k)
2w2

k (2)

where d̃k are the diagonal entries of D̃, λk are the eigenvalues of (−∆), p > 0 is a
fixed parameter, and wk are chosen weights, k = 1, . . . ,MN.

For ease of notation, we now drop the summation bounds and write only∑
k. Estimates of parameters c and α can be found in a standard manner by

differentiating (2) and setting the derivative equal to zero:

log ĉ =

∑
k w

2
kλ

2p
k

∑
k w

2
k log d̃k −

∑
k w

2
kλ

p
k

∑
k w

2
kλ

p
k log d̃k∑

k w
2
k

∑
k w

2
kλ

2p
k − (

∑
k w

2
kλ

p
k)

2

α̂ =

∑
k w

2
kλ

p
k

∑
k w

2
k log d̃k −

∑
k w

2
k

∑
k w

2
kλ

p
k log d̃k∑

k w
2
k

∑
k w

2
kλ

2p
k − (

∑
k w

2
kλ

p
k)

2
.

Hence, the j-th diagonal entry of the smoothed covariance matrix in spectral
space equals to

d̂j = exp

( ∑
k w

2
kλ

2p
k − λ

p
j

∑
k w

2
kλ

p
k∑

k w
2
k ·
∑

k w
2
kλ

2p
k −

(∑
k w

2
kλ

p
k

)2 ∑
k

w2
k log d̃k−∑

k w
2
kλ

p
k − λ

p
j

∑
k w

2
k∑

k w
2
k ·
∑

k w
2
kλ

2p
k −

(∑
k w

2
kλ

p
k

)2 ∑
k

w2
kλ

p
k log d̃k

)
,

where all summations are carried over the index k = 1, . . . ,MN .
If we do not know how to choose the weights we can set all weights equal to 1

and compute classical least squares estimates. Then

d̂j = exp

( ∑
k λ

2p
k − λ

p
j

∑
k λ

p
k

MN
∑

k λ
2p
k −

(∑
k λ

p
k

)2 ∑
k

log d̃k− (3)∑
k λ

p
k −MNλpj

MN
∑

k λ
2p
k −

(∑
k λ

p
k

)2 ∑
k

λpk log d̃k

)
,

where all summations are again carried over the index k = 1, . . . ,MN .
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If we can further assume that the underlying random field is Gaussian, we can
estimate the parameters c and α via maximizing the likelihood. Assume that the
original field is normally distributed: Xi ∼ NK(0, C), i = 1, . . . , S. Hence, each
ensemble member in spectral space

FXi = Ui = [Ui1, . . . , UiK ], i = 1, . . . , S, K = MN

comes from the distribution NK(0, D), and the likelihood has the form

L =
S∏
i=1

g(Ui) =
[
(2π)K |D|

]−S
2
e−

1
2

∑S
i=1 U

>
i D
−1Ui

=

[
(2π)K

K∏
k=1

dk

]−S
2

e−
1
2

∑S
i=1

∑K
k=1 d

−1
k U2

ik ,

where g denotes the density of NK(0, D). The log-likelihood is

l = logL

= −KS
2

log(2π)− S

2

K∑
k=1

log dk −
1

2

K∑
k=1

d−1
k

S∑
i=1

U2
ik

= −KS
2

log(2π)− S

2

K∑
k=1

(log c− αλpk)−
1

2

K∑
k=1

e− log c+αλpkQ2
k,

where dk were replaced by exp(log c − αλpk) and Q2
k denotes the sum of squares∑S

i=1 U
2
ik (a sufficient statistic for variance).

Now, differentiate the log-likelihood with respect to c and α and form the
likelihood equations

∂l

∂c
= −SK

2

1

c
+

1

2

K∑
k=1

e− log c+αλpk
1

c
Q2
k

!
= 0

∂l

∂α
=

S

2

K∑
k=1

λpk −
1

2

K∑
k=1

e− log c+αλpkλpkQ
2
k

!
= 0.

These equations lead us to the implicit form of parameters’ estimates

ĉ =
1

SK

K∑
k=1

eα̂λ
p
kQ2

k (4)

0 =

K∑
k=1

eα̂λ
p
kQ2

k(λ
p
k − λ̄p), (5)

where λ̄p = 1
K

∑K
k=1 λ

p
k. The values of ĉ and α̂ can be computed from (4,5)

numerically.
The j-th diagonal entry of the smoothed covariance matrix in spectral space

equals to

d̂j = ĉe−α̂λ
p
j , (6)

where ĉ and α̂ are given by (4) and (5).
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Figure 1: Comparison of the error matrix D̂−D in the Frobenius norm. The field
had dimension 10×10. Exponential decay of eigenvalues (i.e. ce−αλ) was used with
parameters c = 30 and α = 0.002.

4.1 Comparing both estimates

We illustrate the behaviour of both described estimates - least squares estimate
(LSE) and maximum likelihood estimate (MLE) - on a set of simulated Gaussian
fields with the covariance operator C = ceα∆ with c = 30 and α = 0.002.

In Figure 1, it can be seen how the Frobenius norm of the error matrix
||D̂−D||Frob depends on the ensemble size. Entries of matrix D̂ have been estimated
using the formula (3), resp. (6), with p = 1. It is evident that in both cases, the
fit is better than the diagonal of sample covariance matrix, especially for small
ensembles. Apparently, the MLE is better than the LSE, which is not surprising
because maximum likelihood estimates use the additional information about the
original distribution. It should be noted that for both MLE and LSE, the error is
small already with very small ensembles, which is due to the fact that the covariance
of the Gaussian field is actually of the parametric form given, and we are only using
the samples to identify the two parameters.
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[5] Kasanický, I., Mandel, J., and Vejmelka, M. (2015), “Spectral diagonal ensemble
Kalman filters,” Nonlinear Processes in Geophysics, 22, 485 – 497.

[6] Mandel, J., Beezley, J. D., and Kondratenko, V. Y. (2010), “Fast Fourier
Transform Ensemble Kalman Filter with Application to a Coupled Atmosphere-
Wildland Fire Model,” in Computational Intelligence in Business and
Economics, Proceedings of MS’10, eds. Gil-Lafuente, A. M. and Merigo, J. M.,
World Scientific, 777–784.

[7] Mercer, J. (1909), “Functions of Positive and Negative Type, and their
Connection with the Theory of Integral Equations,” Philosophical Transactions
of the Royal Society of London A: Mathematical, Physical and Engineering
Sciences, 209, 415–446.

[8] Mirouze, I. and Weaver, A. T. (2010), “Representation of correlation functions in
variational assimilation using an implicit diffusion operator,” Quarterly Journal
of the Royal Meteorological Society, 136, 1421–1443.

[9] Talagrand, O. (1997), “Assimilation of observations, an Introduction,” Journal
of the Meteorological Society of Japan, 75 (1B), 191–209.

[10] Weaver, A. and Courtier, P. (2001), “Correlation modelling on the sphere using
a generalized diffusion equation,” Quarterly Journal of the Royal Meteorological
Society, 127, 1815–1846.

JSM2015 - Section on Statistics and the Environment

3461


