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Abstract 
 
We present a two-stage dose finding phase I/II design of a combination of two drugs with 
continuous dose levels in early phase cancer clinical trials. The goal is to estimate dose 
combination regions that are tolerable and with a desired level of efficacy. In the first 
stage of the design, the relationship between doses and the probability of dose limiting 
toxicity (DLT) is modeled parametrically and the design proceeds using conditional 
escalation with overdose control. At the end of stage I, the maximum tolerated dose 
(MTD) curve is estimated as a function of Bayes estimates of the model parameters. In 
the second stage of the design, we investigate some parametric models to link the 
probability of treatment efficacy with dose combinations along the MTD curve. We 
propose a Bayesian adaptive design for conducting the phase II trial with the goal of 
determining dose combination regions along the MTD curve with a desired level of 
efficacy. The methodology is evaluated by presenting the operating characteristics under 
different scenarios for the true probability of treatment efficacy as a function of dose 
combinations on the MTD curve and trial sample size. 
 
Key Words: Cancer Phase I trials; Phase I/II trials; Maximum tolerated dose; 
Escalation with overdose control; Drug combination; Dose limiting toxicity; Continuous 
dose; Treatment Efficacy; Bayesian adaptive design. 
 
 
 

1. Introduction 
 
 
The primary objective of cancer phase I/II clinical trials is to determine a tolerable dose 
level that maximizes treatment efficacy. For treatments where response evaluation takes 
few cycles of therapy, it is standard practice to perform a two-stage design where a 
maximum tolerable dose (MTD) of a new drug or combinations of drugs is first 
determined, then this recommended phase II dose is studied in stage 2 and evaluated for 
treatment efficacy, possibly using a different population of cancer patients from stage 1. 
The two-stage design is routinely used in early phase cancer trials investigating a single 
agent or combinations of 2 or more drugs except that in stage 2, a single dose level is 
investigated. It is well known that combining several drugs in cancer treatment can help 
reduce tumor resistance to chemotherapy by targeting different signaling pathways 
simultaneously and improve tumor response when using additive or synergistic drugs [1]. 
To this end, dose combination phase I trials where the dose levels of at least two agents 

JSM2015 - Biopharmaceutical Section

3395



are allowed to vary have been studied extensively in the last decade [2-15]. Some of these 
methods are designed to identify a single MTD combination whereas others can yield 
several or even an infinite number of MTDs. Recommending a single MTD combination 
for efficacy study may result in a failed phase II trial since other MTDs may present 
higher treatment efficacy. Methods that pre-specify a small number of dose combinations 
can miss dose combinations with similar acceptable DLT level and possibly with higher 
probability of response. This could happen for two reasons. First, the discrete set of dose 
combinations is selected by the investigator based on prior experience with single agents. 
Therefore, when these agents are combined, the selected set may not include intermediate 
dose combinations with probability of DLT close to the target probability of DLT and 
target probability of treatment response. Second, even if this discrete set includes dose 
combinations with probability of DLT close to the target, their probability of response 
may be very different and these approaches may recommend a dose with lower 
probability of response. 
 
In this report, we propose a two-stage design using dose combinations of two drugs with 
continuous dose levels. In the first stage, a phase I trial is carried out and an estimated 
MTD curve is proposed using escalation with overdose approach (EWOC) [13, 14] . An 
alternative approach is to use the continual reassessment method (CRM) as described in 
[15]. In the second stage, we describe a Bayesian adaptive design to carry out a phase II 
trial searching for dose combinations along the estimated MTD curve from stage 1 that 
yield the highest probability of treatment efficacy. We evaluate the performance of the 
method using parametric models and extensive simulations with sample sizes that are 
typically used in single agent phase II trials.  
 
 

2. Model 
 
In this section, we describe the models and algorithms used to carry out a two-stage 
design for identifying tolerable and efficacious dose combinations of cytotoxic agents. 
Stage 1 is a review of the models and algorithms described in Tighiouart et al.[13, 14]. 
 
