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Abstract
Functional response models (FRM) are widely used to address limitations of classic statistical

models as well as timely issues arising in research and practice. In this paper, we discusses two
most recent applications of this class of models: one in robust regression analysis against outliers
and the other on modeling human interaction.

Popular semi-parametric regression models such as the generalized estimating equations (GEE)
improve robustness of inference over parametric models. However, such models are not robust
against outlying observations. The rank regression (RR) provides more robust estimates over the
GEE. Unfortunately, the RR and its recent extensions to longitudinal data do not sufficiently address
missing data. We discuss a new FRM-based approach to address outliers in longitudinal studies with
missing data following the missing at random (MAR) mechanism. The second application focuses
on modeling between-subject attributes, a new data type arising in modeling human interaction such
as friendship between individuals. Such attributes are both conceptually and analytically differerent
from whtin-subject attributes in conventional statistical models. The FRM is uniquely positioned
to model this new data type.

Key Words: between-subject attribute, longitudinal data, missing at random, rank regression,
semi-parametric models

1. Introduction

1.1 Limitations of Regression Models for Addressing Outliers

Regression models are widely used to model a response, or dependent variable, of interest,
as a function of a set of independent variables, in almost all areas of research. The inde-
pendent variables are also referred to as explanatory variables, predictors, or covariates,
etc., depending on their roles in the statistical model. Classic regression models assume
mathematical distributions for the conditional mean of the response given the independent
variables, such as the normal distribution in linear regression. A major issue with the clas-
sic model is that estimates of model parameters may be biased when fitting such models to
data that do not follow the assumed parametric distributions. Because of limited mathe-
matical distributions, parametric regression models often fail to fit the data in real studies,
raising concerns about conclusions drawn from such analysis.

An approach widely used to address the limitations of classic regression models is the
generalized estimating equations (GEE) approach. This popular alterative only assumes
the form of the conditional mean, i.e., the dependence structure of the mean of the response
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given the set of explanatory variables, and yield valid inference, if the posited relationship
between the response and explanatory variables as specified by the conditional mean is
correct. Thus, the GEE provides valid inference for a broad class of data distributions.

Although significantly improving the utility of regression, the GEE still has limitations
in practice. A major limitation is sensitiveness of its estimates to outlying observations.
Like the sample mean, GEE estimates can become quite biased when there are extremely
large or small values in the response. Various approaches have been developed to address
this important issue. One is simply remove such outliers such as the popular trimmed
mean. Another is replace outliers with reasonable values such as the winsorized mean.
Both are subject to individual interpretations and are less objective. A more objective
alternative is downweight outliers and a popular approach based on this principle is the
rank regression (Naranjo et al., 1994, Jung 1996). Unfortunately, the rank regression as
well as its extensions to longitudinal data do not address missing data, especially when
missing data follows the missing at random (MAR) mechanism.

1.2 New Paradigm for Modeling Between-subject Attributes

The dominant regression paradigm as we know it is also limited to model within-subject
attributes such as individuals’ demographic information, medical illnesses, and social and
health behaviors. However, the internet and recent expositions of online social media have
not only created much more data, but also a new data dimension of human interaction to
allow one to model its effect on individual outcomes. With data science methods, recent
studies have indicated that human interaction is a key predictor of most human behaviors
and social phenomena such as flu pandemic, financial crashes and political upsets (Pentland
et al., 2013). Indeed, human interaction is such a strong predictor that it fundamentally
changes the way we design behavioral and social intervention research studies.

For example, in a study using mobile and online social media, Pentland et al. (2013)
showed that simply changing the schedules of coffee breaks from one person at a time to
multiple employees simultaneously resulted in a productivity increase of $15 million a year
for a Bank of America call center. Another study about helping save energy found that it is
more effective to change behaviors of others connected to the person of interest than to try
to change this person in the group who is consuming more energy (Pentland et al., 2013).
The researchers provided small cash incentives to individuals who had the most interaction
with specific high energy use consumers, rewarding them for improved behavior of offend-
ing consumers. Similar studies replicate this finding that a social influence approach is up
to four times as efficient as traditional methods (Pentland et al., 2013).

