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Abstract.  Indices of risk reduction are commonly used to assess the effectiveness of treatment. 
Increase in chance of recovery is a logically equivalent counterpart to risk reduction. The recovery 
model emphasizes the distinction between capability of spontaneous recovery and sensitivity to 
compared treatments. Exploiting this may help improve prediction of treatment response, facilitate 
search for biomarkers, and reduce risk for adverse effects via eliminating unnecessary 
prescriptions. Spontaneous and treatment-induced recoveries are not phenotypically 
distinguishable; thus we introduce a hidden variable model. The (unobservable) proportion of 
patients sensitive to treatment is not equal to the (observable) proportion of “responders”; we 
introduce a logical framework for this relationship, which constrains the priors for Bayesian 
analysis. Clinical, experimental, and epidemiological data will be presented to motivate the hidden 
variable architecture. We focus on the interface between the clinical and statistical aspects of 
effectiveness assessment, and on the development of a conceptual, structural, and logical 
framework. 

Key words: Chance for recovery, Risk reduction, Sensitivity to treatment, Spontaneous recovery, 
Biomarkers, Hidden variable 

 

Every case of anthrax may be regarded as a grave illness, 
but cases of spontaneous recovery are not altogether 
uncommon.” 

James Cornelius Wilson (1909). A Handbook of Medical 
Diagnosis: For the Use of Practitioners and Students 

Introduction  
Traditionally, the effect of treatment is measured as its ability to reduce risk of 

“bad events,” such as symptoms, disorders, diseases, disability, deaths, etc. The indices 
of “absolute risk reduction” and “relative risk reduction” are commonly used in studies 
assessing the effects of treatment, as well as in pharmacogenetic studies examining the 
association between genetic markers and response to treatment. Important studies on the 
heterogeneity in treatment effect and individualization of treatment have also been 
conducted within the framework of this approach. i 

Although the increase in chance of recovery is a logically equivalent counterpart 
to risk reduction (“risk reduction” = “increase in chance for recovery”) it is rarely 
analyzed in clinical and pharmacogenetic studies. Focusing on chance for recovery is not, 
however, just an exercise in logic.  

The assessment of the benefit of treatment via increasing chance for recovery 
makes us face the rarely mentioned fact that some patients recover spontaneously, i.e., 
without treatment or regardless of treatment. Recognition of this phenomenon leads to a 
chain of logical consequences and subsequently to the creation of a new logical model for 
the assessment of treatment effect, which is our first objective.  

Another objective is exploring the phenomena of spontaneous recovery and 
sensitivity of a patient to treatment. Nowadays these old clinical concepts are rarely used. 
We will investigate their relationships with each other and with observed outcomes.   

Our model creates a framework for statistical analysis of treatment effects 
accounting for spontaneous recovery and sensitivity to treatment. Classical statistical 
methods are not sufficient for this analysis. In our opinion - the opinion of a content 
scientist - the concept of Bayesian networks with hidden variables (e.g., Pearl, 1988)ii is a 
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promising approach to studying these phenomena, although the final selection of a 
general approach, as well as addressing all theoretical, methodological, and technical 
challenges of statistical analysis, is the prerogative of statisticians.  

One of the crucial yet challenging decisions to be made in the frame of this 
approach is model selection. It involves choosing a number of hidden variables and their 
cardinalities, as well as dependencies between them and the observed entities of the 
domain, which is a problem having received surprisingly little attention in literature.iii 
Our study is intended to help fill this gap. 

Also we will sketch a heuristic for searching candidates for markers for a 
capacity for spontaneous recovery and sensitivity to treatment.    

The development of a model requires making necessary simplifying assumptions, 
and our model will be unavoidably oversimplified. Still we hope it will be useful.  
1. Clinical trial model. The core of our approach is analysis and interpretation of 
the results of a virtual randomized clinical trial on the efficacy of experimental treatment 
𝐸 compared to control treatment 𝐶. The outcome of the treatment was either recovery (𝑌) 
or death (𝑍) such that  

𝑃(𝑌(𝐸)) + 𝑃(𝑍(𝐸)) = 1; 
𝑃(𝑌(𝐶)) + 𝑃(𝑍(𝐶)) = 1. 

The subjects recruited from the population of patients suffering from a target disorder 
were randomly assigned to the experimental or control treatment. Each patient from the 
trial population is described with a vector of binary variables 𝑉 = 𝑉1, 𝑉2,… , 𝑉𝑖,…, 𝑉𝑛 . 
Each of the variables 𝑉𝑖, including clinical, demographic, biological, genetic, treatment, 
etc., characteristics may have a value 1 or 0.  

The hypothesis of the study is that treatment 𝐸 reduces risk of death more than 
control treatment 𝐶.  

The model of a clinical trial we use consists of four major components: treatment 
population, treatment, outcomes, and covariates expressed in a form of binary variables 
following a terminological and methodological tradition for clinical trials on the effects 
of treatment on morbidity and mortality. A positive outcome vs. negative one, i.e., having 
a heart attack vs. not having it, recovery vs. death, are the most clear-cut clinical 
presentations of this dichotomy. Analysis of continuous outcomes may require more 
complex models, but the principles of the approach will remain the same. Also it is 
natural for the compared modalities of treatment to be expressed as binary or categorical 
variables.  
2. Heterogeneity in treatment effects. The most complex issues are related to the 
homogeneity/heterogeneity of the treatment population. In the early stages of the 
development of the theory of randomized clinical trial, the treatment population was 
assumed to be homogenous. The homogeneity was thought to be reached via recruitment 
of patients using strict selection criteria.  

The understanding that even most thoroughly selected population is still 
heterogeneous regarding the treatment effect is becoming more popular in clinical 
research. In our opinion, the very fact that virtually any treated population has positive 
and negative outcomes is the first evidence of the heterogeneity. Essentially, exploring 
the underlying layers of the heterogeneity, i.e., the variations of patients’ properties 
determining the treatment response in individual patients and in group of patients, is the 
way to individualized treatment.    
 In the article synthesizing results of studies on the individualization of treatment 
Kent and coauthors (2010) presented a proposal for assessing heterogeneity in treatment 
effects. The authors refer to growing evidence that in virtually any population of treated 
patients there is a considerable variation in risk of the outcome of interest. The “average” 
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benefit observed in the summary trial result of a clinical trial may even be non-
representative of the treatment effect for a typical patient in the trial, to the extent that 
some subgroups of patients can benefit when aggregate results of trials are negative.   
The authors consider the effects of treatment traditionally, using the indices 
characterizing risk for a negative outcome (“bad events,” i.e., disorders, diseases, 
disability, or death). In our opinion, the logic of analysis of reducing risk of “bad events” 
by Kent, et al., could be equally applied to the increase in chance of a positive outcome, 
and if we switch focus to the increase in chance for recovery, we inevitably come to a 
conclusion about a considerable variation in chance for recovery, and that some 
subgroups of patients might have high chance for recovery whether aggregate results of 
trials are positive or negative.  
3. Chance for recovery vs. risk for “bad events.” Traditionally, in clinical and 
epidemiological studies, the benefit of treatment for patients is defined using indices as 
reduction of risk of death:  
 absolute risk reduction: ARR =𝑃(𝑍(𝐸)) − 𝑃(𝑍(𝐶));  

 relative risk reduction: 𝑅𝑅𝑅 =
𝑃(𝑍(𝐸))−𝑃(𝑍(𝐶))

𝑃(𝑍(𝐶))
  and 

 number needed to treat: 𝑁𝑁𝑇 = 1/[𝑃(𝑍(𝐸)) − 𝑃(𝑍(𝐶))].  
Almost identically, the benefits of treatment can be expressed using a logically equivalent 
system of indices defining increasing chance for recovery as follows. 

