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Abstract

In survey sampling, policy decisions regarding allocation
of resources to subgroups in a population, called small
areas, are based on reliable predictors of their underly-
ing parameters. However, the information is collected at
a different scale than these subgroups. Hence we need
to predict characteristics of the subgroups based on the
coarser scale data. In view of this, there is a growing de-
mand for reliable small area predictors by borrowing in-
formation from other areas. These are commonly based
on either the linear mixed models or the generalized lin-
ear mixed models (GLMMs). There is a limited litera-
ture in the context of small area estimation for GLMMs,
assuming small areas are independent from each other,
due to some difficulties to develop small area predictors
and their corresponding precisions, e.g., mean squared
prediction errors (MSPE), from a frequentist perspec-
tive. This issue is also added if there is a spatial pattern
through the small areas. These models are widely appli-
cable in statistics or health agencies. For example, it is an
interest of policy makers (and public) to know the spatial
pattern of a rare disease (e.g., chronic disease or cancer)
to identify the areas with high risk of disease to imple-
ment the prevention. In this paper, we propose small area
models in the class of spatial GLMMs to predict small
area parameters and also to obtain second-order MSPE
estimation of small area predictors using Taylor expan-
sion and parametric bootstrap approaches. Performance
of the proposed approach is evaluated through simulation
studies and by a real application.

KEY WORDS: generalized linear mixed model, maxi-
mum likelihood estimation, parametric bootstrap, small
area estimation, spatial model, Taylor expansion

1. Introduction

Sample surveys are conducted with the purpose of pro-
viding reliable predictors for the finite population charac-
teristics such as totals or means. Methods used in deriv-
ing such predictors (direct survey predictors) are based
on total sample size. However for the past few decades,
there have been increasing demand in using same sample
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survey data to get predictions for sub-populations, such
as counties or gender-age groups. Such sub-populations
for which reliable predictions are needed are called small
areas in the literature. The traditional area-specific direct
predictors tend to have inadequate precision due to small
sample sizes corresponding to each small area. Since
policy decisions about implementing specific projects to
these small areas are made using predictions on under-
lying characteristics, survey researchers are developing
methods to provide more reliable predictions for small
areas. To this end, model based estimators (Rao, 2003;
Jiang and Lahiri, 2006; Jiang, 2010) have been proposed
to borrow strength from other areas where different areas
are related to each other by introducing random effects.
Depending on the nature of the response variable, either
linear mixed model (LMM) (Searle et al. 1992) or gen-
eralized linear mixed model (GLMM) (McCulloch and
Searle, 2001) is mainly used for small area estimation
(Fay and Herriot, 1979; Battese et al. 1988; Kass and
Steffey, 1989; MacGibbon and Tomberlin, 1989; Prasad
and Rao, 1990; Malec et al. 1997; Ghosh et al. 1998;
Singh et al. 1998; Datta and Lahiri, 2000; Ghosh et al.
2009; Torabi et al. 2015). Among other approaches, pa-
rameters of the LMM can be estimated using either the
maximum likelihood (ML) or restricted ML (REML).
Although it is somewhat straightforward to predict the
area statistics under the LMM, e.g., using the best lin-
ear unbiased predictor (BLUP), obtaining its prediction
error and associated prediction interval is difficult. Both
parameters estimation and prediction of small area statis-
tics under the GLMM are computationally difficult under
the frequentist approach.

In public health, the analysis of disease rates over areas
has also received considerable attention due to growing
demand for reliable disease rates in small areas. The idea
behind developments on spatial and modelling of disease
rates is essentially to model variations in true rates and
better separate systematic variability from random noise,
a component that usually overshadows crude rate maps
(Torabi and Rosychuk, 2010; Torabi, 2012). Maps of
regional morbidity and mortality rates are useful tools
in determining spatial patterns of disease. Disease inci-
dence and mortality rates may differ substantially across
geographical areas. A reliable estimate of the underlying
disease risk is usually provided by borrowing strength
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from neighbouring geographic sub-areas.
In this paper, we propose a unified approach for Nor-
mal and non-Normal responses with spatial patterns in
the context of small area estimation. In particular, we
provide prediction of small area parameters (Section 2)
and obtain corresponding mean squared prediction error
(MSPE) in Section 3. We also provide second-order un-
biased estimators of MSPE of small area predictors using
Taylor expansion and parametric bootstrap approaches
(Section 4). In Section 5, we apply our approach to a
real dataset esophagus cancer death cases in Minnesota
USA from 1991–1998. In Section 6, performance of our
proposed approach is also evaluated by two simulation
studies (Normal and Poisson responses).