2.1 Stage 1 
 
Consider the dose-toxicity model of the form 
 
 Prob( 1| , ) ( ),Z x y F x y xyµ β γ η= = + + +  (2.1) 
 
where Z is the indicator of DLT, Z = 1 if a patient given the dose combination (x,y) 
exhibits DLT within one cycle of therapy, and Z = 0 otherwise, x ϵ [Xmin, Xmax] is the dose 
level of agent A, y ϵ [Ymin, Ymax] is the dose level of agent B, and F is a known cumulative 
distribution function. Suppose that the doses of agents A and B are continuous and 
standardized to be in the interval [0, 1]. 
We will assume that that the probability of DLT increases with the dose of any one of the 
agents when the other one is held constant. A necessary and sufficient condition for this 
property to hold is to assume β > 0 and γ > 0 and the interaction term η is nonnegative. 
The MTD is defined as any dose combination (x*, y*) such that 
 
 * *Prob( 1| , ) .Z x y θ= =  (2.2) 
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The target probability of DLT θ is set relatively high when the DLT is a reversible or 
non-fatal condition, and low when it is life threatening. We reparameterize model (2.1) in 
terms of parameters clinicians can easily interpret. One way is to use ρ10, the probability 
of DLT when the levels of drugs A and B are 1 and 0, respectively, ρ01, the probability of 
DLT when the levels of drugs A and B are 0 and 1, respectively, and ρ00, the probability 
of DLT when the levels of drugs A and B are both 0. It can then be shown that the MTD 
is  
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Let Dn = {(xi,yi,zi), i = 1, …, n} be the data after enrolling n patients in the trial. The 
likelihood function is 
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where 
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2.1.1 Prior and Posterior Distributions 
 
Under model reparameterization 1, (2.4) implies that 0 < ρ00 < θ since β > 0. We consider 
the priors ρ0/θ ~ beta(a1, b1), ΓA|0 ~ beta(a2, b2), ΓB|0 ~ beta(a3, b3), η ~ gamma(a, b) with 
mean E(η) = a / b and variance Var(η) = a / b2. Vague priors for these parameters are 
achieved by taking aj = bj = 1, j = 1, 2, 3. A vague prior for η is then achieved by setting 

( )1 1
00 |0 |0( ) 8 ( ) ( ( )) ( ) ( ).A BE F F E E Eη θ ρ Γ Γ− −= −  A large variance is selected for η, see 

[16] for the rationale behind this choice. Using Bayes rule, the posterior distribution of 
the model parameters is proportional to the product of the likelihood and prior 
distribution 
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 (2.6) 

 
Features of this posterior distribution are estimated using WinBUGS[17] and JAGS.  
 
2.1.2 Trial Design 
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We review a dose allocation algorithm described in [13] using   EWOC principle where 
at each stage of the trial, the posterior probability of overdosing a future patient is 
bounded by a feasibility bound α. An alternative algorithm enrolling cohorts of two 
patients simultaneously receiving different dose combinations can be found in [14]. 
 

1. The first patient receives dose (x1, y1) = (0, 0) and suppose the patient has no 
DLT, z1 = 0. 

2. Fix x1 = 0, and calculate the posterior distribution of the MTD of agent B, given 
that the level of agent A is x1 = 0, π(ΓB|A=0 | D1). The dose for patient 2 is (x2, y2) 
where x2 = x1 and y2 is the α-th percentile of this posterior distribution. 

3. Fix y2, and calculate the posterior distribution of the MTD of agent A, given that 
the level of agent B is y2, π(ΓA|B=y2 | D1). The dose for patient 3 is (x3, y3) where x3 
is the α-th percentile of this posterior distribution and y3 = y2. 

 
In general, when we move from dose (xi, yi) to (xi+1, yi+1), either xi = xi+1 or yi = yi+1. 
Specifically, if i is even, then 

|

1
1 ( | )

A B yii ix DΓΠ α
=

−
+ = and yi+1 = yi. If i is odd, then xi+1 = xi 

and 
|

1
1 ( | ).

B A xii iy DΓΠ α
=

−
+ =  Here, 

|

1 ( | )
A B yi iDΓΠ α

=

− is the inverse cdf of the posterior 

distribution |( | ).
iA B y iDπ Γ =  

4. Repeat step 3 by fixing either dose xi or yi, depending on whether i is even or odd, 
until n patients are enrolled to the trial subject to the following stopping rule. 

 
Stopping rule: We stop enrollment to the trial if P(P(DLT|(x,y) = (0,0)) >θ+δ1 | data) >δ2, 
i.e. if the posterior probability that the probability of DLT at the minimum available dose 
combination in the trial exceeds the target probability of DLT is high. δ1 and δ2 are design 
parameters chosen to achieve desirable model operating characteristics. 
 