𝐴𝑅𝑅 = 𝑃(𝑍(𝐸)) − 𝑃(𝑍(𝐶)) = 𝐴𝐶𝐼; 
𝑁𝑁𝑇 = 1/[𝑃(𝑍(𝐸)) − 𝑃(𝑍(𝐶))] = 𝑁𝑁𝑇′; 

where 𝐴𝐶𝐼 is the absolute chance increase, and 𝑁𝑁𝑇′ is the number needed to treat to 
have one more recovery. The absolute risk reduction and the absolute chance increase are 
symmetrical and equal, i.e., in the context of the assessment of the effect of treatment 
they can be used interchangeably.  

The relative risk reduction index (𝑅𝑅𝑅) and the relative chance increase index 
(𝑅𝐶𝐼) are not equal. Their numerators are equal, but their denominators are different.  

𝑅𝑅𝑅 =
𝑃(𝑍(𝐸)) − 𝑃(𝑍(𝐶))

𝑃(𝑍(𝐶))
≠   

𝑃(𝑌(𝐶)) − 𝑃(𝑌(𝐸))

𝑃(𝑌(𝐶))
= 𝑅𝐶𝐼. 

In the RRR index, the numerator, i.e., absolute risk reduction is related to the proportion 
of deaths among controls. In the RCI index, the absolute chance increase is related to the 
proportion of recoveries among controls, which is consistent with the meaning of the RCI 
index. With this reservation, all operations performed on the indices of risk reduction also 
formally may be performed with the chance increase indices. However, in such a case 
there are important content issues. 
4. “Responders” vs. “Non-responders.” The patients having recovered after being 
exposed to treatment often are labeled as “responders” as opposed to “non-responders,” 
i.e., those who have not recovered. The term “non-responders” does not call for any 
objections, but the patients with positive outcomes are not necessarily the “responders” in 
the proper meaning of this term. Some fraction of them could recover regardless of 
treatment.iv The problem is that, so long as a patient exposed to treatment has recovered it 
is hardly possible to determine whether the recovery has been induced by the treatment or 
it was spontaneous, i.e., spontaneous recovery and treatment-induced recovery are not 
phenomenologically, phenotypically distinguishable. Apparently, this is one of the 
reasons why in modern clinical research the effect of treatment is usually assessed as a 
capacity of treatment to reduce risk of a negative outcome rather than increase in chance 
for recovery, and the old clinical term “spontaneous recovery” is rarely used.  
5. Spontaneous recovery. Recovery as one of possible outcomes in a natural 
course of most disorders has been described by physicians long before modern treatments 
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have been discovered. Although there are some disorders in which a lethal outcome 
occurs inevitably regardless of any treatment, in most known disorders the rate of 
spontaneous recovery is substantial. It is true even for diseases notorious for very high 
mortality. It varies across disorders and across the forms of the disorders, but even in 
severe infections which have taken millions of human lives during epidemics and 
pandemics, recovery has been observed in a substantial proportion of the affected 
populations. 

For instance, Ebola Virus Disease (EVD) is known as one of the most dangerous 
infections. As of today, there is no treatment for this disease except for life support 
system in most sophisticated medical facilities, but this treatment was not available in 
many areas affected by the most recent epidemics. The case fatality rates for EVD have 
varied from 25% to 90% in past outbreaks,v i.e., from 10% to 75% patients (on average 
about 50%) survived.  

A substantial survival rate without treatment is reported in other most dangerous 
infectious disorders, such as smallpox (75% on average),vi bubonic plague (50%), vii 
cholera (40–50%),viii cutaneous anthrax (80%), gastrointestinal anthrax (60%), 
inhalational anthrax (10%),ix typhusx (40-90%) and so on. 

In myocardial infarction, which is dubbed as the “#1 killer,” the survival rate is in 
the vicinity of 90% depending on multiple factorsxi,xii. In cancer, which is a group of 
diverse malignant disorders with very different paces of progression, the overall fatality 
rate is 60%, i.e. approximately 40% survive.xiii While many chronic progressive disorders 
have a clear long-term trend to deterioration, debilitation and even death, a natural course 
of most of them is characterized by fluctuations of severity, sometimes remissions or 
even intermissions, at least in a substantial proportion of patients.  
 This list can be expanded indefinitely, and for most of the disorders listed in 
medical and public health classifications and manuals spontaneous recovery (or 
remission, or intermission) is not a rare event due to some accidental confluence of 
biological and social factors. Rather, we understand the capability for spontaneous 
recovery as a property reflecting an existence of an evolutionarily developed protective 
system in response to a specific hazard (the history of plague epidemics in Europexiv can 
be an example). Hereafter, this property will be designated as 𝑆𝑝, and a lack of this 
property as 𝑆𝑝̅̅ ̅.  
6. Observed outcomes and hypothetical properties: Logical model of 
treatment. Let us consider the results of a randomized placebo-controlled trial assessing 
the efficacy of treatment 𝐸 on a population of patients suffering from a disorder of 
interest. It is assumed that a number of observations is large enough and a proportion of a 
positive outcome among patients treated with experimental treatment 𝑃(𝑌(𝐸)) was 
greater than among those treated with placebo 𝑃(𝑌(𝑃𝑙)).  

6.1 Property. Hereafter, under the property we mean an attribute, quality, 
characteristic, ability or trait of a patient determined by a single factor inherent to a 
relevant category of patients (e.g., polymorphism), or by a confluence of multiple factors, 
either prevalent or rare. Note that in a randomized trial these factors and the properties 
determined by them are thought to be equally prevalent in the compared cohorts.  

6.2 Model. Two alternative outcomes (recovery vs. death) have been 
observed. Speaking of the experimental cohort, the only reasonable explanation for the 
different response to standard treatment in standard environment is that patients differed 
by some of their properties. It is also the case for the placebo cohort. 
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A historical, clinical, and epidemiological data show that some unknown 
proportion of the trial population ought to have recovered regardless of treatment. The 
appreciation of the phenomenon of spontaneous recovery in a fraction of patients exposed 
to treatment leads to a chain of logical consequences. The statement that some patients 
have recovered without or regardless of treatment is equivalent to the statement that these 
patients possessed a property making them able to recover spontaneously 𝑃(𝑆𝑝). While 
being randomly assigned to a placebo control (𝑃𝑙), i.e., not being treated with any active 
medicine, the patients with the ability for spontaneous recovery have comprised the 
group of those with positive outcome such that  

𝑆𝑝𝑃𝑙 = 𝑌(𝑃𝑙); and 𝑍𝑃𝑙 = 𝑆𝑝𝑃𝑙̅̅ ̅̅ ̅̅ ; 
i.e., all patients with the property 𝑆𝑝𝑃𝑙 were the members of the set of patients with a 
positive outcome and neither patient without this property is the member of this set. 

