
Understanding Variability Between Groups of Sequences Using a Bayesian

Object-Oriented Data Model

Maria Tackett∗ Dan Spitzner†

Abstract

Optimal Matching is an algorithm used to analyze object-oriented data, specifically sequences.

In this article, we propose a framework inspired by classical Analysis of Variance to estimate the

variability between groups of sequences using Optimal Matching. To estimate between group vari-

ability, we explore approaches based on established methods- bootstrapping and Hidden Markov

Models. We also propose a Bayesian object-oriented model. These three methods are examined and

demonstrated on a well-known dataset of historical English dance sequences, with a mind towards

application to life course data.
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1. Introduction

Taking a holistic approach to understanding life course data has become a popular point of

research in the social sciences. In this field of study, a person’s entire life course trajectory

becomes a single unit (Barban and Billari, 2012). Because the observations are sequences,

it is challenging to compare observations and derive basic measures of center and spread.

In current research, many social scientists use Optimal Matching to compare sequences and

create clusters of similar observations (Salmela et.al, 2011, Barban and Billari, 2012).

Optimal Matching is the measure of the “distance” between two sequences (though in

some formulations it is asymmetric and therefore not a true distance). It was originally pro-

posed by Needleman and Wunsch (1970) in their research comparing amino acid sequences

of proteins. In the beginning, Optimal Matching was used primarily in computational bi-

ology, but Abbott and Forrest pioneered using this algorithm in the social sciences in their

1986 paper. Since then, it has become the most widely known (Barban and Billari, 2012)

and most commonly used (Salmela et. al, 2011) algorithm in the social sciences to analyze

life course data.

It is well known that Optimal Matching may be used to quantify variability between

and within groups of sequences. In this article, we extend the range of techniques that

may be employed with Optimal Matching for this purpose. However, a secondary interest

in this study is to investigate the potential for more interpretable fine tuning of the basic

scheme. Specifically, formulation of Optimal Matching distance requires specification of a

set of “cost” parameters, whose values are often determined arbitrarily or using more ad-

hoc methods (Barban and Billari, 2012). Our investigation posits that by couching Optimal

Matching methods within a formal statistical model, the costs become fully interpretable as

parameters of a probability distribution that are to be estimated. Though actual estimation

of the costs proves to be challenging and is not achieved here, we are able to make a first

step by verifying the efficacy of a formal model in quantifying variability.
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To calculate the between group variation, we will need to derive a centroid (center) se-

quence overall and within each group. We propose three methods for obtaining these cen-

troid sequences: bootstrapping, a Bayesian object-oriented model, and a Hidden Markov

Model. The primary focus of this paper is on sequence analysis; however, these ideas ap-

ply more generally to any type of object-oriented data with an algorithm to measure the

discrepancy between observations.

In Section 2, we briefly describe the Optimal Matching algorithm used throughout the

remainder of the paper. In Section 3.1, we provide details for our proposed ANOVA formu-

lation and the quantity we’re interested in estimating. In Section 3.2, we provide details for

the three methods we propose for estimating the centroid sequences. In Section 4, we show

the results of our methods using a dataset of English folk dance sequences from Abbott and

Forrest (1986). In Section 5, we conclude with discussion about the proposed methods and

next steps in the research.

2. Optimal Matching

To measure the “distance” between two sequences, we use Optimal Matching. The goal

of Optimal Matching is to find the alignment between two sequences that minimizes the

“cost” . The total cost of this alignment is called the Optimal Matching distance (Abbott

and Forrest 1986, Salmela et. al, 2011).

In each step of Optimal Matching, we perform an action using a character from an

alphabet. The alphabet is the set of all possible characters in a sequence, i.e. the state

space (Barban and Billari, 2012). The three possible actions in each step of the algorithm

are to substitute one character for another, insert a character, or delete a character. There is

a predefined cost associated with each one of these actions. For example, with an alphabet

consisting of only the letters A and B, the sequence ABA becomes ABBA with the insertion

of the letter B in the second position, and then becomes ABBB with the substitution of

the last letter A with the letter B. The distance between ABA and ABBB is determined by

the total cost of making an insertion followed by a substitution. Currently, the costs are

defined in a variety of ways. Some of the most common are to set all of the costs equal, to

use transition frequencies (Barban and Billari, 2012), or to use theory from previous social

science research (Salmela et. al, 2011).