However, under the current data and analytic paradigm, outcomes, or variables, are
defined as measures of attributes from each individual, such as age, gender, income and
hospitalization. Research studies, regardless of observational or randomized control stud-
ies, all focus on modeling relationships among such within-subject attributes, completely
ignoring influences from interactions with others. Outcomes measuring human interaction
are of between-subject attribute. Such variables are conceptually different from conven-
tional variables, since they are even defined for an individual. For example, if fij is an
indicator of connection between two individuals such as friendship (fij = 1 if connected
and 0 otherwise), then fij clearly requires two individuals. As we detail below, this new
data type of between-subject attribute has significant implications for statistical analysis
and in particular excludes applications of conventional statistical models.
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2. Functional Response Models as A Unified Paradigm

We start with a brief review of the functional response models (FRM). We then illustrate
applications of the FRM to address the limitations of existing regression models for outliers
and the between-subject attributes as in modeling human interaction.

2.1 Functional Response Models (FRM)

The functional response models (FRM) have the general form:

E
(
fi1,...,iq | xi1 , . . . ,xiq

)
= h

(
xi1 , . . . ,xiq ; θ

)
, (i1, . . . , iq) ∈ Cnq , (1)

where f (·) is some function, h (·) is some smooth function (e.g., continuous second-order
derivatives), xi denote some explanatory variables, Cnq denotes the set of

(
n
q

)
combinations

of q distinct elements (i1, . . . , iq) from the integer set {1, . . . , n} and θ a vector of param-
eters. The response fi1,...,iq in (1) can be quite a complex function of either between- or
within-subject attributes. For example, if q = 1, fi = yi and h (xi; θ) = h

(
x>i β

)
, the

FRM yields the generalized linear model. For q = 2, we may define fij as a connection
indicator discussed above. The FRM has been applied to a range of applications such as
extensions of the Mann-Whitney-Wilcoxon rank sum test to longitudinal and causal infer-
ence settings (Chen et al., 2014; Wu et al., 2014), reliability coefficients (Lu et al., 2013),
models for population mixtures (Yu et al., 2013), and causal inference for multi-layered
intervention studies (Wu et al., 2014).

2.2 Limitations of Existing Regression Models for Addressing Outliers

We start with the classic linear regression for continuous responses and develop an FRM
to provide robust inference against outliers. We then extend the FRM to longitudinal data
with missing values following the MAR.

Let yi (xi) denote a continuous response (a p-dimensional vector of explanatory vari-
ables). The classic linear regression model is given by:

yi = x>i β + εi, εi ∼ i.i.d. N
(
0, σ2

)
, 1 ≤ i ≤ n, (2)

where i.i.d. denotes “independently and identically distributed”, N
(
µ, σ2

)
a normal with

mean µ and variance σ2 and β is a p-dimensional vector of parameters. Although the

least square (LS), or maximum likelihood (ML), estimate β̂
(LS)

of β is widely used for
inference about β, this popular estimate is quite sensitive to outliers in yi.

One way to reduce the effect of outliers on the estimate β̂
(LS)

is to trim the outliers.
Another is to replace these outlying observations with more reasonable values, such as 3
times the interquartile range (Schroeder et al., 2003). Both methods are quite subjective
and generally yield quite different estimates depending how the outliers are trimmed or
winsorized. A third alternative is to downweigh the contributions of the outliers. The rank
regression (RR) is based on this principle. This approach weights the residuals by using
the so-called Wilcoxon score:

n−2
∑
i<j

|ei − ej | = 2n−2
n∑
i=1

∣∣∣∣R (ei)−
n+ 1

2

∣∣∣∣ ei, (3)

where ei = yi − x>i β and R (ei) denotes the rank of ei.
The first two methods, trimming and winsorizing outliers, are readily applied when

modeling longitudinal data using methods such as the generalized linear mixed-effects
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model and the weighted generalized estimating equations (Tang et al., 2012). The RR
has also been extended to longitudinal data (Naranjo et al. 1994; Sievers 1983; Terpstra
et al. 2000; chang et al. 1999;terpstra et al., 2000.) However, none of these extensions
addresses MAR. Since missing data is the norm rather the exception in longitudinal studies
and the MAR is a more realistic assumption for missing data in most clinical studies, this
limitation severely hampers the utility of the RR in addressing outliers in practice.