Apparently, because of randomization, among the patients assigned to the 
experimental cohort there was an equal proportion of those with the property 𝑆𝑝:  

𝑃(𝑆𝑝(𝐸)) = 𝑃(𝑆𝑝(𝑃𝑙)); but 
𝑃(𝑌(𝐸)) > 𝑃(𝑆𝑝𝐸).  

All patients of this cohort with the property 𝑆𝑝 were the members of the set 𝑌(𝐸) 
𝑆𝑝(𝐸) ⊂ 𝑌(𝐸); but 
𝑌(𝐸)−𝑆𝑝(𝐸) = 𝑅 

members of the set 𝑌(𝐸) did not possess the property 𝑆𝑝(𝐸). 
Apparently, the members of the set 𝑅 possessed another property making them 

responding positively to treatment 𝐸, i.e., a property 𝑆𝑡(𝐸)of sensitivity to treatment 𝐸. 
The term "responders”  can be justly applied only to this set of patients (𝑅).  

It is possible that the patients with ability for spontaneous recovery 𝑆𝑝(𝐸) (all of 
them, part of them, or neither of them) also could have the property 𝑆𝑡(𝐸). It means that 
among the patients with a positive outcome (𝑌(𝐸)) there are three subsets: 

𝑌(𝐸) = 𝑆𝑝(𝐸) ∩ 𝑆𝑡(𝐸)̅̅ ̅̅ ̅̅ ̅,  𝑆𝑝(𝐸) ∩ 𝑆𝑡(𝐸), 𝑆𝑝(𝐸)̅̅ ̅̅ ̅̅ ̅ ∩ 𝑆𝑡(𝐸). 
With regard to the patients possessing both 𝑆𝑝 and 𝑆𝑡(𝐸), it cannot be 

unambiguously stated whether they have recovered spontaneously or due to the effect of 
treatment. In our further speculations we will consider recovery in such cases as 
spontaneous assuming that the patient would have recovered if he/she was not exposed to 
treatment. This is an arbitrary decision. A researcher focused on specific problems may 
be guided by other logic. For instance, it can be assumed that if a patient capable of 
spontaneous recovery and sensitive to treatment was exposed to treatment, then his or her 
recovery should be qualified as treatment-induced. It may change some quantitative 
characteristics, but it will not change logic of analysis in general. 

The patients with a negative outcome had possessed neither the property of 
sensitivity to treatment, nor ability for spontaneous recovery - otherwise they would have 
a positive outcome:  

𝑌(𝐸) = 𝑆𝑝̅̅ ̅, 𝑆𝑡(𝐸)̅̅ ̅̅ ̅̅ ̅. 
The quantitative relationships between the observed outcome and hypothetical 

properties in the treated population can be described as follows. 
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𝑃(𝑌(𝐸)) = 𝑃(𝑆𝑝) + 𝑃(𝑆𝑡(𝐸)) − 𝑃(𝑆𝑝)𝑃(𝑆𝑡(𝐸)); 
𝑃(𝑍(𝐸)) = [1 − 𝑃(𝑆𝑝)] × [1 − 𝑃(𝑆𝑡(𝐸))]; 

which is true only under an assumption that properties 𝑆𝑝 and 𝑆𝑡(𝐸) are not related to 
each other in an individual patient and are independent in the treatment population. This 
is a strong assumption. As soon as any factual data indicating otherwise are available, a 
relevant model can be substituted. 
7. Sensitivity to treatment. The term “sensitivity” is used in a number of 
disciplines (statistics, psychology, physiology, biology, microbiology, allergology, 
physics, engineering, etc.) in various contexts and with different meanings. In statistics, 
the term sensitivity is used in different contexts, primarily those of sensitivity analysis 
and sensitivity in binary classification.  

We understand the sensitivity of an individual patient to a specified treatment as 
his or her ability to develop a positive outcome in response to a certain dose of this 
treatment. We call a patient sensitive to a specified treatment 𝑆𝑡(𝑇𝑥) if this treatment has 
imposed a positive outcome, whereas there are reasons to believe that the outcome would 
be negative if a specified treatment was not applied.  

The capacity of a population to respond to a defined treatment can be 
meaningfully (although not exclusively) characterized by the proportion of patients 
sensitive to a specified treatment.  

7.1 Sensitivity to specified treatments. Let us assume that a patient has 
responded positively to treatment A, but did not respond to treatment B. This can be 
expressed using two logically equivalent statements: 1) A was effective and B was not 
effective in this patient, or 2) the patient was capable of responding positively, i.e., the 
patient was sensitive to A and not sensitive (resistant) to B.  

In this paper we consider sensitivity to experimental 𝑆𝑡(𝐸) and control 𝑆𝑡(𝐶) 
treatment. The patterns of relationships between 𝑆𝑡(𝐸) and  𝑆𝑡(𝐶) in individual patients 
and within a treatment population are diverse. It requires special analysis, which is 
beyond the objectives of this paper. Here we will limit our analysis to two models to 
illustrate the critical importance of adequately modeling these relationships for the 
assessment of effectiveness. 

7.2 Independence. In the first model (𝑆𝑡(𝐶) ↔ 𝑆𝑡(𝐸)), it is assumed that the 
properties 𝑆𝑡(𝐸)and 𝑆𝑡(𝐶) are not related to each other, i.e., in an individual patient each 
of the properties can exist or not exist regardless of the presence or absence of another 
one. We will also designate sets of patients within the treatment population 𝑇𝑥.An 
individual patient can have any combinations of these properties, implying membership 
in exactly one of 𝑆𝑡(𝐸) ∩ 𝑆𝑡(𝐶), 𝑆𝑡(𝐸)̅̅ ̅̅ ̅̅ ̅ ∩ 𝑆𝑡(𝐶) , 𝑆𝑡(𝐸) ∩ 𝑆𝑡(𝐶)̅̅ ̅̅ ̅̅ ̅ , or 𝑆𝑡(𝐸)̅̅ ̅̅ ̅̅ ̅ ∩ 𝑆𝑡(𝐶)̅̅ ̅̅ ̅̅ ̅ .  We 
write 𝑃(𝑆𝑡(𝐸)) for 𝑃(𝑡𝑥 ∈ 𝑆𝑡(𝐸)) for 𝑡𝑥 randomly sampled from 𝑇𝑥.  Note that 
𝑃(𝑆𝑡(𝐸)) = 𝑃(𝑆𝑡(𝐶)) does not mean 𝑆𝑡(𝐸) = 𝑆𝑡(𝐶); likewise, the statement 𝑃(𝑆𝑡(𝐸)) >

𝑃(𝑆𝑡(𝐶)) does not mean that 𝑆𝑡(𝐶) ⊂ 𝑆𝑡(𝐸) although such special cases can exist. For the 
purpose of this model, we assume statistical independence of the two properties; that is 
𝑃(𝑆𝑡(𝐸) ∩ 𝑆𝑡(𝐶)) = 𝑃(𝑆𝑡(𝐸))𝑃(𝑆𝑡(𝐶)), and likewise for other combinations. 