Insertion and deletion costs are each stored in vectors of length k, where k is the num-

ber of elements in the alphabet. Substitution costs are stored in a k × k matrix. In the

substitution matrix, the entry (i, j) represents the cost for substituting the jth character

from the alphabet in place of the ith character. In most analyses using Optimal Matching,

the substitution matrix is symmetric. In this paper, however, we will allow for asymmetry

in the substitution matrix. This allows for a situation in which it is more costly to substitute

the jth character for the ith character than it is to do the reverse, or vice versa. Because

of this asymmetry, for the remainder of this paper, we will no longer use the term Optimal

Matching distance, but rather we will call the alignment that minimizes cost the Optimal

Matching deviance.

We denote the deviance between two sequences y1 and y2 by dφ(y1, y2), where φ repre-

sents the substitution, insertion and deletion costs. Note that due to the asymmetry allowed

in the costs, it is not necessarily true that dφ(y1, y2) = dφ(y2, y1). We will use this Optimal

Matching deviance throughout the remainder of this paper. The methods proposed in this

paper could be generalized to include other measures of discrepancy between observations

in an object-oriented data context.
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Table 1: Analysis of Variance of Sequences

Source DF SS MS

Between g − 1
∑g

i=1 nidφ(µ̂i, µ̂0)
SSB
g−1

Within n− g
∑g

i=1

∑ni

j=1 dφ(yij , µ̂i)
SSW
n−g

Total n− 1
∑g

i=1

∑ni

j=1 dφ(yij, µ̂i) + dφ(µ̂i, µ̂0)

3. Understanding Variability

3.1 Set Up

To estimate variability between groups of sequences, we begin with a framework that is

motivated by the traditional Analysis of Variance (ANOVA). In our framework, µ̂0 is the

overall centroid, µ̂i is the centroid for group i, and dφ(y, µ) is the Optimal Matching de-

viance from y to µ given the substitution, insertion and deletion costs represented by φ.

For a given sequence yij , we can formulate a model, breaking down its sources of

variability. Reflecting the model yij = µi+ ǫij , where µi = µ0+αi of traditional one-way

ANOVA, we imagine there is an overall centroid sequence, represented by µ0, and group-

specific centroid sequences, represented for group i by µi. With the traditional one-way

ANOVA as our guide, we develop Table 1, an analog of an ANOVA table, to find between

and within group variability.

The key difference between Table 1 and a traditional ANOVA table is that our ANOVA

framework does not include an F -test. Our goal is not to use testing to find significant

sources of variation, but to get an estimate of the magnitude of the variability. This idea

of estimating variability is discussed further in Gelman (2006). Instead of testing, he cal-

culates confidence intervals for an estimate of variation. He proposes a finite population

standard deviation sm to estimate the relevant source of variation. We use this quantity as

the motivation for our parameter of interest λ∗, shown in (1).

λ∗ =

√

√

√

√

1

g

g
∑

i=1

nidφ(µ̂i, µ̂0) (1)

The parameter in (1) is derived as an analog to the classic result SSB
φ

∼ χ2
g−1(

gλ2

φ
).

The proof of this result can be easily derived using properties of classical ANOVA. The

parameter λ∗ is an estimate of λ in the noncentrality parameter of this χ2 distribution. The

derivation of λ∗ may be found in the appendix.

3.2 Proposed Methods to Estimate Variability

In order to estimate (1), we must estimate the group centroids (µ̂i) and the overall centroid

(µ̂0). We propose three methods for finding these centroids.

