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Abstract

Majority of clinical trial data analyses focus only on the last response of a patient
and paying little attention to the responses before that. However, analysis of the
response profile longitudinally can help to understand how the treatment works
during the course of the treatments. In medical research with dynamic treatment
allocation designs, patients’ responses are tracked at every cycle or visit so that
the proper treatment can be assigned for the next cycle of the trial. Therefore,
it is crucial to extend the conventional data analysis to cover a broader scope so
that the analytical results can be more informative to the clinical communities
and the patients. We provide a case study of clinical trial data examining the
whole response profile of each patient and trying to investigate the potential
linkage of the responses with clinical factors and patient’s background data.

Keywords: Profile Analysis, GEE, Multidimensional Scaling.

1 Introduction

Majority of clinical trial data analyses focus only on the last response of a patient
and paying little attention to the responses before that. However, analysis of the
response profile longitudinally can help to understand how the treatment works
during the course of the treatments. In medical research with dynamic treatment
allocation designs, patients’ responses are tracked at every cycle or visit so that
the proper treatment can be assigned for the next cycle of the trial. Therefore,
it is crucial to extend the conventional data analysis to cover a broader scope so
that the analytical results can be more informative to the clinical communities
and the patients.

In this article, we provide a case study of clinical trial data examining the
whole response profile of each patient instead of just the last observation and try-
ing to investigate the potential linkage of the responses with clinical factors and
patient’s background. Using data from a recent clinical trial, we demonstrate the
treatment effects longitudinally by graphical methods, we also estimate the prob-
ability of changing disease status during the study, and the similarity of response
profiles so that patients can be segmented into subgroups or clusters. We further
investigate the difference between the clusters by examining the baseline data
and the data collected during the course of the study. The longitudinal response
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profiles are also analyzed using generalized estimating equation to identify the
treatment effects as well as the effects of covariates.

2 Data Example

Following are the response profiles from a sample of patients in a clinical trial
with chemotherapy. The responses can be either stable disease (SD), progressive
disease (PD), partial response (PR), nearly complete response (CP), or com-
plete response (CR). The number of treatment cycles ranged from 1 cycle to
more than 20 cycles. We only analyze the data from the first 22 cycles due to
the sparseness of the patient population beyond that. According to the study
protocol, whenever a patient had progression disease, the patient’s treatment
was terminated.

pt trt rv3 rv5 rv7 rv8 rv9 rv10 rv11 rv12 rv13 rv14 rv15 rv16 rv17 rv18 rv19 rv20 rv21 rv22

1 1014021 A SD SD SD SD SD PR PR PR PR PR PR PR

2 1014838 A SD SD SD SD PR PR

4 1025268 B SD

5 1034019 A NE NE SD PR PR PR PR PR PR PR PR PR PR PR PR PD PD

6 1034426 B SD

7 1034430 A SD SD PD

8 1034812 A PD

9 1034815 B SD SD SD SD PD PD

10 1034822 A SD SD SD PR PR PR CP CP NE PD

11 1034831 A SD SD PR PR PR PR PR PR PR PD

One can also present the response profiles graphically (Figure 1), which gives
an easier visualization to examine the responses. One can also display the cu-
mulative responses longitudinally according to the duration of the study (Figure
2). As one can easily see that lots of patients with SD status at the beginning
of the study, and toward the end of the study, many patients had dropped from
the study (green area) and substantially number of patients had PR, CP, or CR.
A graphical comparison between treatments can help to evaluate the efficacy of
the treatment as shown in Figures 3 and 4.

Figure 1: 20 Response Profiles Figure 2: Cumulative Profiles

Similar to the analysis of discrete data, one can also creative the frequency table
to demonstrate the frequencies of each type of response profile as shown below.
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Figure 3: Group A Figure 4: Group B

[>] 656 sequences with 5 distinct events/states including missing value as additional state