2.3 A New Regression Model for Addressing Outliers under MAR

Under (2), we have:

E
(
I{yi−yj≤0} | xi,xj

)
= Pr

[
εi − εj ≤ −β> (xi − xj)

]
= Φ

(
−θ> (xi − xj)

)
, (4)

where Φ (·) is the cumulative distribution function (CDF) of the standard normal and θ =
1√
2σ
β. Unlike the original linear model, the response I{yi−yj≤0} only depends on the rank

of yi and thus remains the same regardless of actual values of yi. This rank-preserving
feature is also unique to (4), since the Wilcoxon score, |ei − ej |, in the RR still depends on
actual values of yi and yj . Another major distinction is that (4) is a stand-alone model for
both continuous and non-continuous yi (e.g., count outcomes), while the RR is not, since
the latter is an inference technique to reduce the effect of outliers on the estimate of β in
the linear regression model in (2).

Inference about θ cannot be carried out using popular methods for semi-parametric
models such as the GEE, since (4) is not a generalized linear model (GLM) or even a
non-linear model. However, by setting q = 2, fij = I{yi−yj≤0} and h (xi,xj ;θ) =

Φ
(
−θ> (xi − xj)

)
, it is immediately seen that (4) is an FRM. By taking advantage of

the inference theories for FRM (Kowalski and Tu, 2007), we have developed methods to
obtain consistent estimates of θ and associated asymptotic normal distributions (Chen et al.,
2015), not only for (4), but also for its extension to longitudinal data with missing values
following the MAR mechanism by utilizing the U-statistics-based Weighted Generalized
Estimating Equations (UWGEE, Kowalski and Tu, 2007).

For longitudinal data, consider a study with m assessments and let yit (xit) denote a
response (a vector of explanatory variables) from the ith subject at time t (1 ≤ i ≤ n,
1 ≤ t ≤ m). Then, the version of the FRM for longitudinal data becomes:

E [f (yit, yjt) | xit,xjt] = h (xit,xjt;θ) , f (yit, yjt) = I{yit−yjt≤0}, (5)

(i, j) ∈ Cn2 , 1 ≤ t ≤ m.

Like the FRM for cross-sectional data, θ is the vector of parameters of interest. As in
popular models for longitudinal data such as the generalized linear mixed-effects models
(GLMM) and GEE (WGEE), we can include time in xit to model temporal patterns and
relationships concerning changes of yit over time.

For addressing missing data under MAR. we assume the Monotone Missing Data Pat-
terns (MMDP), model the missingness and integrate this missing data model with the FRM
in (5) to provide joint inference about parameters for both models.

Let

rit =

{
1 if yit is observed
0 if yit is unobserved

, ri = (ri1, ri2, ..., rim)> , (6)

xi = (x>i1 , ...,x
>
im )>, yi = (yi1 , ..., yim )>, πit = E (rit | yi,xi ) ,

1 ≤ i ≤ n, 1 ≤ t ≤ m.
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Also, let

Hit = {xis,yis; 1 ≤ s ≤ t− 1} , xit− = (x>i1, ...,x
>
i(t−1))

>,

yit− = (yi1, ..., yi(t−1))
>,

where xit− and yit− contain the explanatory and response variables prior to time t, re-
spectively. Under MMDP, we model pit = Pr

(
rit = 1 | ri(t−1) = 1, Hit

)
using logistic

regression:
logit (pit (γt)) = γ0t + γ>xtxit− + γ>ytyit− , 2 ≤ t ≤ m. (7)

These one-step transition probabilities are then linked to πit under MAR by:

πit (γ) = Pr (rit = 1 | Hit) =
t∏

s=2

pis (γs) , 2 ≤ t ≤ m.

where γt =
(
γ0t,γ

>
xt,γ

>
yt

)> and γ =
(
γ>2 , . . . ,γ

>
m

)>.
As in the weighted generalized estimating equations (WGEE) for semi-parametric re-

gression models, the logistic regression models in (7) allow one to test the null of MCAR.
If γ 6= 0, then missing data does not follow MCAR and ignoring missing data generally
yields biased estimate estimates of θ.