2. Statistical Model

The basic model in small area estimation can be de-
scribed as follows. Let yi be the variable of interest for
the ith area (i = 1, ...,m). The yi are assumed to be con-
ditionally given ηi independent with exponential family
p.d.f.

f(yi|ηi, ϕ) = exp[{yiηi − a(ηi)}/ϕ+ b(yi, ϕ)]. (1)

The density (1) is parameterized with respect to the
canonical parameters ηi, known scale parameters ϕ and
functions a(·) and b(·). The natural parameters ηi are
then modeled as

ηi = x
′
iβ + z′iu,

and ηi = h[E(yi|u)], where h is a strictly increasing
function, x

′
i is the i−th row of known matrix X(m× p),

α1 := β(p × 1) is a vector of unknown regression
coefficient, z

′
i is the i−th row of the identity matrix

Z(m × m), and u = (u1, ..., um)′ are spatial random
effects from a multivariate Normal distribution u|α2 ∼
MVN(0,Σu(α2)). The objective in small area estima-
tion is to make inferences on the small area parameters
ηi or its variant.

To that end, we first need to obtain the full conditional
density of the latent variable ηi which can be written as

g(ηi|yi, α) ∝ exp{−η2i
2σ2

ηi

+
ηi(x

′
iβ)

σ2
ηi

+ [yiηi − a(ηi)]/ϕ},

(2)
where σ2

ηi = z′iΣuzi and α = (α1, α2)
′. A

Normal approximation, using Laplace approximation
(Rue et al. 2009) centred around the point η0i =
argmaxηi f(yi|ηi, ϕ), to the density (2) is constructed
by linearizing the likelihood part of equation (2) at a

fixed point η0i . The feasibility of this Normal approxi-
mation is evaluated through simulation studies in Sec-
tion 6. So, one can write the following for each area
i(= 1, ...,m) :

[yiηi − a(ηi)] ≈ [yiη
0
i − a(η0i )] + (ηi − η0i )[yi − a′(η0i )]

−1

2
(ηi − η0i )

2a′′(η0i ), (3)

where the first and second derivatives can be written
in closed form. Inserting (3) into (2), the full condi-
tional density of ηi has a Normal approximation with
conditional mean E(ηi|yi, α) and conditional variance
var(ηi|yi, α) given by

E(ηi|yi, α) = x′iβ + z′iΣuZ
′
R−1[l(y, η0)−Xβ],

and

var(ηi|yi, α) = z′i[Σu − ΣuZ
′
R−1ZΣu]zi,

with R = ZΣuZ
′
+P, P is a diagonal matrix with entries

Pi,i = ϕ/a′′(η0i ), η
0 = (η01, ..., η

0
m)′, and li(yi, η

0
i ) =

[yi − a′(η0i ) + η0i a
′′(η0i )]/a

′′(η0i ), (i = 1, ...,m).

When α is known, the best predictor of ηi is given by
η̃Bi (α, yi) = η̃Bi = E(ηi|yi, α). Moreover, the only sen-
sible prediction variance for ηi is given by E(η̃Bi −ηi)

2 =
var(ηi|yi, α) =: g1i(α). By estimating the model pa-
rameters α, called α̂, the empirical best (EB) prediction
of ηi is given by

η̂EB
i = η̃Bi (α̂, yi){1 +Op(m

−1)},

noting that we estimate the model parameters using max-
imum likelihood estimation approach via data cloning
(see Lele et al. 2010 for more details of the data cloning
approach).

3. Mean Squared Prediction Error Approximation

We now need to obtain the measure of variability of the
η̂EB
i . To that end, we assume the following regularity

conditions (referred to as RC later on) on the estimator
α̂ and the predictor η̃Bi (α, yi) for large m :

1) The dimension of α is bounded and the esti-
mator α̂ satisfies that (α̂ − α) = Op(m

−1/2) and
E(α̂− α) = O(m−1/2).

2) We have ηi = Op(1) and η̃Bi (α, yi) = Op(1) for
i = 1, ...,m. In addition, the estimator η̃Bi (α, yi) is con-

tinuously differentiable w.r.t. α, and ∂η̃Bi (α,yi)
∂α = Op(1).
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Theorem 1 Under the RC, a second-order approxima-
tion to the MSPE of the η̂EB

i , under the model (1), can
be written as

MSPE(η̂EB
i ) = g1i(α) + g2i(α) + o(m−1), (4)

where g2i(α) = tr
{
E[(

∂η̃Bi (α,yi)
∂α )(

∂η̃Bi (α,yi)
∂α )′]E[(α̂ −

α)(α̂− α)′]
}
.

The proof is deferred to the Appendix A.

4. Mean Squared Prediction Error Estimation

4.1 Linearization Method

Since the approximated MSPE (4) is a function of un-
known parameters α, it is not computable. We now ob-
tain the estimation of MSPE(η̂EB

i ) which is second-
order unbiased in the sense that

E[mspe(η̂EB
i )] = MSPE(η̂EB

i ) + o(m−1). (5)

As shown in Theorem 1, the order of g2i(α) is
O(m−1), so one can estimate g2i(α) by g2i(α̂) unbias-
edly up to second-order. To estimate g1i(α), the naive
estimator g1i(α̂) has a second-order bias due to g1i(α) =
O(1). We can then use a Taylor expansion about α for
g1i(α) as follows:

g1i(α̂) = g1i(α) + (α̂− α)′
∂g1i(α)

∂α

+
1

2
(α̂− α)′

∂2g1i(α)

∂α∂α′ (α̂− α) + op(m
−1).