[>] 243 distinct sequences. min/max sequence length: 1/21

Freq Percent

PD/1-/20 37 5.70

SD/1-/20 37 5.70

SD/4-PD/1-/16 30 4.62

SD/2-/19 25 3.85

SD/1-PD/1-/19 24 3.70

SD/2-PD/1-/18 22 3.39

SD/3-PD/1-/17 14 2.16

SD/2-PR/2-PD/1-/16 13 2.00

NE/1-/20 10 1.54

SD/3-/18 10 1.54

SD/5-PD/1-/15 9 1.39

NE/1-SD/1-PD/1-/18 8 1.23

SD/2-PR/1-PD/1-/17 8 1.23

NE/2-/19 6 0.92

SD/2-PR/19 5 0.77

SD/3-PR/1-PD/1-/16 5 0.77

SD/3-PR/2-PD/1-/15 5 0.77

SD/6-PD/1-/14 5 0.77

NE/1-PD/1-/19 4 0.62

SD/1-NE/1-/19 4 0.62

One can also display the average duration of response for each response category
either for the whole group (Figure 5) or by treatment groups, which will provide
visual comparison of the treatment effects. As one can see from Figure 6, treat-
ment A had longer durations for the better responses and shorter duration for
progression disease.

3 Transition of Response States

An important information about response profiles is the transition rate between
each pair of states (si, sj), i.e., the probability to switch at a given time position
from state si to state sj .
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Figure 5: All Groups Figure 6: By Group

Let nt(si) be the number of sequences that do not end in time position t and
with state si at time position t, and let nt,t+1(si, sj) be the number of sequences
with state si at time position t and state sj at time position t + 1. The 1-step
transition rate p(sj |si) between states si and sj is defined as

p(sj |si) =

∑L−1
t=1 nt,t+1(si, sj)∑L−1

t=1 nt(si)

with L the maximal observed sequence length.

The rates are assumed time position-independent and the outcome is a
stochastic Markov process matrix where each row i gives a transition distri-
bution from the originating state si in t to the states in t + 1. Transition rates
provide information about the state changes observed in the data together with,
on the diagonal, an assessment of the stability of each state. Similar transition
matrix can be constructed for multiple time steps.

Following are the transition matrices for Treatments A and B. One can clearly
see the difference of treatment effect which indicates the superiority of Treatment
A to B.

computing transition rates for states CP/CR/NE/PD/PR/SD ...

(Treatment A)

[-> CP] [-> CR] [-> NE] [-> PD] [-> PR] [-> SD]

[CP ->] 0.82 0.04 0.10 0.03 0.00 0.00

[CR ->] 0.00 0.86 0.11 0.03 0.00 0.00

[NE ->] 0.05 0.07 0.52 0.03 0.19 0.13

[PD ->] 0.00 0.00 0.00 1.00 0.00 0.00

[PR ->] 0.02 0.02 0.11 0.06 0.78 0.00

[SD ->] 0.01 0.00 0.10 0.05 0.22 0.61

computing transition rates for states CP/CR/NE/PD/PR/SD ...

(Treatment B)

JSM2015 - Biopharmaceutical Section

3434



[-> CP] [-> CR] [-> NE] [-> PD] [-> PR] [-> SD]

[CP ->] 0.76 0.07 0.10 0.07 0.00 0.00

[CR ->] 0.00 0.76 0.18 0.06 0.00 0.00

[NE ->] 0.01 0.02 0.47 0.08 0.16 0.25

[PD ->] 0.00 0.00 0.00 1.00 0.00 0.00

[PR ->] 0.00 0.01 0.16 0.12 0.71 0.00

[SD ->] 0.01 0.00 0.11 0.16 0.07 0.64

4 Classification of Response Profiles

It is always of special interest in medical research to segment the patient popula-
tion based on their responses so that the relationship between the responses and
background data can be further investigated for each subgroup. For profile anal-
ysis, we need to define the similarities of response profiles via some appropriate
metrics so that further analysis can be conducted.

4.1 Dissimilarities Between Response Profiles

Similar to the calculation of distance between two data points, one can define
the distance between two response profiles. Let A(x, y) be a count of common
states between sequences x and y. Define a dissimilarity measure through the
following general formula

d(x, y) = A(x, x) +A(y, y)− 2A(x, y) (1)

where d(x, y) is the distance between sequences x and y. The dissimilarity is
maximal when A(x, y) = 0. It is zero when the sequences are identical.