At the end of the trial, we estimate the MTD curve using Bayes estimates of the 
parameters defining this curve. For example, an estimate of the MTD curve is obtained 
using (2.7) as 
 

 ( ) ( )
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where 00 01 10ˆ ˆ ˆ ˆ, , ,ρ ρ ρ η  are the posterior medians given the data Dn. 
 
Design operating characteristics of the method were studied extensively in [13, 14]. 
Figure 1 shows part of the simulation results under one scenario as reported in [13]. 
Suppose that the dashed line in this figure represents an estimated MTD curve from a 
phase I trial. In stage 2, we describe a phase II trial aimed at searching for dose 
combinations along this curve that yield a maximum probability of efficacy. 
 
2.2 Stage 2 
 
2.2.1 Model 
Let Cest be the estimated MTD curve obtained from a phase I study using one of the 
methods described in [13, 14]. Let δ be the indicator of treatment response such as tumor 
shrinkage, δ = 1 if we have a positive response after a pre-defined number of treatment  
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Figure 1. Summary statistics from m =1000 simulated trials under scenario 1. (a) shows the true 
and estimated MTD curve. The grey diamonds represent the last dose combination from each 
simulated trial along with a 90% confidence region.  
 
cycles, and δ = 0 otherwise. Let p1 be the target probability of response, i.e., the 
minimum probability of response for the treatment to be worth pursuing in a large phase 
III trial. We propose to carry out a phase II study to identify dose combinations x in Cest 
such that P(δ = 1 | dose = x) > p1. Let x be the dose of drug A such that (x, y) ϵ Cest and 
suppose that x is standardized to be in the interval [0, 1]. In the sequel, x denotes both the 
standardized dose and the corresponding dose combination on Cest. We model the 
probability of treatment response given dose combination x in Cest as 
 

 ( 1 | , ) ( ( ; )),P x F f xδ = =ρ ρ  (2.8) 
 
where F is a known link function and f(x; ρ) is an unknown function. Note that x2 is 
uniquely determined by x1 and the MTD curve. Let Dm = {(δi, xi), i=1,…,m} be the data 
after enrolling m patients in the trial, where δi is the response of the ith patient treated 
with dose combination xi and π(ρ) be a prior density on the parameter ρ. The posterior 
distribution is 
 

 [ ] [ ] 11

1

( | ) ( ( ; )) 1 ( ( ; )) ( ).i
m

m i i
i

D F f x F f xδ δπ π−

=

∝ −∏ρ ρ ρ ρ  (2.9) 

 
Let px be the probability of treatment efficacy at dose combination x and denote by p0 the 
probability of efficacy of a poor treatment. We describe an algorithm to conduct a phase 
II trial in order to test the hypothesis 
 
H0: px  < p0 for all x versus H1: px  > p0 for some dose combination x. 
 
2.2.2 Algorithm 
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1. Treat n1 patients at dose combinations x1,…,xn1 equally spaced along the MTD 
curve. 

2. Obtain a Bayes estimate ρ̂ of ρ given the data Dn1 using (2.9). 
3. Generate n2 dose combinations from the standardized density ˆ( ( ; ))F f x ρ and 

assign them to the next n2 patients. 
4. Repeat steps 2 and 3 until a total of n patients have been enrolled to the trial 

subject to pre-specified stopping rules. 
 

This algorithm can be viewed as an extension of a Bayesian adaptive design to select a 
superior arm among a finite number of arms [18] to selecting a superior arm from an 
infinite number of arms. 
 
Decision rule: 
We accept the alternative hypothesis if  
 
 [ ]0( ( ( ; )) | ,x n uMax P F f x p Dρ δ> >  (2.10) 
 
where δu is a design parameter. In this report, stopping rules for futility or early efficacy 
were not implemented. 
 

3. Simulation Studies 
 
3.1 Simulation Set-up and Scenarios 
 
We evaluate design operating characteristics by assuming a logistic link function F(u) = 
(1 + exp(−u))–1 and a quadratic function f(x) = a (x – h)2 + k  in (2.8). This is a simple 
form of f(∙) yet flexible enough to accommodate cases of constant probability of efficacy 
along the MTD curve, high probability of efficacy around the middle of the MTD curve 
and high probability of efficacy at the edges of the MTD curve. We explored sample 
sizes of 40 and 50, p0 = 0.3, 0.5, 0.7, argmax f(x) = 0.0, 0.2, 0.5, 0.8, 0.1, and target effect 
size of 0.2. Vague priors are achieved by assuming that a, h, k are independent a priori 
with a ~ N(0, 108), h ~ U(0, 1), k ~ U(− 6.3, 3.7). The initial number of patients enrolled 
to the trial was set to n1 = 10 and n2 = 5 was used in the adaptive phase of the design. The 
design parameter for the decision rule in (2.10) was taken as δu = 0.8. In each scenario, 
we simulated m = 2000 trial replicates the true model using the true model to generate the 
binary responses. 
 