We can then write

E[g1i(α̂)] = g1i(α) + g11i(α) + g12i(α) + o(m−1),

where

g11i(α, yi) = (
∂g1i(α)

∂α
)′E(α̂− α),

and

g12i(α) =
1

2
tr{(∂

2g1i(α)

∂α∂α′ )E[(α̂− α)(α̂− α)′]},

noting that the order of g11i(α) and g12i(α) are
O(m−1/2) and O(m−1) under the RC, respectively.

Theorem 2 Under the RC, a second-order correct un-
biased estimator of the MSPE of η̂EB

i , under the model
(1), can be written as

mspe(η̂EB
i ) = g1i(α̂)− g11i(α̂)− g12i(α̂) + g2i(α̂).

We have derived the EB prediction and correspond-
ing second-order unbiased MSPE estimation of small
area parameters for some popular distributions in expo-
nential family (Normal, Poisson, and binomial) based on
the above results (see the Appendix B).

4.2 Parametric Bootstrap Approach

We now obtain a nearly unbiased estimator of
MSPE(η̂EB

i ), in the sense of (5), using the parametric
bootstrap approach. We first generate u∗ = (u∗1, ..., u

∗
m)′

from a multivariate Normal distribution with mean 0
and variance-covariance Σu(α̂2). We then have η∗i =
x′iβ̂ + z′iu

∗, (i = 1, ...,m). A bootstrap sample is then
generated from y∗i |(η∗i , α̂) ∼ f(y∗i |η∗i , α̂); i = 1, ...,m,
noting that we construct the estimator α̂∗ from the boot-
strap sample (y∗1, ..., y

∗
m) with the same method used to

obtain the estimator α̂. We then obtain the EB of η∗i
using the bootstrap dataset {(y∗i , xi); i = 1, ...,m} as
η̂EB∗
i = η̃Bi (α̂

∗, yi) for i = 1, ...,m. Hence, the boot-
strap MSPE estimator of η̂EB∗

i is given by

mspeboot1(η̂
EB
i ) = E∗{(η̂EB∗

i − η∗i )
2} ≡ ŵi, (6)

where E∗ denotes the bootstrap expectation. We also
provide a double bootstrap (Hall & Maiti, 2006) by
drawing a second-phase bootstrap sample from a given
bootstrap sample using the bootstrap model parameters
given above. Proceeding as above with the second-phase
bootstrap sample to get second-phase bootstrap MSPE
as MSPE∗∗(η̂

EB∗∗
i ) = E∗∗{(η̂EB∗∗

i − η∗∗i )2}, where
E∗∗ denotes the second-phase bootstrap expectation. We
have the following bootstrap MSPE estimators proposed
by Hall & Maiti (2006):

mspeboot2(η̂
EB
i ) ≈


2ŵi − v̂i ŵi ≥ v̂i

ŵiexp{−(v̂i − ŵi)/v̂i} ŵi < v̂i

(7)
and

mspeboot3(η̂
EB
i ) ≈ ŵ2

i /v̂i, (8)

where v̂i = E∗[E∗∗{(η̂EB∗∗
i − η∗∗i )2}]. In practice, we

approximate ŵi by drawing a large number, B1, of inde-
pendent bootstrap samples. Similarly, we approximate
v̂i by drawing a large number, B2, of second-phase in-
dependent bootstrap samples from each first-phase boot-
strap sample.
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Table 1: Model parameters estimate and correspond-
ing standard errors using maximum likelihood estima-
tion approach

Parameter Estimate Standard Error
β -0.041 0.054
σ2
u 0.012 0.005

λu 0.290 0.029

5. Application

We use a non-Normal response data to evaluate the per-
formance of the proposed approach. The data consists
of the number of deaths due to esophagus cancer in the
years from 1991 to 1998 at the 87 counties in Minnesota,
USA (Jin et al. 2005; Torabi, 2014). A spatial Poisson
regression model is used as this disease is assumed to
be rare enough relative to the population in each county.
The model is then given by

yi ∼ Poisson(λi), i = 1, ..., 87, (9)

log(λi) = log(Ei) + β + z′iu,

where yi is the observed number of death due to esopha-
gus cancer in county i, Ei is the corresponding expected
age-adjusted number of deaths, β is a fixed effect, z′i is
the i−th raw of the identity matrix Z, u are from proper
CAR model (see the Appendix B for more details of
this model) with parameters α2 = (λu, σ

2
u). Note that

the expected number of deaths (Ei) is calculated by
Ei =

∑J
j=1 nijyj/nj where nij is the population at risk

for the i−th county and age group j, nj is the population
at risk for the age group j based on the US Census 2010
dataset, and similarly yj is the number of deaths for the
age group j.

We first fit the model (9) to the dataset and provide
the model parameters estimate and corresponding stan-
dard errors (Table 1). We then provide the prediction of
mortality ratio as well as raw ratio (yi/Ei) of esopha-
gus cancer in each county (Figure 1) with correspond-
ing MSPE estimation of log-ratio of esophagus cancer
(Figure 2) using the Taylor expansion and parametric
bootstrap approaches; noting that in this paper we con-
sider B1 = 1000 and B2 = 100 for the bootstrap ap-
proaches. As shown in Figure 1, our prediction ratios
provide smooth estimates of raw ratios.