One commonly used method is, among others, the simple Hamming distance
(Hamming 1950), which is the number of time positions at which two sequences
of equal length differ. It can be defined as

HD(x, y) = l −AH(x, y),

where l = |x| = |y| is the common length of x and y, and AH(x, y) is the number
of matching time positions. The Hamming distance with equation (1) by using
d(x, y)/2 as proximity measure.

With the defined distance between response profiles, cluster analysis was
performed to aggregate the responses which have close proximity. The cluster
dendrogram is graphically shown in Figure 7. Four clusters are formed by cutting
the dendrogram with height of 100. One can further visualize the data distribu-
tions of these clusters with the multivariate methods such as multidimensional
scaling.

4.2 Visualizing Clusters via Multidimensional Scaling

The determination of coordinates of multidimensional scaling can be briefly de-
scribed as following. Let {x1, x2, · · · , xn} ∈ Rd and the inter-point distance be
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Figure 7: Clustering Response Profiles

δrs = ||xr − xs||. Denote the dissimilarity matrix by D = [(δrs)] and define
matrix A = [(ars)] with ars = −δ2rs/2.

Define the matrix

B = [(brs)] = (In − 1n1′n/n)A(In − 1n1′n/n),

where brs = ars−ar.−a.s +a.. One can extract the k largest positive eigenvalues
γ1 > γ2 > · · · > γk ofB with corresponding eigenvectors Yk = (y(1), y(2), · · · , y(k))
that are normalized by ||y(j)||2 = γj for j = 1, 2, · · · , k. The n rows of Yk are the
principal coordinates in k dimensions and can be plotted pairwise to visualize
the data distributions.

The coordinates of the responses are plotted in Figures 8 to 11. Each cluster
is highlighted in red color. One can easily see the different data distributions
of these responses. Cluster 1 mostly aggregates at the upper-left corner of the
plot and cluster-2 mostly aggregates around the center of the plot, while clusters
3 and 4 represent the responses not confirming with these two bigger groups.
Since clusters 3 and 4 represent a small subgroup of patients in the analysis, we
will focus our following discussions on clusters 1 and 2.

4.3 Response Profile Differences Among Clusters

With further examination of the response profiles corresponding to the mem-
bers of these clusters, interesting patterns of responses can be clearly revealed
as shown in Figures 12, 13, and 14. Cluster 1 consists of the patients who had
disease status improved from Stable Disease to Partial Response or stayed at
the same disease status. Cluster 2 consists of all the patients who had their dis-
ease status worsen from Stable Disease to Progressive Disease. It also includes
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Figure 8: Cluster 1 Figure 9: Cluster 2

Figure 10: Cluster 3 Figure 11: Cluster 4

the patients with disease status improved to Partial Response, nearly Complete
Response, or Complete Response. Clusters 3 and 4 consist of patients who had
improved disease status and none of the members in these clusters had any dis-
ease progression. Since any clustering method will be accompanied with different
degrees of misclassification errors, it is likely some of the response profiles could
have been better classified.

4.4 Significant Clinical Variables for Each Cluster

To further investigate the significant covariates which underlying the clusters,
the patients’ baseline covariates, the treatment received, and the laboratory data
during the study are carefully examined. A regression analysis was conducted
with the covariates which was showing some degrees of significance after pre-
screening. The results are shown below for clusters 1 and 2. Several laboratory
tests and the abnormal serum protein levels show statistical significance in the
model in addition to a few baseline covariates such as prior therapies received
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Figure 12: Cluster 1 Figure 13: Cluster 2 Figure 14: Clusters 3&4

before the trial. Different sets of covariates appear in each cluster.