Although we did not find systematic data on this matter in available literature, 
clinical experience provides numerous examples that while one patient reacts positively 
to medicine A and does not react to medicine B, another patient reacts positively to B and 
does not react to A; the third patient reacts positively to each of them, and the fourth one 
reacts positively to neither of them. This can be observed, for instance, in the treatment of 
hypertension, diabetes, depression, schizophrenia, Parkinson’s disease and many other 
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disorders treated with various medications belonging to different pharmacological 
classes.  

7.3 “Matryoshka” The second model (𝑆𝑡(𝐶) ⊂ 𝑆𝑡(𝐸)) assumes that each 
individual patient sensitive to treatment 𝐶 is also sensitive to treatment 𝐸, but not each 
individual patient sensitive to treatment 𝐸 also is sensitive to treatment 𝐶. The treatment 
population consists of patient sets 𝑆𝑡(𝐸) ∩ 𝑆𝑡(𝐶)̅̅ ̅̅ ̅̅ ̅, 𝑆𝑡(𝐸) ∩ 𝑆𝑡(𝐶), and 𝑆𝑡(𝐸)̅̅ ̅̅ ̅̅ ̅ ∩ 𝑆𝑡(𝐶)̅̅ ̅̅ ̅̅ ̅. For 
example, typically (although not necessarily), the patients who react positively to a low 
dose of a medication also react positively to a higher dose, but not all of those positively 
reacting to a high dose of the medication also react positively to a low dose. 
8. Spontaneous recovery and sensitivity to treatment: a structure of the 
properties. Spontaneous recovery is an empirically known phenomenon. Its existence 
has been confirmed by historical descriptions, clinical observations, epidemiological and 
experimental evidence. The concepts of treatment induced recovery, capacity for 
spontaneous recovery, and sensitivity to treatment are hypothetical concepts emerging 
with logical necessity as a consequence of recognition of existence of the phenomenon of 
spontaneous recovery. They will remain hypothetical concepts, akin to statistical hidden 
variables, until their biochemical or physiological substrate and/or their markers and 
population parameters are found. 

The capacity for spontaneous recovery can be determined by polymorphism, 
inborn or acquired immunity, anatomical, physiological factors, etc., or by a relatively 
stable assembly of biological and social components and including nonspecific resilience 
factors, often considered in the context of internal and external environments. The 
response of this evolutionary system to the hazard can be modified by additional non-
random (for instance, treatment) and random factors. In a statistical sense these random 
factors create a variability of the mortality/survival in the population exposed to the 
hazard. 
 Whether recovery was determined by a single factor (for instance, inborn 
immunity to the disease) or a combination of several factors, the patient who is observed 
to have recovered without treatment had at least one property which was sufficient to 
imply recovery. 
 Similarly, sensitivity to a specific treatment can be determined by a single factor 
(for instance, presence or absence of a specific enzyme) or by a combination of several 
factors (e.g., absorption, metabolization, elimination, accumulation, etc.). 

Our model deals with the analysis of the results of a clinical trial. In this 
retrospective exploratory analysis of sensitivity to a specific treatment and capacity for 
spontaneous recovery, we are inclined to learn first whether the patient (or patients) under 
our observation did or did not have this integral functional ability, assuming that further 
steps of analysis will explore the structure and mechanisms of this property.   
9. Prospective view on outcomes. If the presence or absence of the properties 𝑆𝑝 
and 𝑆𝑡(𝐸) in an individual patient was known, it would be possible to predict an outcome 
for either treated or untreated patient (Table 1). 

Table 1. The Expected Outcome by Treatment, by 𝑆𝑡(𝑇𝑥), by 𝑆𝑝. 
 𝑇𝑥 𝑆𝑡(𝑇𝑥) 𝑆𝑝 𝑌;  𝑍 

0 0 0 𝑍 
0 1 0 𝑍 
0 0 1 𝑌 
0 1 1 𝑌 
1 0 0 𝑍 
1 1 0 𝑌 
1 0 1 𝑌 
1 1 1 𝑌 
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10. Retrospective view on outcomes. The outcomes of treatment are known from 
observation. Patients with the properties 𝑆𝑝 and/or 𝑆𝑡(𝐸) are distributed differently in the 
groups with observed positive and negative outcomes in the populations exposed and not 
exposed to treatment. This makes possible hypothesizing if the patient was in a 
possession of the properties of sensitivity to treatment and capability for spontaneous 
recovery.  

Table 2. Possible Combinations of Properties 𝑆𝑝, 𝑆𝑡(𝑇𝑥), 𝑆𝑝̅̅ ̅, 𝑆𝑡(𝑇𝑥)̅̅ ̅̅ ̅̅ ̅̅  among Patients,  
by Treatment, by Outcome 

\ Outcome 
Treatment \ 𝒀               𝒁 

𝟎 𝑆𝑝, 𝑆𝑡(𝑇𝑥); 𝑆𝑝, 𝑆𝑡(𝑇𝑥)̅̅ ̅̅ ̅̅ ̅̅   𝑆𝑝, 𝑆𝑡(𝑇𝑥)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ;  𝑆𝑝̅̅ ̅, 𝑆𝑡(𝑇𝑥) 
𝟏 𝑆𝑝, 𝑆𝑡(𝑇𝑥)̅̅ ̅̅ ̅̅ ̅̅ ;  𝑆𝑝, 𝑆𝑡(𝑇𝑥); 𝑆𝑝̅̅ ̅, 𝑆𝑡(𝑇𝑥) 𝑆𝑝, 𝑆𝑡(𝑇𝑥)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅  

11. Comparing treatment effects. Retrospectively, i.e., having observed the 
outcome of the trial, the proportions of the outcomes in a randomized study comparing 
two active treatments can be generally described in our model as  

𝑃 (𝑌𝑆𝑝
(𝐸)

) + 𝑃 (𝑌𝑅
(𝐸)

) + 𝑃(𝑍(𝐸)) = 1; 

𝑃 (𝑌𝑆𝑝
(𝐶)

) + 𝑃 (𝑌𝑅
(𝐶)

) + 𝑃(𝑍(𝐶)) = 1. 
Here the superscripts indicate both outcome classification and randomization arm 
membership; that is 𝑃(𝑍(𝐸)) = 𝑃(𝑡𝑥 ∈ 𝑍(𝐸)) for 𝑡𝑥 randomly chosen among patients 
assigned to treatment arm 𝐸. 

