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Abstract
This paper is the extension of our research about asymptotic distribution of the bootstrap para-

meter estimator for the AR(1) model. We investigate the asymptotic distribution of the bootstrap
parameter estimator of a second order autoregressive AR(2) model by applying the delta method.
The asymptotic distribution is the crucial property in inference of statistics. We conclude that the
bootstrap parameter estimators of the AR(2) model asymptotically converge in distribution to the
normal distribution.
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1. Introduction

Consider the following stationary second order autoregressive AR(2) process:

Xt = θ1Xt−1 + θ2Xt−2 + ϵt,

where ϵt is a zero mean white noise process with constant variance σ2. Let the vector
θ̂ = (θ̂1, θ̂2)

T is the estimator of the parameter vector θ = (θ1, θ2)
T , and θ̂∗ be the

bootstrap version of θ̂. Studying of estimation of the unknown parameter involves: (i)
what estimator should be used? (ii) having chosen a particular estimator, is this consistent?
(iii) how accurate is the chosen estimator? (iv) what is the asymptotic behaviour of such
estimator? (v) what is the method used in proving the asymptotic properties?

Bootstrap is a general methodology for answering the second and third questions, while
the delta method is one of tools used to answer the last two questions. Consistency theory
is needed to ensure that the estimator is consistent to the actual parameter as desired, and
thereof the asymptotic behaviour of such estimator will be studied. The consistency the-
ories of parameter of autoregressive model have studied in Bibi and Aknounche (2010),
Brockwell and Davis (1991), and Brouste and Kleptsyna (2014), and for bootstrap ver-
sion of the same topic, see e.g. Bickel and Freedman (1981), Efron and Tibshirani (1993),
Freedman (1985), Hardle, et. al (2003), Politis (2003), and Singh (1981). They deal with
the bootstrap approximation in various senses (e.g., consistency of estimator, simulation
results, limiting distribution, applying of Edgeworth expansions, etc.), and they reported
that the bootstrap works usually very well. The accuracy of the bootstrapping method
for autoregressive model studied in Bose (1988) and Sahinler and Topuz (2007). They
showed that the parameter estimates of the autoregressive model can be bootstrapped with
accuracy that outperforms the normal approximation. The asymptotic result for the AR(1)
model has been exhibited in Suprihatin et. al (2015). We concluded that the bootstrap para-
meter estimator for the AR(1) model converges in distribution to the normal distribution.
A good perform of the bootstrap estimator is applied to study the asymptotic distribution
of θ̂∗ using the delta method. We describe the asymptotic distribution of the autocovari-
ance function and investigate the bootstrap limiting distribution of θ̂∗. Section 2 reviews

∗Sriwijaya University, Palembang, Indonesia
†Gadjah Mada University, Yogyakart, Indonesia
‡Gadjah Mada University, Yogyakart, Indonesia

JSM2015 - IMS

3308



the asymptotic distribution of estimator of mean and autocovariance function for the au-
toregression model. Section 3 describes the bootstrap and delta method. Section 4 deals
with the main results, i.e. the asymptotic distribution of θ̂∗ by applying the delta method.
Section 5 briefly describes the conclusions of the paper.

2. Estimator of Mean and Autocovariance for the Autoregressive Model

Suppose we have the observed values X1, X2, . . . , Xn from the stationary AR(2) process.
Mean and autocovariance are two important statistics in investigating the consistency pro-
perties of the estimator θ̂ =

(
θ̂1, θ̂2

)T for the parameter θ of the AR(2) model. A natu-
ral estimators for parameters mean, covariance and correlation function are µ̂n = Xn =
1
n

∑n
t=1Xt, γ̂n(h) =

1
n

∑n−h
t=1 (Xt+h −Xn)(Xt −Xn) , and ρ̂n(h) = γ̂n/γ̂n(0) respec-

tively. These all three estimators are consistent (see, e.g., Brockwell and Davis (1991) and
Van der Vaart (2012). The following theorem describes the property of the estimator Xn,
is stated in Brockwell and Davis (1991).

Theorem 1. If {Xt} is stationary process with mean µ and autocovariance function γ(·),
then as n→ ∞,

V ar
(
Xn

)
= E

(
Xn − µ

)2 → 0 if γ(n) → 0,

and

nE
(
Xn − µ

)2 → ∞∑
j=−∞

γ(h) if
∞∑

j=−∞
|γ(h)| <∞.