Analytical results for cluster 1:

Call: glm(formula = clustdata1[, 2] ~ n_prt + mmdur + strlab2 + AlbuminL +

NeutrophilL + PlateletsH + RBCL + SerumIgAL + SerumIgAH +

SerumIgGL + SerumIgGH + TotalProteinH, family = quasibinomial, data = clustdata1)

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 0.54234 0.35424 1.531 0.126264

n_prt 0.32146 0.09976 3.222 0.001335 **

mmdur 0.05649 0.03242 1.742 0.081933 .

strlab2 -0.90648 0.22449 -4.038 6.04e-05 ***

AlbuminL -1.80328 0.54017 -3.338 0.000891 ***

NeutrophilL 2.00171 0.39783 5.032 6.32e-07 ***

PlateletsH 3.03917 1.31229 2.316 0.020876 *

RBCL -0.95070 0.32570 -2.919 0.003635 **

SerumIgAL -0.78516 0.28668 -2.739 0.006337 **

SerumIgAH -0.88987 0.43682 -2.037 0.042045 *

SerumIgGL -1.14937 0.34321 -3.349 0.000859 ***

SerumIgGH -1.68069 0.54402 -3.089 0.002092 **

TotalProteinH -3.86644 1.24619 -3.103 0.002002 **

---

Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1

(Dispersion parameter for quasibinomial family taken to be 0.7413571)

Analytical results for cluster 2:

Call: glm(formula = clustdata2[, 2] ~ trtgrp + prmel + AlbuminL + MonocytesH +

RBCL + SerumIgAL + SerumIgAH + SerumIgGH, family = quasibinomial, data = clustdata2)

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) -1.5632 0.5387 -2.902 0.003837 **

trtgrp 0.7503 0.2818 2.662 0.007950 **

prmel -0.8368 0.2506 -3.339 0.000888 ***

AlbuminL 1.5906 0.4943 3.218 0.001357 **

MonocytesH -1.2791 0.6236 -2.051 0.040649 *

RBCL 1.0554 0.3597 2.934 0.003465 **

SerumIgAL 1.1015 0.3260 3.379 0.000772 ***

SerumIgAH 1.9697 0.4869 4.046 5.85e-05 ***

SerumIgGH 1.0588 0.3961 2.673 0.007707 **

---

Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1

(Dispersion parameter for quasibinomial family taken to be 1.350058)
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5 Modeling of Response Profiles via GEE

Let Yit ∈ {1, 2, · · · , I > 2} be the multinomial response for patient i(i =
1, · · · , N) at time t(t = 1, · · · , Ti) and assume missing data are missing com-
pletely at random (MCAR) as defined in Rubin (1976). Define Yitj = I(Yit = j)
for j = 1, · · · , I, where I(A) denotes the indicator function of the event A, and
Yit = (Yit1, ..., Yit(I−1))

′ with the response category I omitted. Denote response
vector by

Yi = (Y ′i1, · · · , Y ′iTi
)′

and (Ti(I−1) × p) covariate matrix for patient i by

xi = (xi1, · · · , xiTi)
′.

Let
πitj = E(Yitj |xi) = Pr(Yitj = 1|xi),

πit = (πit1, · · · , πit(I−1))′,
and

πi = E(Yi|xi) = (π′i1, · · · , π′iTi
)′.

In addition, denote the link function by g and, for patient i at time t, is defined
as

g[E(Yit|xi)] = g(µit) = xitβ,

where β is the p-variate regression vector of interest.

5.1 Marginal models

The choice of the link function g, hence, the marginal model depends on the
nature of the response scale. For ordinal multinomial responses, the family of
cumulative link models

F−1[P (Yit ≤ j|xi)] = β0j + β′∗xit

or the adjacent categories logit model

log(πitj/πit(j+1)) = β0j + β′∗xit,

where F is the CDF of a continuous distribution and {β0j , j = 1, 2, · · · , J − 1}
are the category specific intercepts.

For nominal multinomial responses, the baseline category logit model can be
used

log(πitj/πitJ) = β0j + β′jxit,

where βj is the jth category specific parameter vector. Note that the category
specific intercepts need to satisfy a monotonicity condition

β01 ≤ β02, · · · ,≤ β0(J−1)
only when the family of cumulative link models is employed, and the regres-
sion parameter coefficients of the covariates xit are category specific only in the
marginal baseline category logit model.
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5.2 Estimation of marginal regression parameters

Let β be the p-variate parameter vector that includes all the regression param-
eters. Let the general estimating equations be

U(β, α̂) = (1/N)
N∑
i=1

DiV
−1
i (Yi − πi) = 0, (2)

where Di = ∂πi/∂β, Vi(β, α̂) is a T (J − 1) × T (J − 1) weight matrix, and α is
the local odds ratio define below.