Minnesota RR

<0.33

[ 0.33 , 0.80 )

[ 0.80 , 1.14 )

[ 1.14 , 1.50 )

[ 1.50 , 2.04 )

[ 2.04 , 2.61 )

>=2.61

(a) (b)
Figure 1: Raw (a) and EB prediction (b) of mortality

ratio of esophagus cancer in Minnesota, spatial Poisson
mixed model.
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Figure 2: The mspe of log-ratio of esophagus cancer in
Minnesota, spatial Poisson mixed model.
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6. Simulation Study

6.1 Normal Mixed Model

We also conduct a simulation study to evaluate the per-
formance of the proposed approach in the Normal mixed
model set-up. The simulation set-up is based on the spa-
tial layout of the 87 counties in the state of Minnesota
which was used in Section 5. We assume that the data
are obtained from a Normal distribution as follows:

yi = β + z′iu+ ϵi, i = 1, ..., 87, (10)

where β is a fixed effect, z′i is the i−th raw of the
identity matrix Z, u from proper CAR model with pa-
rameters α2 = (λu, σ

2
u)

′, and ϵi
i.i.d.∼ N(0, σ2) with

known σ2 = 1. We generate R = 1000 indepen-
dent samples {y(r)i , i = 1, ..., 87; r = 1, ..., R} where
y
(r)
i = β + z′iu

(r) + ϵ
(r)
i , u(r) and ϵ

(r)
i are generated

from the corresponding Normal distributions of u and
ϵi with λu = 0.5, σ2

u = 0.01, and β = −1. For each
simulated run, we find the MLE of the model param-
eters to provide the prediction of the EBLUP of small
area means η

(r)
i = β + z′iu

(r), (r = 1, ..., R), using
η̂
EB(r)
i = β̂(r) + z′iû

(r). We also calculate the empiri-
cal MSPE of η̂EB

i as

EMSPE(η̂EB
i ) =

1

R

R∑
r=1

[η̂
EB(r)
i − η

(r)
i ]2,

and the relative bias of an estimator of the MSPE, say
mspe, as

RB[mspe(η̂EB
i )] =

{ 1

R

R∑
r=1

mspe(r)(η̂EB
i )

−EMSPE(η̂EB
i )

}
/EMSPE(η̂EB

i ),

where η̂
EB(r)
i and η

(r)
i , and mspe(r)(η̂EB

i ) are the val-
ues of η̂EB

i , ηi, and mspe(η̂EB
i ) for the r−th simulation

batch, respectively. Note that mspe(η̂EB
i ) is calculated

for both Taylor expansion and bootstrap approaches.

The result of EMSPE of small area means is
reported in Figure 3. As shown in Figure 3, the values
of EMSPE are relatively small for the proposed
approach. The results of absolute relative bias (ARB) of
mspe of small area means for the Taylor expansion and
bootstrap approaches are also reported in Figure 4. The
proposed approach using Taylor expansion performs
very well in terms of ARB (< %3). In addition, the first-
phase bootstrap (ŵi) seems to do a better job compared

County

EM
SP

E

●

●

●
●

●

●

●●

●

●

●●●

●

●

●

●●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●●

●

●

●

●
●●

●

●

●

●

1 5 9 14 20 26 32 38 44 50 56 62 68 74 80 86

0.
01

12
0.

01
14

0.
01

16
0.

01
18

0.
01

20

Figure 3: The EMSPE of small area means, spatial Nor-
mal mixed model.
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Figure 4: Percent absolute RB of mspe of small area
means, spatial Normal mixed model.

to the both second-phase bootstrap approaches in terms
of RB of mspe of small area means.

6.2 Poisson Mixed Model

We also conduct a simulation study to evaluate the per-
formance of the proposed approach in the Poisson mixed
model set-up. The spatial structure of the model is also
based on the Minnesota county map (Section 5). We
assume that the data are obtained from the following
model:

yi ∼ Poisson(λi), i = 1, ..., 87, (11)

log(λi) = log(ni) + β + z′iu,
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Figure 5: The EMSPE of η̂EB
i , spatial Poisson mixed

model.

where ni = 30 as offset, β is a fixed effect, z′i is the i−th
raw of the identity matrix Z, u are generated from the
proper CAR model with parameters α2 = (λu, σ

2
u)

′. We
first generate R = 1000 independent samples u(r), (r =
1, ..., R), from the proper CAR model with parameters
λu = 0.6, σ2

u = 0.0001, and then generate y
(r)
i ∼

Poisson(λ
(r)
i ), (i = 1, ..., 87; r = 1, ..., R), where

log(λ
(r)
i ) = log(ni) + β + z′iu

(r) with β = 0.001. For
each simulated run, we find the MLE of the model pa-
rameters to provide the prediction of the small area log-
rates η(r)i = β + z′iu

(r), (r = 1, ..., R), using η̂
EB(r)
i =

β̂(r)+z′iû
(r). We also calculate the EMSPE(η̂EB

i ) and
the RB[mspe(η̂EB

i )] similar to the Normal mixed model
in Section 6.1.