Given an estimate γ̂ of γ, we estimate θ by solving the estimating equations of the
form:

Un (θ) =
∑
i∈Cn

2

Un,i =
∑
i∈Cn

2

DiV
−1
i ∆iSi = 0, (8)

where Di and Si are determined by (5), ∆i is a function of rit = ritrjt and πit = πitπjt,
and Vi is a function of the variance of f (yit, yjt) and a working correlation matrix (akin
standard GEE). Although similar in appearance, (7) is not the standard WGEE, since i
indexes pairs of subjects and Un (θ) is not a sum of independent random quantities. This
class of so-called UWGEE, because Un (θ) is a U-statistics-like quantity, has nice asymp-
totic properties, just like the WGEE (Kowalski and Tu, 2007). Given γ̂, estimates θ̂ of
θ obtained by solving (7) can be shown to be consistent and asymptotically normal under
mild regularity conditions (Chen et al., 2015). Further, we have developed procedures to
account for sampling variability of γ̂ in the asymptotic variance of the UWGEE estimate θ̂
(Chen et al., 2015).

2.4 Models for Between-subject Attributes

We illustrate an application of the FRM for modeling human interaction by focusing on the
network density, a popular metric for measuring connections in a social network.

Let {si; 1 ≤ i ≤ n} denote the nodes of a social network sample, which may represent
people or organizations. A connection outcome between two notes is given by:

fij = f (si, sj) =

{
1 if si and sj are connected
0 otherwise

. (9)

As noted earlier, the response fij , defined by two individuals, is a between-subject attribute.
In addition to this conceptual distinction, this new data type also has significant implications
for statistical analysis. For example, a popular measure of connectivity of the network
is the density: θ = E (fij). We can readily estimate the density by averaging all the
connection indicators, θ̂ =

(
n
2

)−1∑
(i,j)∈Cn

2
fij . However, inference about θ̂ is not so
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obvious, since there is no independence among the fij’s and standard asymptotic results
such as the central limit theorem does not apply.

Although dependent observations also arise from other settings such as clustered re-
peated observations from longitudinal studies, the dependence structure among the between-
subject attributes fij is quite different. For example, we can create independent clusters
by grouping repeated observations from the same subject and the independence among
the clusters forms the basis for all modern statistical models for longitudinal data such as
the GEE. However, in general, no independent cluster exists for between-subjects. For
example, even if f12 and f34 involve different pairs of individuals, they may still be corre-
lated, since f12 (f23) and f23 (f34) may be correlated. Without taking the dependence into
account, inference based on conventional statistical models yields biased results.

Many publications in the social network literature simply ignored this dependence is-
sue (Feinberg et al., 2005; Valente et al., 2007; Palinkas et al., 2011; Centola, 2010; 2011).
Although others realized and attempted to address this issue, all failed to recognize the
distinction between the between- and within-subject attributes and continued to apply con-
ventional statistical methods. For example, we applied two popular packages for social net-
work data analysis, UCINET version 6.385 (Borgatti, et al., 2002; Hunter et al., 2008) and
STATNET version 2014.2.0 (Goodreau et al., 2008), in a simulation study to see how they
would perform. We simulated a set of connection outcomes defined by fij = I{zi+zj≤0},
with zi (zj) generated from the standard normal N (0, 1) with mean 0 and variance 1 for a
network of size n = 100. The true density in this special case is θ = E (fij) = 0.5. The
standard error of the estimate θ̂ =

(
n
2

)−1∑
(i,j)∈Cn

2
fij , which is readily evaluated using

the theory of U-statistics, is 0.059.