The intra-arm outcome proportions 𝑃 (𝑌𝑆𝑝
(𝐸)

) and 𝑃 (𝑌𝑅
(𝐸)

) are not known and 
they are not phenotypically distinguishable within the set of positive outcomes, as well as 
𝑃 (𝑌𝑆𝑝

(𝐶)
) and 𝑃 (𝑌𝑅

(𝐶)
). We know only that 𝑃 (𝑌𝑆𝑝

(𝐸)
) = 𝑃(𝑆𝑝). Note that a placebo-

controlled trial is a special case where control treatment is intentionally ineffectual 
(placebo) and therefore 𝑃(𝑆𝑝(𝐶)) is known from observation as the proportion of 
recovery in the placebo arm. 

Under an assumption of independence of 𝑆𝑡(𝐸) and 𝑆𝑝, in the cohort exposed to 
experimental treatment, the expected mortality is  

𝑃(𝑍(𝐸)) = [1 − 𝑃(𝑆𝑝(𝐸))] × [1 − 𝑃(𝑆𝑡(𝐸))] 
= [1 − 𝑃(𝑆𝑝)] × [1 − 𝑃(𝑆𝑡(𝐸))]; 

i.e., those not capable of spontaneous recovery and not sensitive to experimental 
treatment die. The expected rate of recovery is 

𝑃(𝑌(𝐸)) = 𝑃(𝑆𝑝) + 𝑃(𝑆𝑡(𝐸)) − 𝑃(𝑆𝑝)𝑃(𝑆𝑡(𝐸)). 
Similarly, in the active control cohort of the trial 

𝑃(𝑍(𝐶)) = [1 − 𝑃(𝑆𝑝(𝐶))] × [1 − 𝑃(𝑆𝑡(𝐶))]; 
where C is control treatment, and 𝑃(𝑆𝑝(𝐶)) = 𝑃(𝑆𝑝). The expected rate of recovery is  

𝑃(𝑌(𝐶)) = 𝑃(𝑆𝑝) + 𝑃(𝑆𝑡(𝐶)) − 𝑃(𝑆𝑝)𝑃(𝑆𝑡(𝐶)). 
These relationships can be expressed as a system of equations with an infinite number of 
solutions as follows. 

𝑃(𝑌(𝐸)) + 𝑃(𝑍(𝐸)) = 1; 
𝑃(𝑌(𝐶)) + 𝑃(𝑍(𝐶)) = 1; (in both arms, each patient recovers or dies) 
𝑃(𝑆𝑝) +  𝑃 (𝑌𝑅

(𝐸)
) = 𝑃(𝑌(𝐸));  

𝑃(𝑆𝑝) +  𝑃 (𝑌𝑅
(𝐶)

) = 𝑃(𝑌(𝐶)); (recovery is spontaneous or due to treatment) 
𝑃(𝑌(𝐸)) = 𝑃(𝑆𝑝) + 𝑃(𝑆𝑡(𝐸)) − 𝑃(𝑆𝑝)𝑃(𝑆𝑡(𝐸)); 
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𝑃(𝑌(𝐶)) = 𝑃(𝑆𝑝) + 𝑃(𝑆𝑡(𝐶)) − 𝑃(𝑆𝑝)𝑃(𝑆𝑡(𝐶)); (strong independence) 
𝑃(𝑍(𝐸)) = [1 − 𝑃(𝑆𝑝)] × [1 − 𝑃(𝑆𝑡(𝐸))]; 

𝑃(𝑍(𝐶)) = [1 − 𝑃(𝑆𝑝)] × [1 − 𝑃(𝑆𝑡(𝐶))]; (implied by the above) 
In a trial comparing two active treatments, none of 𝑃(𝑆𝑝), 𝑃(𝑆𝑡(𝐶)), and 𝑃(𝑆𝑡(𝐶)) can be 
directly deduced form the observed outcomes. The value of each of these proportions can 
be found only relative to other properties and observed outcomes.  
12. Observed Outcomes and Hypothetical Properties: Graphic Presentation. 
Given 𝑃(𝑆𝑝(𝐸)) =  𝑃(𝑆𝑝(𝐶)) = 𝑃(𝑆𝑝), the relationships between the observed outcomes 
𝑌 and 𝑍 and the theoretical proportions  

𝑃(𝑆𝑝(𝐸)); 𝑃(𝑆𝑡(𝐸)); 𝑃 (𝑌𝑅
(𝐸)

) ; 𝑃(𝑆𝑝(𝐶)); 𝑃(𝑆𝑡(𝐶)); 𝑃 (𝑌𝑅
(𝐶)

) ; 
are graphically shown in Fig. 1. 

Fig.1 Observed Outcomes and Hypothetical Properties 
 

 
 

 
 
 
 
13. Estimation of the proportion of patients with properties 𝐒𝐩 and 𝐄. Assuming 
sample sizes to be large, we will interpret treatment arm population proportions as 
equivalent to their corresponding probabilities, so as to focus only on the problem of 
identification. The proportions 𝑃(𝑌(𝐸)), 𝑃(𝑌(𝐶)), 𝑃(𝑍(𝐸)) and 𝑃(𝑍(𝐶)) are the known, as 
they are the observed results of the trial. Given 𝑃(𝑆𝑝(𝐸)) = 𝑃(𝑆𝑝(𝐶)) = 𝑃(𝑆𝑝) and, e.g., 

𝑃(𝑍(𝐸)) = [1 − 𝑃(𝑆𝑝(𝐸))] × [1 − 𝑃(𝑆𝑡(𝐸))]; 
the relationships between the variables 𝑃(𝑆𝑝), 𝑃(𝑌(𝐸)) and 𝑃(𝑆𝑡(𝐸)) within the trial 
population can be found as shown in Table 3. 

Table 3. Proportion Sensitive to Experimental Treatment, by 𝑃(𝑆𝑝) vs 𝑃(𝑌(𝐸)) 
P(Sp)\P(Y

(E)
) 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 

0.1 0.00 0.11 0.22 0.33 0.44 0.56 0.67 0.78 0.89 
0.2 

 
0.00 0.13 0.25 0.38 0.50 0.63 0.75 0.88 

0.3 
  

0.00 0.14 0.29 0.43 0.57 0.71 0.86 
0.4 

   
0.00 0.17 0.33 0.50 0.67 0.83 

0.5 
    

0.00 0.20 0.40 0.60 0.80 
0.6 

     
0.00 0.25 0.50 0.75 

0.7 
      

0.00 0.33 0.67 
0.8 

       
0.00 0.50 

0.9 
        

0.00 
Practically, these computations can be immediately applied only to the results of a 
randomized placebo-controlled trial. For example, if 𝑃(𝑌(𝑃𝑙)) = 0.4 and 𝑃(𝑌(𝐸)) = 0.7, 
then assuming that 𝑃(𝑆𝑝) =  𝑃(𝑌(𝑃𝑙)) the proportion of patients sensitive to the 
experimental treatment is 𝑃(𝑆𝑡(𝐸)) = 0.5. 
14. Statistical implications. Under these assumptions, if we had a reliable estimate 
for at least one of the hypothetical properties, it would make it easy to find an estimate 
for the rest of them, e.g., given a reliable estimate for 𝑃(𝑆𝑡(𝐶)), estimates for 𝑃(𝑆𝑝) and 
𝑃(𝑆𝑡(𝐸)) can be found from the equations in Section 13, or from Table 3. It may be 
possible for these purposes to use an external estimate of the proportion of spontaneous 