The result of EMSPE of η̂EB
i is reported in Figure

5. As shown in Figure 5, the values of EMSPE are
relatively small for the proposed approach. The results
of ARB of mspe of η̂EB

i for the Taylor expansion and
bootstrap approaches are also reported in Figure 6. The
proposed approach using Taylor expansion performs
very well in terms of ARB (< %8); noting that the
first-phase bootstrap also performs better than the both
second-phase bootstrap methods in terms of RB of mspe
of η̂EB

i .

7. Conclusions

There is a limited literature in the context of small
area estimation for generalized linear mixed models
(GLMM), assuming small areas are independent from
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Figure 6: Percent absolute RB of mspe of η̂EB
i , spatial

Poisson mixed model.

each other, due to some difficulties to develop small
area predictors and their corresponding precisions, e.g.,
mean squared prediction errors (MSPE), from a frequen-
tist perspective. This issue is also added if there is a
spatial pattern through the small areas. These models
are widely applicable, for example, in statistics or health
agencies. For instance, accurate statistical information
concerning the wellbeing of people at regional level is
needed to target the policies or programs aimed at reduc-
ing poverty in poorer regions; the estimation of poverty
at regional or local level is then a really important task
for policy making (Marhuenda et al. 2013). As another
application, among many others, is when health agencies
(e.g., policy making) need to know the spatial pattern of
a rare disease (e.g., chronic disease or cancer) to identify
the regions with high risk of disease to implement the
prevention.

We have proposed a unified approach for Normal and
non-Normal responses with spatial patterns in the con-
text of small area estimation. In particular, we have pro-
vided prediction of small area parameters and derived
second order approximation to the MSPE of small area
parameters. We have also obtained second-order MSPE
estimation of small area predictors by Taylor expansion
as well as parametric bootstrap approaches. We have
shown by simulation studies (and a real data application
of esophagus cancer dataset in Minnesota) that the pro-
posed approach works very well in terms of small area
predictors and their precisions.
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Appendix

A. Proof of Theorem 1

We can write

MSPE(η̂EB
i ) = E{(η̂EB

i − ηi)
2}

= E{(η̃Bi − ηi)
2}+ E{(η̂EB

i − η̃Bi )
2}

= g1i(α) + E{(η̂EB
i − η̃Bi )

2} ,

noting that E[(η̃Bi − ηi)(η̂
EB
i − η̃Bi )] = E[(η̂EB

i −
η̃Bi )E(η̃Bi − ηi|yi)] = 0. It is also noted that

η̂EB
i = η̃Bi (α, yi) + (

∂η̃Bi (α
∗, yi)

∂α
)′(α̂− α),

where α∗ is between α and α̂. Thus, we obtain

E{(η̂EB
i −η̃Bi )

2} = E[{(α̂−α)′
∂η̃Bi (α, yi)

∂α
}2]+o(m−1)

= trE[(
∂η̃Bi (α, yi)

∂α
)(
∂η̃Bi (α, yi)

∂α
)′(α̂− α)(α̂− α)′]

+o(m−1)

= tr
{
E[(

∂η̃Bi (α, yi)

∂α
)(
∂η̃Bi (α, yi)

∂α
)′]E[(α̂−α)(α̂−α)′]

}
+o(m−1),

which completes the proof of Theorem 1.

B. MSPE Estimation of Normal, Poisson, and Bino-
mial Responses

1. Normal Response

In the linear mixed model, we have

yi = x′iβ + z′iu+ ϵi, i = 1, ...,m,

where ϵi ∼ N(0, σ2) and u ∼ N(0,Σu). In the case
of proper CAR model for the spatial random effects u,
we have Σu = σ2

u(Im − λu
a C)−1 with C = Im − D

where D is a m × m matrix with elements Dii = ei,
Dij = −1 if area i and j are adjacent and Dij = 0
otherwise, where ei is the number of areas which are
adjacent to area i;σ2

u is the spatial dispersion parame-
ter; λu measures the conditional spatial dependence with
range [0, 1), a is the maximum eigenvalue of C, and
Im is the identity matrix of dimension m (Leroux et
al. 1999). Our interest is to make an inference about
the small area mean ηi = x′iβ + z′iu where yi|u ∼
N(ηi, σ

2). Based on the general result in Section 2, we
have E(u|y, α) = ΣuZ

′
(ZΣuZ

′
+ σ2Im)−1(y − Xβ)

and var(u|y, α) = Σu−ΣuZ
′
(ZΣuZ

′
+σ2Im)−1ZΣu,

where y = (y1, ..., ym). Consequently, we have the best
predictor of ηi as

η̃Bi (α, yi) = x′iβ+z′i{ΣuZ
′
(ZΣuZ

′
+σ2Im)−1[y−Xβ]},

(12)
and the EB prediction of ηi is given by η̂EB

i = η̃Bi (α̂, yi).