3.2.1 Bootstrap

The first proposed method for estimating λ∗ is to derive confidence intervals using boot-

strapping. The bootstrap approach we use follows the classical bootstrapping method in
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Efron (1982).

The steps for the bootstrap sample are as follows. Given fixed costs, for each run:

1. Draw sample with replacement from each group.

2. Choose the overall centroid to be the sequence that minimizes the deviance from all

other sequences in the bootstrap sample.

3. In each group, choose the group centroid to be the sequence that minimizes the total

deviance from all other sequences.

4. Given the centroids, calculate λ∗ using (1).

Repeating this process n times, we can find the 50% and 95% confidence intervals for λ∗.

The greatest advantage to this method is its computational efficiency. Because it does

not rely on a formal model, it does not need to run MCMC algorithms to derive the dis-

tributions for the centroids like the other proposed methods. This is ideal for estimating

variation, especially for large datasets.

One limitation to this approach is that it uses the observations in the dataset to determine

the group and overall centroids in each run. Therefore, there is the potential that the true

centroid is missed. To remedy this, a search algorithm could be used to explore all possible

sequences to find each centroid. Taking this approach would cost a lot of time, so it is not

recommended for estimating the variation. If the costs for the characters in the alphabet are

similar, then the results will not change significantly. Therefore, the advantage of using a

search algorithm to find the centroids does not outweigh the extra computational time.

3.2.2 Bayesian Object-Oriented Model

The second method we propose is to use a Bayesian object-oriented model to obtain pos-

terior distributions of the group and overall centroids. We start with the probability mass

function for a sequence y given a centroid µ and costs φ.

π(y|µ, φ) = N(µ, φ)e−
1

2
dφ(y,µ) (2)

This model takes the form used to study random graphs in Banks and Constantine

(1998). Using this model, we can calculate the posterior distributions of the group and

overall centroids. This gives us additional information about the structure of our data.

We can now write the posterior distribution for a given centroid. We start with the

hyperprior distribution:

π(µ0) ∝ e−
1

2
dφ0 (µ0,∅) (3)

where φ0 is the set of cost parameters associated with the prior for the overall centroid.

Typically these costs are set low to allow for a lot of variation in the distribution. The cen-

troid sequence for the hyperprior distribution is ∅, which represents the NULL sequence.

Similar to univariate objects, the NULL sequence is empty, i.e. the sequence that has no

characters. Because we are working with a distribution that is centered at the NULL se-

quence, the distribution in (3) is an analog to a uniform hyperprior distribution.

Given an overall centroid µ0, the prior distribution for the group centroid µi is as fol-

lows:

π(µi|µ0) ∝ e−
1

2
dφ(µi,µ0) (4)
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Based on the model in (2), the likelihood of the observations y given the group centroids

µ1, . . . , µg is

L(y|µ1, . . . , µg) ∝ e−
1

2

∑g
i=1

∑ni
j=1

dφ(yij ,µi) (5)

where g represents the number of groups. Thus, using (3), (4), and (5), we have the poste-

rior distribution of a centroid µi

L(µi|µ0,µ[−i],y) ∝ e
− 1

2
[
∑g

i=1

∑ni
j=1

dφ(yij ,µi)+dφ(µi,µ0)+dφ0 (µ0,∅)]
(6)

where, µ[−i] is the set of group centroids, excluding the centroid for group i.

Using this posterior distribution, we can draw a sample of group and overall centroids

to calculate λ∗.

3.2.3 Hidden Markov Model

The final method we consider is a Hidden Markov Model (HMM) proposed by Churchill

and Lazareva (1999). This is a well established method used in computational biology.

More specifically, Churchill and Lazareva (1999) look at how this methodology is used in

molecular biology to study the evolution of DNA sequences. We use the Mutation-deletion-

insertion model they propose to compute the posterior distribution of the group and overall

centroids. This model is based on a series of actions - substitution, insertion, and deletion

- so it is comparable in some ways to the Bayesian object-oriented model using Optimal

Matching.