It is not a loss of generality to assume that µX = 0. Under some conditions (see, e.g.,
Van der Vaart (2012), the sample autocovariance function can be written as

γ̂n(h) =
1

n

n−h∑
t=1

Xt+hXt +Op(1/n).

It can be seen that the sequence
√
n (γ̂n(h)− γX(h)) having asymptotic behaviour de-

pends only on n−1
∑n−h

t=1 Xt+hXt. Note that a change of n − h by n or vice versa, is
asymptotically negligible, so that, for simplicity of notation, we can equivalently study the
average

γ̃n(h) =
1

n

n∑
t=1

Xt+hXt.

Both γ̂n(h) and γ̃n(h) are unbiased estimators of E(Xt+hXt) = γX(h), under the condi-
tion that µX = 0. Their asymptotic distribution then can be derived by applying a central
limit theorem to the averages Y n of the variables Yt = Xt+hXt.As in Van der Vaart (2012),
the autocovariance function of the series Yt can be written as

Vh,h = κ4(ε)γX(h)2 +
∑
g

γX(g)2 +
∑
g

γX(g + h)γX(g − h),

where κ4(ε) = E(ε41) − 3
(
E(ε21)

)2, the fourth cumulant of εt. The following theo-
rem is due to Van der Vaart (2012) that gives the asymptotic distribution of the sequence√
n (γ̂n(h)− γX(h)).

Theorem 2. If Xt = µ +
∑∞

j=−∞ ψjεt−j holds for an i.i.d. sequence εt with mean zero
and E

(
ε4t
)
< ∞ and numbers ψj with

∑
j |ψj | < ∞, then

√
n (γ̂n(h)− γX(h)) →d

N(0, Vh,h).
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3. Bootstrap and Delta Method

Let X1, X2, . . . , Xn be a random sample of size n from a population with common dis-
tribution F , and let T (X1, X2, . . . , Xn;F ) be the specified random variable or statistic of
interest, possibly depending upon the unknown distribution F . Let Fn denote the empirical
distribution function ofX1, X2, . . . , Xn, i.e., the distribution putting probability 1/n at each
of the points X1, X2, . . . , Xn. A bootstrap sample is defined to be a random sample of size
n drawn from Fn, say X∗ = X∗

1 , X
∗
2 , . . . , X

∗
n. The bootstrap sample at first bootstrap-

ping is usually denoted by X∗1. In general, the bootstrap sample at Bth bootstrapping is
denoted by X∗B . The bootstrap data set X∗b = X∗b

1 , X
∗b
2 , . . . , X

∗b
n , b = 1, 2, . . . , B con-

sists of members of the original data setX1, X2, . . . , Xn, some appearing zero times, some
appearing once, some appearing twice, etc. The bootstrap method is to approximate the
distribution of T (X1, X2, . . . , Xn;F ) under F by that of T (X∗

1 , X
∗
2 , . . . , X

∗
n;Fn) under

Fn.
Let a functional T is defined as T (X1, X2, . . . , Xn;F ) =

√
n(θ̂ − θ), where θ̂ is the

estimator for the coefficient θ of a stationary AR(2) model. The bootstrap version of T is
T (X∗

1 , X
∗
2 , . . . , X

∗
n;Fn) =

√
n(θ̂

∗
− θ̂), where θ̂

∗
is a bootstrap version of θ̂ computed

from sample bootstrap X∗
1 , X

∗
2 , . . . , X

∗
n. The residuals bootstrapping procedure was pro-

posed in Freedman (1985) to obtain X∗
1 , X

∗
2 , . . . , X

∗
n for the time series data. In bootstrap

view, the key of bootstrap terminology says that the population is to the sample as the
sample is to the bootstrap samples. Therefore, when we want to investigate the asymp-
totic distribution of bootstrap estimator θ̂

∗
, we investigate the distribution of

√
n(θ̂

∗
− θ̂)

contrast to the distribution of
√
n(θ̂ − θ). Thus, the bootstrap method is a device for esti-

mating PF

(√
n(θ̂ − θ) ≤ x

)
by PFn

(√
n(θ̂

∗
− θ̂) ≤ x

)
. We propose the delta method in

estimating for such distribution.
The delta method consists of using a Taylor expansion to approximate a random vector

of the form ϕ(Tn) by the polynomial ϕ(θ) + ϕ′(θ)(Tn − θ) + · · · in Tn − θ. This method
is useful to deduce the limit law of ϕ(Tn)− ϕ(θ) from that of Tn − θ, which is guaranteed
by the following theorem, as stated in Van der Vaart (2000).