To get a second-order unbiased estimate of
MSPE(η̂EB

i ), we have

mspe(η̂EB
i ) = g1i(α̂)− g11i(α̂)− g12i(α̂) + g2i(α̂),

(13)
where

g1i(α) = z′i[Σu − ΣuZ
′
(ZΣuZ

′
+ σ2Im)−1ZΣu]zi,

(14)
∂g1i(α)

∂σ2
u

= z′i[Σ
σ2
u

u −Σσ2
u

u Z ′R−1ZΣu+ΣuZ
′R−1Rσ2

uR−1ZΣu

−ΣuZ
′R−1ZΣσ2

u
u ]zi, (15)

∂g1i(α)

∂λu
= z′i[Σ

λu
u −ΣλuZ ′R−1ZΣu+ΣuZ

′R−1RλuR−1ZΣu

−ΣuZ
′R−1ZΣλu

u ]zi, (16)

∂2g1i(α)

∂σ2
u∂σ

2
u

= z′i[Σ
σ2
u

u Z ′R−1Rσ2
uR−1ZΣu−Σσ2

u
u Z ′R−1ZΣσ2

u
u

+Σσ2
uZ ′R−1Rσ2

uR−1ZΣu−ΣuZ
′R−1Rσ2

uR−1Rσ2
uR−1ZΣu

−ΣuZ
′R−1Rσ2

uR−1Rσ2
uR−1Rσ2

uR−1ZΣu

+ΣuZ
−1R−1Rσ2

uR−1ZΣλu − Σσ2
u

u Z ′R−1ZΣσ2
u

u

+ΣuZ
′R−1Rσ2

uR−1ZΣσ2
u

u ]zi, (17)

∂2g1i(α)

∂λu∂λu
= z′i[Σ

λ2
u

u −Σλ2
u

u Z ′R−1ZΣu+Σλu
u Z ′R−1RλuR−1ZΣu

−Σλu
u Z ′R−1ZΣλu

u +Σλu
u Z ′R−1RλuR−1ZΣu

−ΣuZ
′R−1RλuR−1RλuR−1ZΣu+ΣuZ

′R−1Rλ2
uR−1ZΣu

−ΣuZ
′R−1RλuR−1RλuR−1ZΣu+ΣuZ

′R−1RλuR−1ZΣλu
u

−Σλu
u Z ′R−1ZΣλu

u +ΣuZ
′R−1RλuR−1ZΣλu

u −ΣuZ
′R−1ZΣλ2

u
u ]zi,

(18)
∂2g1i(α)

∂σ2
u∂λu

= z′i[Σ
σ2
uλu

u −Σσ2
uλu

u Z ′R−1ZΣu+Σσ2
u

u Z ′R−1RλuR−1ZΣu

−Σσ2
u

u Z ′R−1ZΣλu
u +Σλu

u Z ′R−1Rσ2
uR−1Rσ2

uR−1ZΣu

−ΣuZ
′R−1RλuR−1Rσ2

uR−1ZΣu +ΣuZ
′R−1Rσ2

uλu

.R−1ZΣu−ΣuZ
′R−1Rσ2

uR−1RλuR−1ZΣu+ΣuZ
′R−1Rσ2

uR−1Z

.Σλu
u − Σλu

u Z ′R−1ZΣσ2
u

u +ΣuZ
′R−1RλuR−1ZΣσ2

u
u

−ΣuZ
′R−1ZzΣσ2

uλu
u ]zi, (19)
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where R = ZΣuZ
′ + σ2Im,Σ

σ2
u

u = (Im − λu
a C)−1,

Rσ2
u = ZΣ

σ2
u

u Z ′, Σλu
u = a−1Σu(Im − λu

a C)−1C,

Σ
λ2
u

u = [Σλu
u + (σ−2

u /a)ΣuCΣu](1/a)(Im − λu
a C)−1C,

Σ
σ2
uλu

u = (σ−2
u /a)(Im − λu

a C)−1CΣu.

Also, we have E(α̂1 − α1) = 0 and

E(α̂2 − α2) =

1

2m
{I−1(α2)col1≤j≤2tr[(XR−1X)−1(XR(j)X)]},

where R(j) = ∂R−1

∂α2(j)
= −R−1 ∂R

∂α2(j)
R−1 with e.g.

R(λu) = −R−1RλuR−1 and R(σ2
u) = −R−1Rσ2

uR−1,
and Ijk(α2) =

1
2 tr[R

−1 ∂R
∂α2(j)

R−1 ∂R
∂α2(k)

].