Estimate θ̂ Standard error
True Bernoulli STATNET UCINET FRM

0.51 0.059 0.0025 0.003 0.0408 0.060

Table 1: Comparison of network statistics (degree, density) between two PHQ-9 groups
and estimates of parameters of FRM (estimate, standard error, p-value) for the TrevorSpace
Project.

Shown in Table 1 are the estimate of θ and standard errors from the two packages as well
as the naive method by treating fij as independent Binomial observations. The UCINET
employed Bootstrap to estimate standard errors, while the STATNET uses the exponential
random graph model with inference based on the Markov Chain Monte Carlo Maximum
Likelihood estimation (Wasserman and Pattison, 1996; Snijders, 2002). All these meth-
ods yielded the same density estimate of θ, but standard errors varied tremendously across
the different methods. The standard error from the FRM was nearly identical to the true
value. Both the naive method and STATNET had a huge downward bias. Although the
standard error from the UCINET, based on 5,000 Bootstrap samples, was much improved,
the Bootstrap still failed to correct the downward bias in the standard error. Thus, inter-
dependence among between-subject attributes such as the connection indicator fij in this
example has a significant impact on the variability of estimates and cannot be corrected
using conventional statistical models for within-subject attributes.

The FRM-based model in (9) is readily extended to more complex situations involving
comparing multiple densities for different social networks and investigate effects of indi-
vidual explanatory variables on densities. If xi denotes a vector of explanatory variables
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from the ith subject, we can study its impact on the density by the following FRM:

E (fij | xi,xj) = h (xi,xj ;θ) , (i, j) ∈ Cn2 .

The model in (9) is also readily extended to network densities defined by more complicated
relationships. Many people believe that connection between two individuals may not indi-
cate a true relationship and like to look at relationships involving more individuals such as
three people. The response function in (9) is readily changed to accommodate such needs.
For example, by using the response:

fijk = f (si, sj , sk) =

{
1 if si, sj and sk are connected
0 otherwise

, (10)

we can model network densities defined by triangle relationships.

3. Performance Evaluation

We evaluate the performance of the FRM models for regression analysis with outliers and
social network density with simulated data.

3.1 Simulation Study

We use simulations to assess the performance of the FRM. All simulations are carried out
with a Monte Carlo (MC) sample of M = 1, 000 and a two-sided statistical significance
level = 0.05.

3.1.1 Models for Robust Regression Against Outliers

We consider a pre-post study with two assessment times and generate data from the longi-
tudinal model:

yit = x1iβ1 + x2iβ2 + εit, 1 ≤ t ≤ 2, 1 ≤ i ≤ n,

xi1 ∼ N (0, 0.2) , xi2 ∼ Bern (0.5) , εi = (εi1, εi2, εi3)
> ∼ N

(
0,

1

2
I3

)
,

where Ik denotes the k× k identity matrix, Bern(p) a Bernoulli with mean p and N (µ,Σ)
a multivariate normal with mean µ and variance Σ. We set σε = 1/

√
2 such that θk = βk

(k = 1, 2). We then create outliers in the sample generated by replacing the (10%) largest
yi’s by those simulated from a uniform U (100000, 1000000).

To simulate missing data, we assume no missing data at baseline t = 1 and generate
missing responses under MAR with about 23% missing data at t = 2 from the following
logistic regression:

logit (πi2 (γ)) = logit (pi2 (γ)) = γ0 +γ1x1i+γ2
R1i

n
, η0 = 1, η1 = 1.5, η2 = 0.5,

where R1i denotes the rank of y1i. We use the rank normalized with respect to the sample
size, R1i

n , rather than y1i itself, in the logistic model because of extremely large outliers for
some of y1i.