Theorem 3. Let ϕ : Dϕ ⊂ Rk → Rm be a map defined on a subset of Rk and dif-
ferentiable at θ. Let Tn be random vector taking their values in the domain of ϕ. If
rn(Tn − θ) →d T for numbers rn → ∞, then rn

(
ϕ(Tn) − ϕ(θ)

)
→d ϕ

′
θ(T ). Moreover,∣∣∣rn(ϕ(Tn)− ϕ(θ)

)
− ϕ

′
θ

(
rn(Tn − θ)

)∣∣∣→p 0.

Assume that θ̂n is a statistic, and that ϕ is a given differentiable map. The bootstrap
estimator for the distribution of ϕ(θ̂n − ϕ(θ) is ϕ(θ̂∗n − ϕ(θ̂n). If the bootstrap is consistent
for estimating the distribution of

√
n(θ̂n − θ), then it is also consistent for estimating the

distribution of
√
n
(
ϕ(θ̂n) − ϕ(θ)

)
, as given in the following theorem. The theorem is due

to Van de Vaart (2000).

Theorem 4 (Delta Method For Bootstrap). Let ϕ : Rk → Rm be a measurable map
defined and continuously differentiable in a neighborhood of θ. Let θ̂n be random vector
taking their values in the domain of ϕ that converge almost surely to θ. If

√
n
(
θ̂n−θ

)
→d T,

and
√
n
(
θ̂∗n − θ̂n

)
→d T conditionally almost surely, then both

√
n
(
ϕ(θ̂n) − ϕ(θ)

)
→d

ϕ
′
θ(T ) and

√
n
(
ϕ(θ̂∗n)− ϕ(θ̂n)

)
→d ϕ

′
θ(T ) conditionally almost surely.
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4. Results

We now address our main results. The Yule-Walker equation system for the AR(2) model
is, ( ∑n

t=1X
2
t

∑n
t=2XtXt−1∑n

t=2XtXt−1
∑n

t=1X
2
t

)(
θ1
θ2

)
=

( ∑n
t=2XtXt−1∑n
t=3XtXt−2

)
,

or

θ1γ0 + θ2γ1 = γ1

θ1γ1 + θ2γ0 = γ2.

Dividing both sides by γ0 > 0 we obtain

θ1 + θ2ρ1 = ρ1

θ1ρ1 + θ2 = ρ2.

By the moment method, we obtain the estimator for θ = (θ1, θ2)
T as follows:

θ̂ =

(
θ̂1
θ̂2

)
=

(
1 ρ̂1
ρ̂1 1

)−1(
ρ̂1
ρ̂2

)
=

1

1− ρ̂21

(
1 −ρ̂1

−ρ̂1 1

)(
ρ̂1
ρ̂2

)
=

1

1− ρ̂21

(
ρ̂1 − ρ̂1ρ̂2
−ρ̂21 + ρ̂2

)
.

The estimator θ̂1 can be described as follows:

θ̂1 =
ρ̂1 − ρ̂1ρ̂2
1− ρ̂21

=

∑n
t=2 XtXt−1∑n

t=1 X
2
t

−
∑n

t=2 XtXt−1∑n
t=1 X

2
t

∑n
t=3 XtXt−2∑n

t=1 X
2
t

1−
(∑n

t=2 XtXt−1∑n
t=1 X

2
t

)2
=

∑n
t=2XtXt−1

(∑n
t=1X

2
t −

∑n
t=3XtXt−2

)(∑n
t=1X

2
t

)2 − (∑n
t=2XtXt−1

)2 .