To get g2i(α̂), we also need the following terms:

E{[∂η̃
B
i (α, yi)

∂β
][
∂η̃Bi (α, yi)

∂β
]′} = {xi−zi[ΣuZ

′
(ZΣuZ

′

+σ2Im)−1X]}{xi − zi[ΣuZ
′
(ZΣuZ

′
+ σ2Im)−1X]}′

,

E{[∂η̃
B
i (α, yi)

∂σ2
u

]2} = z′iΣ
σ2
u

u Z
′
(ZΣuZ

′
+ σ2Im)−1

.
[
Im + σ4

u(ZΣσ2
u

u Z ′)(ZΣuZ
′ + σ2Im)−2(Z ′Σσ2

u
u Z)

−2σ2
u(ZΣuZ

′ + σ2Im)−1(ZΣσ2
u

u Z ′)
]
ZΣσ2

u
u zi,

E{[∂η̃
B
i (α, yi)

∂λu
]2} = z′iΣ

λu
u Z

′
(ZΣuZ

′
+ σ2Im)−1

.[ZΣλu
u − 2(ZΣuZ

′
+ σ2Im)−1(ZΣλu

u Z ′)ZΣu]zi

+z′iΣuZ
′(ZΣλu

u Z ′)(ZΣuZ
′
+σ2Im)−3(Z ′Σλu

u Z)ZΣuzi,

E{[∂η̃
B
i (α, yi)

∂λu
][
∂η̃Bi (α, yi)

∂σ2
u

]} = 0,

and

E[(α̂1 − α1)(α̂1 − α1)
′] = (X ′R−1X)−1,

E[(α̂2 − α2)(α̂2 − α2)
′] = I−1(α2).

2. Poisson Response

In the case of Poisson, we have yi|ui ∼ Poisson(λi)
with log(λi) = x′iβ + z′iu ≡ ηi, where u ∼ N(0,Σu)
and u are spatial random effects as in the Normal case.
Our interest is to make an inference about the small area
parameter ηi. Based on the results of Section 2, we have

E(ηi|yi, α) = x′iβ + z′iE(u|y, α),

where E(u|y, α) = ΣuZ
′
(ZΣuZ

′
+ P )−1[l(y, u0) −

Xβ] with

l[y, u0] = ⊗[y − a′(u0) + u0a
′′
(u0)]/a

′′
(u0)

= ⊗[y − eu
0
+ u0eu

0
]/eu

0

= y ⊗ e−u0
+ u0 − 1m,

where P = diag(e−u0
), u0 = (u01, ..., u

0
m)′, and 1m is a

vector of ones with dimension m. We then have the best
prediction of ηi as

η̃Bi (α, yi) =

x′iβ+z′i{ΣuZ
′
(ZΣuZ

′
+P )−1[y⊗e−u0

+u0−1m−Xβ]},
(20)

and the EB prediction of ηi is given by η̂EB
i = η̃Bi (α̂, yi).

We can also have the variance of the best prediction of
ηi as g1i(α) = z′i[Σu − ΣuZ

′R−1ZΣu]zi. Also, to get
a second-order unbiased estimate of MSPE(η̂EB

i ), we
can use (15)-(19) to get the mspe(η̂EB

i ) given by (13),
noting that we should use P = diag(e−u0

) and also

E{[∂η̃
B
i (α, yi)

∂β
][
∂η̃Bi (α, yi)

∂β
]′} = {xi−zi[ΣuZ

′
(ZΣuZ

′
+P )−1X]}

.{xi − zi[ΣuZ
′
(ZΣuZ

′
+ P )−1X]}

′
,

E{[∂η̃
B
i (α, yi)

∂σ2
u

]2} = z′iΣ
σ2
u

u Z ′(ZΣuZ
′
+P )−1{E[y⊗e−u0

+u0−1m−Xβ]

.[y ⊗ e−u0

+ u0 − 1m −Xβ]
′
}(ZΣuZ

′
+ P )−1

.{ZΣ
σ2
u

u − 2(ZΣuZ
′
+ P )−1(ZΣ

σ2
u

u Z ′)ZΣu}zi

+z′iΣuZ
′(ZΣ

σ2
u

u Z ′)(ZΣuZ
′
+P )−2{E[y⊗e−u0

+u0−1m−Xβ]

.[y⊗e−u0

+u0−1m−Xβ]
′
}(ZΣuZ

′
+P )−2(ZΣ

σ2
u

u Z ′)ZΣuzi,

E{[∂η̃
B
i (α, yi)

∂λu
]2} = z′iΣ

λu
u Z ′(ZΣuZ

′
+P )−1{E[y⊗e−u0

+u0−1m−Xβ]

.[y ⊗ e−u0

+ u0 − 1m −Xβ]
′
}(ZΣuZ

′
+ P )−1

.{ZΣλu
u − 2(ZΣuZ

′
+ P )−1(ZΣλu

u Z ′)ZΣu}zi

+z′iΣuZ
′(ZΣλu

u Z ′)(ZΣuZ
′
+P )−2{E[y⊗e−u0

+u0−1m−Xβ]

.[y⊗e−u0

+u0−1m−Xβ]
′
}(ZΣuZ

′
+P )−2(ZΣλu

u Z ′)ZΣuzi,
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E{[∂η̃
B
i (α, yi)

∂σ2
u

][
∂η̃Bi (α, yi)

∂λu
]} = z′i[I−ΣuZ

′(ZΣuZ
′+P )−1

.Z][Σ
λuσ

2
u

u − Σλu
u Z ′(ZΣuZ

′ + P )−1ZΣ
σ2
u

u − Σ
σ2
u

u Z ′

.(ZΣuZ
′+P )−1ZΣλu

u ][Z ′(ZΣuZ
′+P )−1E(l(y, u0)−Xβ)],

(21)
where E(yi) = exp(x′iβ + z′iΣuzi/2), var(yi) =
exp(x′iβ + z′iΣuzi/2) + exp(2x′iβ){exp(2z′iΣuzi) −
exp(z′iΣuzi)}, and cov(yi, yj) = exp{(xi +

xj)
′β}

[
exp{(zi+zj)

′Σu(zi+zj)/2}−exp{z′iΣuzi/2+

z′jΣuzj/2}
]
, for i ̸= j(i = 1, ...,m), needed in the

above equations. Note that one can also use Monte Carlo
to calculate E(α̂− α) and inverse of Fisher information
matrix via data cloning to get E[(α̂− α)(α̂− α)′].