 Expected 𝑃(𝑆𝑝) + 𝑃(𝑆𝑡(𝐸)) − 𝑃(𝑆𝑝)𝑃(𝑆𝑡(𝐸))  [1 − 𝑃(𝑆𝑝)] × [1 − 𝑃(𝑆𝑡(𝐸))] 

𝑇𝑥𝐸 

Expected 𝑃(𝑆𝑝)[1 − 𝑃(𝑆𝑡(𝐸))] 𝑃(𝑆𝑡(𝐸)) [1 − 𝑃(𝑆𝑝)] × [1 − 𝑃(𝑆𝑡(𝐸))] 

Expected 𝑃(𝑆𝑝) 𝑃(𝑆𝑡(𝐸)) − 𝑃(𝑆𝑝)𝑃(𝑆𝑡(𝐸))  1 − 𝑃(𝑌(𝐸)) 

Observed 𝑃(𝑌𝑆𝑝
(𝐸)

) 𝑃(𝑌𝑅
(𝐸)

) 𝑃(𝑍(𝐸)) 
    

Observed 𝑃(𝑌(𝐸)) 𝑃(𝑍(𝐶)) 

𝑇𝑥𝐶 

Observed 𝑃(𝑌(𝐶)) 𝑃(𝑍(𝐶)) 

Observed 𝑃(𝑌𝑆𝑝
(𝐶)) 𝑃(𝑌𝑅

(𝐶)) 𝑃(𝑍(𝐶)) 

Expected 𝑃(𝑆𝑝)  𝑃(𝑆𝑡(𝐶)) − 𝑃(𝑆𝑝)𝑃(𝑆𝑡(𝐶))  1 − 𝑃(𝑌(𝐶)) 

Expected 𝑃(𝑆𝑝)[1 − 𝑃(𝑆𝑡(𝐶))] 𝑃(𝑆𝑡(𝐶))  [1 − 𝑃(𝑆𝑝)] × [1 − 𝑃(𝑆𝑡(𝐶))]  

 Expected 𝑃(𝑆𝑝) + 𝑃(𝑆𝑡(𝐶)) − 𝑃(𝑆𝑝)𝑃(𝑆𝑡(𝐶)) [1 − 𝑃(𝑆𝑝)] × [1 − 𝑃(𝑆𝑡(𝐶))]  
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recovery, or the proportion of patients sensitive to one of the treatments, from previous 
trials or from epidemiological data. However, there are serious concerns regarding the 
applicability of the imported data. Interpolation of population data to a clinical trial, or 
extrapolation of data from one trial population to another trial, is always problematic, and 
this problem is fundamental. Nevertheless these computations can be useful for more 
robust analysis. 

The major obstacle for applying classic statistical methods toward the analysis of 
treatment effects accounting for the phenomenon of spontaneous recovery is the fact that 
spontaneously recovered patients are not phenomenologically or phenotypically 
distinguishable from those with treatment-induced recovery. We have managed to 
explore the relationships between the hypothetical variables and the observed outcomes. 
These logical relationships (Section 6), relative quantitative relationships in the form of 
the system of equations (Section 13), and the restrictions to this system (See below: 
Section 15.5) constitute a structure and logical model, which sets the groundwork for 
considering the concept of Bayesian networks with hidden variables (Pearl, 1988) as a 
promising approach to studying the treatment effects accounting for spontaneous 
recovery. 

Our model, including the hidden variables 𝑆𝑝, 𝑆𝑡(𝐸) and 𝑆𝑡(𝐶), as well as the 
relationships between them and the observed outcomes, represents our beliefs regarding 
the system. The estimates for the hypothetical variables can be presented in the form of 
priors. This information has to be complemented with a set of covariates describing the 
trial population. Given this data and defined relationships, this methodology is capable of 
finding expectations and variances for 𝑃(𝑆𝑝), 𝑃(𝑆𝑡(𝐸))  and 𝑃(𝑆𝑡(𝐶)).  

The selection of a specific model, as well as addressing all theoretical, 
methodological, and technical challenges of such analysis is the prerogative of 
statisticians. The result of such analysis will be a first step on the way to identifying the 
individual patients possessing these properties. 
15. Analytical implications: Exploring markers. Let us assume that satisfactory 
estimates for the proportions of each of the hidden variables 𝑆𝑝, 𝑆𝑡(𝐸) and 𝑆𝑡(𝐶) have 
been found. Still, we are not able to identify the individual patients possessing and not 
possessing the properties associated with these variables. Wwe do not discuss possible 
statistical approaches towards identifying the patients-carriers of the hidden variables 
(e.g. individuals with the property 𝑆𝑝). Rather, we focus on a search for markers of these 
properties, which is primarily an empirical process. In the analytical part of this search, 
we rely primarily on a data mining approach, which is not as straightforward in this case.  

15.1 Biomarker. A biomarker is “a characteristic that is objectively measured 
and evaluated as an indicator of normal biological processes, pathogenic processes, or 
pharmacologic responses to a therapeutic intervention.” xv In medicine, a biomarker is a 
measurable characteristic that reflects the severity or presence of some disease state. 
Generally a biomarker is anything that can be used as an indicator of a particular disease 
state or some other physiological state of an organism.xvi Hereafter, the term biomarker 
(marker) will be used in this broad sense. 

15.2 “Clinical truth.” In their search for predictive markers, geneticists and 
statisticians have to rely upon “clinical truth,” which is defined by FDA as “the best 
clinical evidence for a specific diagnosis or allele assignment.” xvii In other words, the 
marker can be effective for a binary classification test, i.e., be sensitive and specific in a 
statistical sense, only if the state or property designated by the marker (disorder, outcome, 
functional characteristic, polymorphism, etc.) has a clear clinical definition.  
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15.3 Marker property and marker function. A marker can be defined as a 
special case of binary classification. If we consider a variable 𝑉𝑀 to be a candidate for the 
role of a marker for the property M, the set of patients with property 𝑉𝑀 is the same as 
that with property 𝑀. This description, however, formally fits only a “perfect” marker 
with maximum sensitivity (in a statistical sense) and specificity. The function of a 
marker, however, can be carried out not for the entire set 𝑀, but only for a subset of it, 
and not necessarily caused by a single factor. It may be carried out by multiple variables 
such that 
each of them has high specificity (≅ 1.0), and (desirably, but not necessarily) high 
sensitivity. Importantly, these subsets may have elements in common with each other.  