5.3 Local Odds Ratio

Consider the time-pairs {(1, 2), (1, 3), · · · , (T − 1, T )}. For each time-pair (t, t′),
form an J × J contingency table such that the row totals correspond to the
observed totals at time t and the column totals to the observed totals at time t′.
Let θtjt′j′ be the expected local odds ratio at cut point (j, j′), and ftjt′j′ be the
observed frequencies. Becker and Clogg (JASA,1989) showed that

log(ftjt′j′) = (row, column, interaction effects) + φ(t,t
′)µ

(t,t′)
j µ

(t,t′)
j′ ,

and
log(θtjt′j′) = φ(t,t

′)(µ
(t,t′)
j − µ(t,t

′)
j+1 )(µ

(t,t′)
j′ − µ(t,t

′)
j′+1).

Touloumis, Agresti, and Kateri (Biometrics, 2013) defined the parameter vector
that contains the marginalized local odds ratios structure as

α = (θ1121, · · · , θ1(J−1)2(J−1), · · · , θ(T−1)1T1, · · · , θ(T−1)(J−1)T (J−1))
′

which can be estimated by MLE. For practical purpose, the score functions µ
(t,t′)
j

are simplified and let µ
(t,t′)
j = j, and the general association parameter φ(t,t

′) = φ.

Conditional on α̂ and the marginal model specification at times t and t′ the
probability

{P (Yit = j, Yit′ = j′|xi) : t < t′, j, j′ = 1, · · · , J − 1}

and Vi can be calculated, hence β can be estimated via the GEE (2).

5.4 Results of Modeling

Data from cluster 1 was analyzed using the method discussed above using pro-
grams in R and the results are shown below. Similar analysis was also conducted
for other clusters but are not shown here. The data beyond visit 10 was not in-
cluded in the analysis.

The beta level at baseline and the age both show significant effects, but the
treatment only offers moderate effect as patients from this cluster mostly only
improved their disease status from SD to PR at the best. However, similar
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analysis for cluster 2 shows significant treatment effect. Many patients in cluster
2 had improved their disease status from SD to PR, CP and even CR.

Model and the parameter estimates:

GEE FOR ORDINAL MULTINOMIAL RESPONSES

Link : Cumulative logit

call: ordLORgee(formula = Resp ~ factor(vis_num) + factor(trtgrp) +

age + beta + n_psct, data = xdat, id = pt, link = "logit", LORstr = "category.exch")

Coefficients:

Estimate san.se san.z Pr(>|san.z|)

beta01 1.35026 0.93392 1.4458 0.14824

beta02 3.77986 0.92989 4.0648 5e-05 ***

factor(vis_num)5 -0.18590 0.12986 -1.4315 0.15228

factor(vis_num)7 -1.67880 0.19489 -8.6143 < 2e-16 ***

factor(vis_num)8 -1.94960 0.30028 -6.4926 < 2e-16 ***

factor(vis_num)9 -2.65717 0.33162 -8.0128 < 2e-16 ***

factor(vis_num)10 -3.14579 0.36401 -8.6420 < 2e-16 ***

factor(trtgrp)2 -0.01723 0.24606 -0.0700 0.94418

age -0.03010 0.01399 -2.1513 0.03145 *

beta -0.05015 0.05593 -0.8967 0.36986

n_psct -0.25766 0.17849 -1.4435 0.14887

---

Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1

The odds ratio of of the effect for each covariate:

Est. Coefficients Odds Ratio of Better Responses

beta01 1.35025563 0.25917400

beta02 3.77985846 0.02282592

factor(vis_num)5 -0.18590278 1.20430517

factor(vis_num)7 -1.67880421 5.35914371

factor(vis_num)8 -1.94960456 7.02590874

factor(vis_num)9 -2.65716906 14.25587441

factor(vis_num)10 -3.14579299 23.23809566

factor(trtgrp)2 -0.01722873 1.01737800

age -0.03010472 1.03056244

beta -0.05015157 1.05143045

n_psct -0.25765765 1.29389577

The correlation matrix of the parameters estimated in the final model:

beta01 beta02 (vis_5)(vis_7) (vis_8) (vis_9) (vis_10)(trtgrp)2 age beta n_psct

beta01 0.87 0.85 0.00 0.00 0.00 0.01 -0.01 -0.03 -0.01 0 -0.09

beta02 0.85 0.86 0.00 -0.01 -0.04 -0.04 -0.06 -0.03 -0.01 0 -0.10

factor(vis_num)5 0.00 0.00 0.02 0.01 0.02 0.01 0.01 0.00 0.00 0 0.00

factor(vis_num)7 0.00 -0.01 0.01 0.04 0.03 0.03 0.03 0.00 0.00 0 0.00

factor(vis_num)8 0.00 -0.04 0.02 0.03 0.09 0.06 0.06 0.01 0.00 0 0.00

factor(vis_num)9 0.01 -0.04 0.01 0.03 0.06 0.11 0.07 0.00 0.00 0 0.01

factor(vis_num)10 -0.01 -0.06 0.01 0.03 0.06 0.07 0.13 0.01 0.00 0 0.02

factor(trtgrp)2 -0.03 -0.03 0.00 0.00 0.01 0.00 0.01 0.06 0.00 0 0.00

age -0.01 -0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0 0.00

beta 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0 0.00

n_psct -0.09 -0.10 0.00 0.00 0.00 0.01 0.02 0.00 0.00 0 0.03

The estimated local odds ratios:
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The local odds ratio matrix indicates the disease status improved from visit
3 to visit 5 is about 3.5 times, and it continued to improve for visit 7, but the
effects started to decline after that.

[,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9] [,10] [,11] [,12]

[1,] 0.000 0.000 3.525 3.525 4.534 4.534 1.437 1.437 1.250 1.250 0.887 0.887

[2,] 0.000 0.000 3.525 3.525 4.534 4.534 1.437 1.437 1.250 1.250 0.887 0.887

[3,] 3.525 3.525 0.000 0.000 2.512 2.512 3.422 3.422 1.982 1.982 1.424 1.424

[4,] 3.525 3.525 0.000 0.000 2.512 2.512 3.422 3.422 1.982 1.982 1.424 1.424

[5,] 4.534 4.534 2.512 2.512 0.000 0.000 1.383 1.383 1.347 1.347 1.062 1.062

[6,] 4.534 4.534 2.512 2.512 0.000 0.000 1.383 1.383 1.347 1.347 1.062 1.062

[7,] 1.437 1.437 3.422 3.422 1.383 1.383 0.000 0.000 1.591 1.591 1.375 1.375

[8,] 1.437 1.437 3.422 3.422 1.383 1.383 0.000 0.000 1.591 1.591 1.375 1.375

[9,] 1.250 1.250 1.982 1.982 1.347 1.347 1.591 1.591 0.000 0.000 1.604 1.604

[10,] 1.250 1.250 1.982 1.982 1.347 1.347 1.591 1.591 0.000 0.000 1.604 1.604

[11,] 0.887 0.887 1.424 1.424 1.062 1.062 1.375 1.375 1.604 1.604 0.000 0.000

[12,] 0.887 0.887 1.424 1.424 1.062 1.062 1.375 1.375 1.604 1.604 0.000 0.000

6 Summary

In this article, we conduct a case study of data from a good size clinical trial
by studying the entire efficacy response profile of each patient and to explore
the relationship between response profiles with covariates which were collected
either before or during the trial. Many graphical tools are used to visualize the
data and make it easier for researchers to understand the data distribution and
to compare the efficacy of treatments. Various analytical tools for multivariate
data are also used to segment the patient population into subgroups so that
the treatment effects can be further analyzed in each subgroup and possibly to
discover better personalized treatments.

Medical research with dynamic treatment allocation designs is gaining pop-
ularity especially for the early phase of drug discovery. Patients’ responses are
usually tracked at every cycle or visit in this type of study so that the proper
treatment can be assigned for the next cycle of the trial to maximize the treat-
ment benefit. Therefore, it is crucial to extend the conventional clinical data
analysis which mostly only emphasizes the end results to a broader scope cov-
ering more extended observations so that the analytical results can be more
informative to both the clinical communities and the patients.
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