3.2 Design Operating Characteristics 
 
For each scenario, we report an estimated “Bayesian power” and a “type I error 
probability” by estimating the probability of accepting the alternative hypothesis (under a 
particular alternative) using the equation 
 

 ( )( )1 0 ,
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1( ) ( ( ; )) | ,
m

x i n i u
i

P H I Max P F f x p D
m

δ
=

≈ > >∑ ρ  (3.1) 
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 ( ) ( )0 , , 0
1

1( ( ; )) | ( ( ; )) ,
M

i n i j i
j

P F f x p D I F f x p
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and  ρ1,i,…,ρM,i is an MCMC sample from the posterior distribution π(ρ | Dn,i). We also 
report the estimated efficacy curve by replacing ρ in (2.8) by the average posterior 
medians across all simulated trials  
 
 ( ( ; ))F f x ρ  (3.3) 
 
where ( , , )a h k=ρ , 1

1
ˆm

ii
a m a−

=
= ∑ and ˆia is the posterior median from the i-th trial. 

The statistics ,h k are similarly defined. Finally, we also report the mean posterior 
probability of efficacy curve  
 

 ( )0 ,
1

1 ( ( ; )) | .
m

i n i
i

P F f x p D
m =

>∑ ρ  (3.4) 

 
 
3.3 Results 
 
We present the results of five scenarios in Figures 2−6. Figure 2 is a case where the true 
probability of efficacy shown by the blue curve is highest at the standardized dose 
combination x = 0.5 and is higher than the probability of a poor treatment in the interval 
[0.18, 0.82]. The effect size is 0.2 and this is achieved at a single dose combination x = 
0.5 corresponding to the intersection of the blue curve and the green horizontal line. The 
true probability of response decreases as we move away from the middle of the MTD 
curve. The dashed black curve is the estimated efficacy curve as defined in (3.3) and is 
very close to the true efficacy curve. The mean posterior probability of efficacy defined 
in (3.4) and shown in red is higher in a neighborhood of x = 0.5 as expected. The 
probability of accepting the alternative under this scenario as defined in (3.1) is 0.88. 
This can be interpreted as the “Bayesian power” of the test under this particular 
alternative hypothesis. The top right of Figure 2 gives the estimated density of the dose 
combinations that satisfy the decision rule (2.10). This shows that the probability of 
selecting a dose combination that has a probability of treatment response of more than p0 
is 0.98. The mode of this density is x = 0.5. The bottom right of Figure 1 is a case where 
the probability of treatment response does not exceed p0 = 0.5 for all dose combinations, 
see the blue curve. In this case, the mean posterior probability of efficacy is low with a 
maximum value of 0.42 achieved at x = 0.5 as expected. The probability of accepting the 
alternative under this scenario is 0.23 and can be interpreted as the “Bayesian type I error 
probability” under this particular scenario. The scenario in Figure 3 is similar to the 
previous one except for the probability of a poor treatment response p0 = 0.7. The power 
of the test is 0.96 and the probability of a type I error is 0.28. The target dose is selected 
with probability 1. Figure 4 is a scenario where the probability of treatment response is 
very low on one part of the estimated MTD curve and is more than p0 = 0.5 for dose 
combination in [0.06, 0.35] with the target probability of response p1 = 0.7 achieved at 
dose combination x = 0.2. Power in this case is 0.86 and the dose combination with 
probability of efficacy above p0 = 0.5 is selected 93% of the time. The bottom right of 
Figure 4 shows that the probability of a type I error under that scenario is 0.21. Figure 5 
is a similar situation except that the probability of a poor treatment response, p0 = 0.3. In 
this case, we increased the sample size to n = 50 in order to achieve a power of 0.84 
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H0: px  < 0.5 for all x  
H1: px  > 0.5 for some x 
 
Effect size = 0.2 
n = 40. 

 
Figure 2. Power (top left), type I error probability (bottom right), and distribution of selected 
dose combination with desired probability of efficacy. 
 

  
 
H0: px  < 0.7 for all x  
H1: px  > 0.7 for some x 
 
Effect size = 0.2 
n = 40. 