Certainly a perfect marker with both maximum sensitivity and specificity would 
be the most effective for identifying patients possessing a property of interest. The role of 
potential “partial” markers, i.e., markers with high specificity and low sensitivity, should 
not be underestimated. The “partial” markers can identify a relatively small segment of 
the treatment population, maybe just a few patients, possessing a relevant property. For 
these few individuals, however, it can be of critical importance. Besides, they may have 
an important exploratory value. The clinical, chemical, morphological, or physiological 
factors responsible for a positive or negative outcome, and identified with this partial 
marker, might turn out to be characteristic for the entire population, which can be 
confirmed or rejected in further studies.  

We will define a variable as possessing a marker property if it has a capacity to 
accurately identify an entire segment of a population possessing the property of interest 
(a “perfect” marker) or part of this segment (“partial” marker). 

15.4 Identification of patients - carriers of hypothetical properties. The 
very idea of finding markers for hidden, hypothetical variables may appear to be invalid. 
Indeed, a marker has to designate a known, well defined property. In our case the 
variables 𝑆𝑝, 𝑆𝑡(𝐸) and 𝑆𝑡(𝐶) are hidden, and neither 𝑆𝑝, nor 𝑆𝑡(𝐸), nor 𝑆𝑡(𝐶) are known, 
i.e. we cannot name or demonstrate a concrete physiological mechanism, or a chemical 
compound, or any other characteristics firmly associated with these properties.  

Under regular circumstances, the patients who are carriers of the property of 
interest can be identified if a variable marker for this property is known. On the other 
hand, the variable-marker for this property can be identified if the patients-carriers of the 
property are known. Because we know neither of them, we have a vicious circle without 
a finite analytical solution.  

Paradoxically, there exist characteristic relationships between the hidden and 
observed variables, which allow for creating a framework for screening the covariates1 as 
candidate markers for the hypothetical properties 𝑆𝑝, 𝑆𝑡(𝐸) and 𝑆𝑡(𝐸) using a data mining 
approach and for guiding the empirical search for the marker.  

15.5 Constraints (Patterns). In the frame of our model, each of the 
hypothetical variables 𝑆𝑝, 𝑆𝑡(𝐸), and 𝑆𝑡(𝐶) has a set of distinctive characteristics, which 
can be interpreted as constraints for a system of equations with infinite number of 
solutions (See: Section 11). Also they can be used for screening the set of covariates 𝑉 
for candidates for a role of markers for the properties 𝑆𝑝, 𝑆𝑡(𝐸)  and 𝑆𝑡(𝐶).  Note that due 

                                                           
1 Usually patients included into a clinical trial population are thoroughly investigated and 
described with a large number of variables, often in the range of several hundred, covering social, 
biological, clinical, therapeutic, etc., information. Only a small part of selected variables is 
reported. Most of this valuable information is usually buried in archives (L.S.). 
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to randomization the patients with, for instance, the property 𝑆𝑡(𝐸) are equally prevalent 
in each of the compared cohort, but because of exposure to different treatments they may 
be  distributed differently among the segments of relevant observed outcomes (𝑌(𝐶)vs. 
𝑌(𝐸) or 𝑍(𝐶) vs. 𝑍(𝐸)). The same is true for 𝑆𝑡(𝐶)and 𝑆𝑝. It creates characteristic patterns 
for the variables 𝑆𝑡(𝐸), 𝑆𝑡(𝐶)and 𝑆𝑝. Apparently, the markers must have the patterns 
identical to the relevant hidden variables. Having identified a marker, if exists, we have a 
possibility of identifying the patients-carriers of the relevant property - 𝑆𝑡(𝐸), 𝑆𝑡(𝐶)or 𝑆𝑝. 
The patterns are as follows. 

15.5.1 Pattern of sensitivity to control treatment (𝐒𝐭(𝐂)). For convenience let 
us assume that 𝑃(𝑌(𝐶)) ≤ 𝑃(𝑌(𝐸)). By definition, in the control cohort all patients 
sensitive to treatment (𝑆𝑡(𝐶)) are among those with positive outcome. Due to 
randomization, the patients sensitive to control treatment have to be randomly distributed 
within the experimental treatment cohort. In the large population limit, the proportion of 
patients sensitive to control treatment among patients exposed to experimental treatment 
with a positive outcome has to be equal to the proportion of patients sensitive to control 
treatment among patients with a negative outcome.  This is true both under the condition 
(𝑆𝑡(𝐶) ↔ 𝑆𝑡(𝐸)) as well as under the condition (𝑆𝑡(𝐶) ⊂ 𝑆𝑡(𝐸)), yielding the following 
set of equations: 
1. 0 ≤ 𝑃(𝑆𝑡(𝐶)) ≤ 𝑃(𝑌(𝐶));   
2. 𝑃(𝑆𝑡(𝐶)|𝑍(𝐶)) = 0. 
3. 𝑃(𝑆𝑡(𝐶)|𝑌(𝐸)) = 𝑃(𝑆𝑡(𝐶)|𝑍(𝐸)) = 𝑃(𝑆𝑡(𝐶)). 
Note that the last equation refers to counterfactual conditionals, probabilities that patients 
would have attained one result had they been assigned by randomization to a different 
arm than they actually were.  

15.5.2  Pattern of sensitivity to experimental treatment (𝐒𝐭(𝐄)). 
The patients sensitive to experimental treatment have to be randomly distributed within 
the control treatment cohort and the proportion of patients sensitive to control treatment 
among patients exposed to experimental treatment with a positive outcome has to be 
equal to the proportion of patients sensitive to control treatment among patients with a 
negative outcome. This is true under the condition (𝑆𝑡(𝐶) ↔ 𝑆𝑡(𝐸)). 
1. 𝑃(𝑆𝑡(𝐶)) ≤ 𝑃(𝑆𝑡(𝐸)) ≤ 𝑃(𝑌(𝐸)); 

2. 𝑃(𝑆𝑡(𝐸)|𝑌(𝐸)) =
𝑃(𝑆𝑡(𝐸))

𝑃(𝑌(𝐸))
; 

3. 𝑃(𝑆𝑡(𝐸)|𝑍(𝐸)) = 0; 

4. 𝑃(𝑆𝑡(𝐸)|𝑌(𝐶)) = 𝑃(𝑆𝑡(𝐸)|𝑍(𝐶)) = 𝑃(𝑆𝑡(𝐸)) with counterfactuals as above.  
Under the condition (𝑆𝑡(𝐶) ⊂ 𝑆𝑡(𝐸)) the relationships are more complex 
1. 𝑆𝑡(𝐶)) ≤ 𝑃(𝑆𝑡(𝐸)) ≤ 𝑃(𝑌(𝐸)) as  assumed above; 

2. 𝑃(𝑆𝑡(𝐸)|𝑌(𝐸)) =
𝑃(𝑆𝑡(𝐸))

𝑃(𝑌(𝐸))
 as above;  

3. 𝑃(𝑆𝑡(𝐸)|𝑍(𝐸)) = 0 by definition; 
4. 𝑃(𝑆𝑡(𝐸)) > 𝑃(𝑆𝑡(𝐶)) due to the superset condition; 
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5. 𝑃(𝑆𝑡(𝐸)|𝑌(𝐶)) = 1 if a patient recovered spontaneously under the control, they 
will surely recover under treatment;  

𝑃(𝑆𝑡(𝐸)|𝑍(𝐶)) =
𝑃(𝑌(𝐸))−𝑃(𝑌(𝐶))

𝑃(𝑍(𝐶))
 as any excess recoveries relative to the control are 

treatment recoveries.  
15.5.3  Pattern of spontaneous recovery (𝐒𝐩). 