The one key difference between the HMM and the Bayesian object-oriented model, is

that the goal of HMM is not to find the centroid that minimizes the distance from all other

sequences in the dataset. A Hidden Markov Mode is designed to capture the evolution

from a centroid sequence to all other sequences, so its goal is to find the centroid that is the

“average” distance from all other sequences in the data. Therefore, we expect the posterior

distribution of the centroid to be slightly different using this model than with our proposed

Bayesian object-oriented model.

The quantity in (1) for estimating variability uses the Optimal Matching deviance.

Therefore, we will use HMM to obtain the posterior distribution of the centroid, then we

will use the Optimal Matching deviance in each run to calculate λ∗. This “ad-hoc” approach

for calculating λ∗ using centroids determined by HMM did not have a major impact on the

results in this analysis. One should proceed with caution if using this method to estimate

variability between groups of sequences that have a wide variety of sequence lengths.

4. Results

4.1 Data

To illustrate the performance of the methods described above, we will use a dataset of

English folk dances from Abbott and Forrest (1986). The data contains 27 dance sequences

from the village Ilmington in Warwickshire, England. Though there were up to 75 different

possible steps in the dances from this village, we will consider 22 different moves which

consist of various dance patterns such as partner moves, turns, footwork, etc. Each dance

step is a character in the alphabet. The dance patterns are from four popular dances from

this village: “Shepard’s Hey”, “Black Joke”, “Maid of the Mill”, and “Bumpus o’Stretton.”

There are sequences from the years 1887 and 1906 that were observed by historians and

sequences from the years 1867 and 1945 that were constructed by historians to mimic the

dances of those time periods. The full dataset and list of dance steps in the alphabet may
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Figure 1: 50% and 95% confidence intervals of λ∗ for n = 1000

be found in Abbott and Forrest (1986). We also use the costs used by Abbott and Forrest.

Insertion and deletion costs equal one for each character in the alphabet. The substitution

costs follow a hierarchical structure that is described in detail in their paper.

The goal of this analysis is to use the proposed methods in Section 3 to estimate the

variability between the group of observed dances and the group of dances constructed by

historians. We will use λ∗ from (1) as the estimate of between group variation. Under-

standing this between group variation can help us assess how closely historians recreated

these historical dance sequences.

4.2 Results

The confidence intervals of λ∗ for each of the proposed methods are shown in Figure 1. Our

proposed Bayesian object-oriented model performed similarly to the bootstrap approach.

This indicates that both methods chose similar group and overall centroids in the 1000

runs. This gives confidence that the model we proposed is behaving stably in obtaining the

posterior distribution for the centroids.

The Hidden Markov Model estimated between group variation slightly higher than the

other methods, on average. The difference is unsurprising and has an easy explanation.

Given that the Hidden Markov Model obtains the posterior distribution based on the average

path between sequences, instead of the minimal path, it is expected that algorithm would

choose centroid sequences that are further apart. Even with the fundamental difference

between the Hidden Markov Model and the other methods, all three methods have the

same similar widths for the 95% confidence intervals.

5. Discussion

Overall, each method performed comparably in estimating variability between groups of

sequences. The bootstrap approach is extremely computationally efficient, so it is ideal

for large datasets. Since it is not based on a formal model, one can gain only limited

information from its results. Therefore, it can not be used to address some of the criticisms

of Optimal Matching, such as estimating costs.
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The Bayesian object-oriented model we propose performed comparably to the boot-

strap method in estimating variability. With our formal model, we were able to calculate

a posterior distribution of the group and overall centroids. This provides some additional

information about the data, and it could potentially be used to estimate the cost parameters.

Using Metropolis-Hastings within Gibbs, we could conceivably simulate the posterior dis-

tribution of the cost parameters. However, because the cost parameters φ are included in

the normalizing constant of the probability mass function, the normalizing constant must

be derived in order to obtain the posterior distribution of the costs. This is the primary

challenge of working with the object-oriented model for the purpose of estimating costs:

an exact expression for the normalizing constant is extremely challenging to obtain.We’ve

explored simple techniques of approximation, but our results are inconclusive at this time.