To save space, we only report results in the case of missing data under MAR. Shown
in Table 2 are the estimates of βtheir corresponding standard errors as well as coverage
probabilities for the sample sizes considered. As expected, the point estimates became
more accurate as the sample size increased. The asymptotic standard errors were generally
close to their empirical counterparts, especially for n = 300. Likewise, the coverage
probability also improved as the sample size increased.
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Estimates of β, standard errors and coverage probabilities
Standard Errors Coverage Probability

Sample Size Parameter Mean Asymptotic Empirical Asymptotic Empirical
n = 150 β1 0.996 0.277 0.279 0.953 0.946

β2 1.006 0.116 0.114 0.957 0.949

n = 300 β1 1.008 0.194 0.196 0.945 0.947

β2 1.004 0.082 0.082 0.943 0.944

Table 2: UWGEE estimates of parameters, standard errors and coverage probabilities for
simulated longitudinal data with missing values.

3.1.2 Models for Network Density

We consider two social networks. For notational brevity, let 1 ≤ i ≤ n1 denote the first
and n1 + 1 ≤ i ≤ n1 + n2 the second social network. We simulate the connection out fi
from a Bernoulli model as follows:

fi | xi
i.d.∼ Bernoulli (hi) , hi = h (x (si, sj) ;β) , i = (i, j) ∈ Cn2 ,

where

h (x (si, sj) ;β) =


exp(β0)

1+exp(β0)
if i, j from 1st group

exp(β0+β1)
1+exp(β0+β1)

if i, j from 2nd group
exp(β0+β2)

1+exp(β0+β2)
if i from 1st and j from 2nd group

.

Thus, we not only consider interactions between subjects within each social network, but
between the social networks as well. In the above, exp(β0)

1+exp(β0)

(
exp(β0+β1)

1+exp(β0+β1)

)
is the net-

work density for the first (second) social network, while exp(β0+β2)
1+exp(β0+β2)

represents the mean
connection between the two social networks. We set n1 = n2 = 50 so we can assess the
performance of the FRM for relative small sample sizes.

Parameter True value Estimate Standard error
Asymptotic Empirical

β0 1.38 1.33 0.071 0.069

β1 0.81 0.84 0.12 0.11

β2 −0.53 −0.49 0.08 0.09

Table 3: Estimates of parameters and standard errors (asymptotic and empirical) for the
FRM for the simulation study.

Shown in Table 3 are estimates of parameters and (asymptotic) standard errors, along
with the true values of the parameters. Under the true values of β, the density is 0.8 for
the first network and 0.9 for the second, while the mean between-network connection is
0.70. The estimated parameters were quite close to the respective true values. As well, the
asymptotic standard errors were also nearly identical to their empirical counterparts. Even
for this small sample size, the approach worked remarkably well.

4. Discussion

In this paper, we discussed two new applications of the FRM to address outstanding sta-
tistical issues. The first is a classic problem, while the second is a timely issue. Both
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problems have generated significant interest in the literature. For example, Thas et al.
(2012) also independently developed the FRM for addressing outliers and termed it the
probabilistic index model. However, they only considered cross-sectional data. There is
also a burgeoning literature on methods for social network data analysis. In addition to net-
work features such as the network density considered in this paper, attempts have also been
made to model the impact of human interaction on behavioral and health outcomes. For
example, Christakis and Fowler conducted a number of social network analyses with the
Framingham Heart Study (Christakis and Fowler, 2007; 2008). This large longitudinal co-
hort study collects not only physical health information (e.g., BMI, happiness, depression,
number of drinks), but also social networks of participates (co-workers, friends, siblings,
parents and children). They attempted to estimate contagion effects using longitudinal re-
gression models and suggested that the social influence plays a role in the spread of obesity,
smoking, happiness and loneliness.

While Christakis and Fowler’s work have received considerable acclaim in the popular
press and in society, their analyses have come under critique. In their work, the GEE is ap-
plied to the repeated assessments of each individual, by completely ignoring interpersonal
interactions among individuals within each social network. Such interdependence may
have a significant impact on individual behavioral and health outcomes and ignoring this
issue casts doubt on their findings. Indeed, using the same methodology, Cohen-cole and
Fletcher (2008) found that other attributes, such as height and headaches, also traveled in
networks, which seems quite implausible. Thus to fully account for human interaction and
its impact on individual outcomes, a paradigm shift from the within- to between-subject
attribute is necessary to address the underlying statistical issues.
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