 
Figure 3. Power (top left), type I error probability (bottom right), and distribution of selected 
dose combination with desired probability of efficacy. 
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and a type I error probability of 0.14. The last scenario shown in Figure 6 is a rare 
situation where the probability of treatment response is lowest in the middle of the 
estimated MTD curve and increases as we approach the edges of the MTD curve. This 
may happen if the effect of either drug is attenuated by the effect of the other drug, a 
situation that can arise when dealing with two antagonistic drugs. In this case, power is 
0.87 and the target dose combination is selected with probability 0.48 + 0.49 = 0.97. The 
bottom right of Figure 6 shows that the type I error is 0.15. We note that the true 
probability of efficacy curve at the top right of Figure 6 exceeds the target p1 = 0.7 in the 
set [0, 0.07]  [0.93,1]. If we consider the case where this curve achieves the target p1 = 
0.7 at the two dose combinations 0 and 1 only, then the power of the test is decreased 
significantly and the trial will require a much larger sample size. Therefore, it is 
important to discuss the plausible scenarios that may occur in practice with the clinician 
to elucidate the design operating characteristics. Based on these preliminary results, we 
conclude that phase II trials searching for dose combinations along the MTD curve that 
yield high probability of treatment response are feasible with reasonable sample sizes. 
We are currently assessing the performance of this design under model misspecification 
and implementing stopping rules for early treatment efficacy or futility and rejecting dose 
combination regions with low probability of treatment efficacy during the trial. 
 
 
 

  
 
H0: px  < 0.5 for all x  
H1: px  > 0.5 for some x 
 
Effect size = 0.2 
n = 40. 

 
Figure 4. Power (top left), type I error probability (bottom right), and distribution of selected 
dose combination with desired probability of efficacy. 
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H0: px  < 0.3 for all x  
H1: px  > 0.3 for some x 
 
Effect size = 0.2 
n = 50. 

 
Figure 5. Power (top left), type I error probability (bottom right), and distribution of selected 
dose combination with desired probability of efficacy. 
 

  
 
H0: px  < 0.5 for all x  
H1: px  > 0.5 for some x 
 
Effect size = 0.2 
n = 40. 

 
Figure 6. Power (top left), type I error probability (bottom right), and distribution of selected 
dose combination with desired probability of efficacy. 
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4. Discussion 
 
We described a two-stage Bayesian adaptive design for cancer phase I clinical trials using 
two drugs with continuous dose levels. The goal is to (1) estimate the MTD curve in the 
two-dimensional Cartesian plane and (2) search for dose combination regions along the 
MTD curve that yield a desired probability of treatment response. Design of the phase I 
trial and estimation of the MTD curve in stage 1 can be carried out using either EWOC 
[14, 16] or CRM [15]. In each case, we showed that a sample size of 40 patients yield 
good operating characteristics under a large number of scenarios with vague prior 
knowledge about the toxicity profiles of each agent. In stage 2, we modeled treatment 
efficacy as a binary indicator of treatment response using a quadratic form of the dose 
combination-treatment response relationship. This is a reasonable assumption since it 
accommodates cases of constant probability of efficacy along the MTD curve, high 
probability of efficacy around the middle of the MTD curve, high probability of efficacy 
at the edges of the MTD curve, and makes the model parsimonious. In this stage, a 
Bayesian adaptive design is proposed to conduct a phase II trial with the goal of 
identifying dose combination regions that yield a desired probability of treatment 
response. Initially, a number of patients are treated with dose combinations equally 
spaced along the estimated MTD curve from stage 1 and after resolving their treatment 
response status, the estimated probability of efficacy curve is updated. A small number of 
patients are then allocated to dose combinations generated from this updated efficacy 
curve. The trial continues until we reach the final sample size. This design can be viewed 
as an extension of the Bayesian adaptive design comparing a finite number of arms [18] 
to comparing an infinite number of arms.  
 
We studied the properties of this design under 5 scenarios for the true probability of 
efficacy as a function of dose combinations and we found that the method yields 
reasonable power and type I error probability using sample size between 40 and 50. 
Based on these scenarios and proposed models, we conclude that this two-stage design is 
feasible with a total sample size of 90 to 100. We are currently studying the performance 
of stage 2 under model misspecification and implementing stopping rules for futility, 
early efficacy, and dropping dose combination regions with statistical evidence of low 
probability of treatment efficacy during the trial. 
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