Another approach to estimate the cost parameters is to use a MCMC method that is

designed to handle intractable normalizing constants. There is a variety of literature on

this topic; however, we have explored the MLE-MH algorithm proposed by Liang and Jin

(2013). Further exploration is required to use this algorithm to estimate costs.

Finally, using the Hidden Markov Model proposed by Churchill and Lazareva (1999),

we were able to calculate posterior distributions for the group and overall centroids. We

used the centroids from these distributions to estimate variability. The primary advantages

of this method are that is computationally efficient, and it is an established approach cur-

rently used in computational biology. Because it relies on averaging the deviance between

sequences instead of minimizing it, it is structured differently from the way social scientist

currently approach research in life course data. In order to incorporate this method in their

research, social scientists would have to make a shift in their research objectives.

In this paper, we showed how Optimal Matching can be used to estimate the variability

between groups of sequences. We proposed a formal model for this sequence data, and

showed that it performs comparably to more established methods. There are still questions

open about the intractable normalizing constant in the model and how to estimate costs.

However, we have shown preliminary results that suggest this Bayesian Object-Oriented

model is worth further exploration.

6. Appendix: Derivation of λ∗

Below is the derivation of (1).

E
(SSB

φ

)

= g − 1 +
gλ2

φ
⇒ E(SSB) = φ(g − 1) + gλ2

⇒ λ̂2 =
SSB − φ(g − 1)

g

⇒ λ̂ =

√

SSB − φ(g − 1)

g
=

√

g − 1

g
[MSB − φ]

φ is fixed, so we estimate

λ∗ =

√

1

g
SSB =

√

√

√

√

1

g

g
∑

i=1

nidφ(µi, µ0)

JSM2015 - Section on Bayesian Statistical Science

3351



REFERENCES

Abbott, A. and Forrest J. (1986), “Optimal Matching Methods for Historical Sequences,” Journal of Interdis-

ciplinary History, 16, 471-494.

Banks, D. and Constantine, G. M. (1998), “Metric Models for Random Graphs,” Journal of Classification, 15,

199-223.

Barban, N. and Billari, F. C. (2012), “Classifying Life Course Trajectories: a A Comparison of Latent Class

and Sequence Analysis,” Journal of the Royal Statistical Society, 61, 765-784.

Churchill, G. and Lazareva, B. (1999), “Bayesian Restoration of a Hidden Markov Chain with Applications to

DNA Sequencing,” Journal of Computational Biology, 6, 261-277.

Efron, B. (1982), The Jackknife, the Bootstrap, and Other Resampling Plans, Philadelphia: Society for Indus-

trial and Applied Mathematics.

Gelman, Andrew (2006), “Analysis of Variance - Why It Is More Important Than Ever,” The Annals of Statis-

tics, 33,1-53.

Liang, F. and Jin, I. (2013), “A Monte Carlo Metropolis-Hastings Algorithm for Sampling from Distributions

with Intractable Normalizing Constants,” Neural Computation, 25, 2199-2234.

Mosteller, F. and Tukey, J. (1977), Data Analysis and Regression: a Second Course in Statistics, Reading:

Addison-Wesley Publishing Company.

Needleman, S. and Wunsch, C. (1970), “A General Method Applicable to the Search for Similarities in the

Amino Acid Sequence of Two Proteins,” Journal of Molecular Biology, 48, 443-453.

Salmela-Aro, K., Kiuru, N., Nurmi, J., and Eerola, M. (2011), “Mapping Pathways to Adulthood Among

Finnish University Students: Sequences, Patterns, Variations in Family - and Work- Related Roles,” Ad-

vances in Life Course Research, 16, 25-41.

Burnham, K. P., and Anderson, D. R. (1998), Model Selection and Inference, New York: Springer.

JSM2015 - Section on Bayesian Statistical Science

3352