3. Binomial Response

In the case of binomial, we have yi|ui ∼ Bin(ni, pi)
with log( pi

1−pi
) = x′iβ + z′iu ≡ ηi, where u ∼ N(0,Σu)

and u are proper spatial random effects as in the Normal
case. Our interest is to make an inference about the small
area parameter ηi. Based on the results of Section 2, we
have

E(ηi|yi, α) = x′iβ + z′iE(u|y, α)

where E(u|y, α) = ΣuZ
′
(ZΣuZ

′
+ P )−1[l(y, u0) −

Xβ] with

l[y, u0] = ⊗[y − a
′
(u0) + u0a

′′
(u0)]/a

′′
(u0)

= ⊗[y − eu
0

1m + eu0 +
u0eu

0

(1m + eu0)2
]/

eu
0

(1m + eu0)2

= ⊗[ye−u0
(1m + eu

0
)2]− (1m + eu

0
) + u0,

and P = diag{⊗(1m + eu
0
)2e−u0}. We then have the

best prediction of ηi as

η̃Bi (α, yi) = x′
iβ + z′i

[
ΣuZ

′
(ZΣuZ

′
+ P )−1

.{⊗[ye−u0

(1m + eu
0

)2]− (1m + eu
0

) + u0 −Xβ}
]
,

and the EB prediction of ηi is given by η̂EB
i =

η̃Bi (α̂, yi). We can also have the variance of the best pre-
diction of ηi as g1i(α) = z′i[Σu − ΣuZ

′R−1ZΣu]zi.
Also, to get a second-order unbiased estimate of
MSPE(η̂EB

i ), we can use (15)-(19) to get the
mspe(η̂EB

i ) given by (13), noting that we should use
P = diag{⊗(1m + eu

0
)2e−u0}, and also

E{[∂η̃
B
i (α, yi)

∂β
][
∂η̃Bi (α, yi)

∂β
]′} = {xi−zi[ΣuZ

′
(ZΣuZ

′

+P )−1X]}{xi − zi[ΣuZ
′
(ZΣuZ

′
+ P )−1X]}′

,

E{[∂η̃
B
i (α, yi)

∂σ2
u

]2} = z′iΣ
σ2
u

u Z ′(ZΣuZ
′
+ P )−1

.
[
E{⊗[ye−u0

(1+eu
0
)2]−(1+eu

0
)+u0−Xβ}{⊗[ye−u0

(1+eu
0
)2]

−(1 + eu
0
) + u0 −Xβ}′

]
(ZΣuZ

′
+ P )−1

.{ZΣσ2
u

u − 2(ZΣuZ
′
+ P )−1(ZΣσ2

u
u Z ′)ZΣu}zi

+z′iΣuZ
′(ZΣσ2

u
u Z ′)(ZΣuZ

′
+ P )−2

.
[
E{⊗[ye−u0

(1+eu
0
)2]−(1+eu

0
)+u0−Xβ}{⊗[ye−u0

(1+eu
0
)2]

−(1+eu
0
)+u0−Xβ}′

]
(ZΣuZ

′
+P )−2(ZΣσ2

u
u Z ′)ZΣuzi,

E{[∂η̃
B
i (α, yi)

∂λu
]2} = z′iΣ

λu
u Z ′(ZΣuZ

′
+ P )−1

.
[
E{⊗[ye−u0

(1+eu
0
)2]−(1+eu

0
)+u0−Xβ}{⊗[ye−u0

(1+eu
0
)2]

−(1+eu
0
)+u0−Xβ}′

]
(ZΣuZ

′
+P )−1{ZΣλu

u −2(ZΣuZ
′
+P )−1

.(ZΣλu
u Z ′)ZΣu}zi+z′iΣuZ

′(ZΣλu
u Z ′)(ZΣuZ

′
+P )−2

.
[
E{⊗[ye−u0

(1+eu
0
)2]−(1+eu

0
)+u0−Xβ}{⊗[ye−u0

(1+eu
0
)2]

−(1+eu
0
)+u0−Xβ}′

]
(ZΣuZ

′
+P )−2(ZΣλu

u Z ′)ZΣuzi,

and E{[∂η̃
B
i (α,yi)

∂σ2
u

][
∂η̃Bi (α,yi)

∂λu
]} is similar to (21); noting

that the expectations involved in the above equations are
calculated via Monte Carlo.
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