1.  𝑃(𝑆𝑝(𝐶)) = 𝑃(𝑆𝑝(𝐸)) 
2. 𝑃(𝑆𝑝(𝐸)) ≤ 𝑃(𝑌(𝐸)) as above; 
3. 𝑃(𝑆𝑝(𝐶)) = 𝑃(𝑌(𝐶)) 

4. 𝑃(𝑆𝑝(𝐶)) = 𝑃(𝑆𝑝(𝐸)) 
5. 𝑃(𝑆𝑝|𝑍(𝐸)) = 0; 

6. 𝑃(𝑆𝑝|𝑍(𝐶)) = 0. 

If among the set of covariates we identify a variable with a pattern identical to 
that of the hypothetical property, this variable can be considered a candidate for a role of 
a marker for the property, which has to be validated in appropriately designed studies. 
Given an effective marker, it is possible to identify the patients-carriers of this property, 
thus opening a door to discovering the biological structure of the target property. This 
would, in turn, have significant clinical implications (See: Section 17).  
16.  Research implications. In clinical research, epidemiology, and 
pharmacogenetics, the discovery of genetic, biochemical, physiological, etc., factors 
critically affecting the effectiveness of treatment requires, in one way or another, 
contrasting “non-responders” against “responders.” The methodology can be 
sophisticated, but in principle it is always about identifying a factor (let us call it 𝐹𝐸) 
which is present among “responders” and absent among “non-responders”  (or vice 
versa). This serves a basis for a hypothesis about a causal role of this factor (or its 
absence) in the treatment response. Our model shows that this approach implicitly 
contains uncertainty, making the result of analysis potentially imprecise or misleading. 

Based on clinical, epidemiological, and experimental data, our model shows that 
in fact the “responders,” i.e., patients with a positive outcome, are a mix of those with 
treatment-induced recovery (“true responders”), spontaneously recovered, as well as 
patients with both capability for spontaneous recovery and sensitivity to treatment. Each 
of these fractions is always smaller than the proportion of “responders,” except for 
special cases when 𝑃(𝑆𝑡𝐸) = 𝑃(𝑌𝐸) and/or 𝑃(𝑆𝑝) = 𝑃(𝑌𝐸). This situation makes a 
search for a factor 𝐹𝐸 infeasible. In the frame of this approach, a single factor 𝐹𝐸 is 
thought to be associated with a positive outcome, and 𝐹𝐸

̅̅ ̅ associated with a negative 
outcome, corresponding to patient sets  

𝐹𝐸 =  𝑌𝐸; and 𝐹𝐸
̅̅ ̅ = 𝑍𝐸 . 

The heterogeneity of “responders” postulated in our model dictates the necessity to 
seeking for at least two lines of comparison. In the frame of our model  

𝐹𝑆𝑝 = 𝑆𝑝; and 𝐹𝑆𝑝
̅̅ ̅̅ = 𝑌𝐸 ∪ 𝑍𝐸 − 𝑆𝑝. 

Note that  
𝑌𝐸 − 𝑆𝑝 ⊂ 𝑌𝐸 . 

The latter is important for screening for markers (See: Section 15). Similarly, 
𝐹𝑆𝑡

𝐸 = 𝑆𝑡𝐸; and 𝐹𝑆𝑡
𝐸̅̅ ̅̅ = 𝑌𝐸 ∪ 𝑍𝐸 − 𝑆𝑡𝐸; and 
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𝑌𝐸 − 𝑆𝑡𝐸 ⊂ 𝑌𝐸 . 
Space limitations of the paper does not allow for thorough analysis of 

quantitative aspects of these relationships.  
17. Clinical implications. In current clinical practice, if it is known that treatment E 
is associated with higher percentage of positive outcomes than other treatments, it tends 
to be prescribed to all patients with a target disorder, except those with contraindications.  

Eventually, the discovery of markers for spontaneous recovery 𝑆𝑝𝐷 from a 
disorder 𝐷, and for sensitivity 𝑆𝑡𝐸to treatment 𝐸, would change the strategy of treatment 
of this disorder. In a perfect scenario, treatment 𝐸 should be prescribed only to patients 
sensitive to it.  It should not be prescribed to patients capable of spontaneous recovery 
and to those for whom this treatment is expected to not be effective. For the latter, it will 
save precious time and will allow them to be immediately treated with an alternative 
treatment strategy. The patients prone to spontaneous recovery, as well as the patients for 
whom treatment 𝐸 is reliably predicted to be not effective will avoid adverse effects of 
treatment 𝐸 because of the elimination of unnecessary treatment. 

In reality, clinical practice is much more complex, and there could possibly be 
important clinical considerations leading to broadening the pool of patients prescribed the 
treatment, but a primary target for this treatment will be narrowed and defined. This will 
alleviate the difficulties in making clinical decisions and will be an important step 
towards individualization of treatment and increasing its effectiveness and safety.  
 
Conclusions 

 Switching focus from “risk reduction” to “chance for recovery” unveils new 
possibilities for studying the effectiveness of treatment. The acknowledgement of the 
phenomenon of spontaneous recovery leads, with logical necessity, to the concepts of 
capability for spontaneous recovery and sensitivity to treatment.  

 A conceptual, structural and logical model of treatment effect in which an 
outcome is a function of the capability for spontaneous recovery and sensitivity to 
treatment is proposed. The model sets a framework for the selection of a statistical 
approach and models from the family of Bayesian networks with hidden variables.  

 The described relationships between the observed outcomes and the hypothetical 
variables, as well as the constraints required by the model, may reflect our prior 
knowledge about the system. The estimates for the variables of “capability for 
spontaneous recovery” and “sensitivity to treatment” obtained through the model can be 
used as the priors for Bayesian analysis aimed to detect the hypothetical variables.  

 The described relationships between the observed outcomes and the hypothetical 
variables, as well as the constraints required by the model, allow for screening for 
markers for spontaneous recovery and sensitivity to treatment. 

 The proposed model of the treatment effect implies a change in the strategy of 
prediction of treatment response. Eventually, the implementation of the discussed model 
will be a further step towards individualization of treatment. It will increase the 
effectiveness of treatment, reduce risk of adverse effects via eliminating unnecessary 
prescriptions and facilitate studying the biological and physiological mechanisms of 
treatment effect and the process of recovery. 
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