According to Theorem 2, the random vector
(

1
n

∑n
t=1X

2
t ,

1
n

∑n
t=2XtXt−1,

1
n

∑n
t=3XtXt−2

)T
has limiting distribution

√
n

  1
n

∑n
t=1X

2
t

1
n

∑n
t=2XtXt−1

1
n

∑n
t=3XtXt−2

−

 γX(0)
γX(1)
γX(2)

 
→d N3

  0
0
0

 ,

 V0,0 V0,1 V0,2
V1,0 V1,1 V1,2
V2,0 V2,1 V2,2

  . (1)

Moreover, θ̂1 can be expressed as ϕ1
(∑n

t=1X
2
t ,
∑n

t=2XtXt−1,
∑n

t=3XtXt−2

)
for a mea-

surable function ϕ1 : R3 → R defined as ϕ1(u, v, w) =
v(u−w)
u2−v2

. The map ϕ1 is differen-
tiable with the derivative matrix

ϕ′1 =
(

∂
∂uϕ1(u, v, w)

∂
∂vϕ1(u, v, w)

∂
∂wϕ1(u, v, w)

)
=

(
−v(u2+v2−2uw)

(u2−v2)2
(u−w)(u2+v2

(u2−v2)2
−v

u2−v2

)
,
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and
ϕ′1(γX(0),γX(1),γX(2)) =(

−γX(1)
(
γX(0)2+γX(1)2−2γX(0)γX(2)

)(
γX(0)2−γX(1)2

)2 (
γX(0)−γX(2)

)(
γX(0)2+γX(1)2

)(
γX(0)2−γX(1)2

)2 −γX(1)
γX(0)2−γX(1)2

)
.

Similarly, the estimator θ̂2 can be derived as follows:

θ̂2 =
ρ̂21 + ρ̂2
1− ρ̂21

=
−
(∑n

t=2 XtXt−1∑n
t=1 X

2
t

)2
+

∑n
t=3 XtXt−2∑n

t=1 X
2
t

1−
(∑n

t=2 XtXt−1∑n
t=1 X

2
t

)2
=

−
(∑n

t=2XtXt−1

)2
+
∑n

t=1X
2
t

∑n
t=3XtXt−2(∑n

t=1X
2
t

)2 − (∑n
t=2XtXt−1

)2 .

Note that θ̂2 can be expressed as ϕ2
(∑n

t=1X
2
t ,
∑n

t=2XtXt−1,
∑n

t=3XtXt−2

)
for a mea-

surable function ϕ2 : R3 → R defined as ϕ2(u, v, w) = −v2+uw
u2−v2

. The derivative matrix
for ϕ2 is

ϕ′2 =
(

∂
∂uϕ2(u, v, w)

∂
∂vϕ2(u, v, w)

∂
∂wϕ2(u, v, w)

)
=

(
2uv2−u2w−v2w

(u2−v2)2
2uv(w−u)
(u2−v2)2

u
u2−v2

)
,

and
ϕ′2(γX(0),γX(1),γX(2)) =(

2γX(0)γX(1)2−γX(0)2γX(2)−γX(1)2γX(2)(
γX(0)2−γX(1)2

)2 2γX(0)γX(1)
(
γX(2)−γX(0)

)(
γX(0)2−γX(1)2

)2 γX(0)
γX(0)2−γX(1)2

)
.

The next step, we investigate the asymptotic distribution of the random variables θ̂∗1 and
θ̂∗2, the bootstrapped version of θ̂1 and θ̂2 respectively. For simplicity of notation, let A1 =
−γX(1)

(
γX(0)2+γX(1)2−2γX(0)γX(2)

)(
γX(0)2−γX(1)2

)2 , A2 =

(
γX(0)−γX(2)

)(
γX(0)2+γX(1)2

)(
γX(0)2−γX(1)2

)2 , and A3 =
−γX(1)

γX(0)2−γX(1)2
.

By applying Theorem 3, we obtain
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√
n

(
ϕ1

(
1
n

∑n
t=1X

2
t ,

1
n

∑n
t=2Xt−1Xt,

1
n

∑n
t=3Xt−2Xt

)
− ϕ1

(
γX(0), γX(1), γX(2)

))

= ϕ′1(γX(0),γX(1),γX(2))


√
n
(

1
n

∑n
t=1X

2
t − γX(0)

)
√
n
(

1
n

∑n
t=2Xt−1Xt − γX(1)

)
√
n
(

1
n

∑n
t=3Xt−2Xt − γX(2)

)
+ op(1)

=
(
A1 A2 A3

)


√
n
(

1
n

∑n
t=1X

2
t − γX(0)

)
√
n
(

1
n

∑n
t=2Xt−1Xt − γX(1)

)
√
n
(

1
n

∑n
t=3Xt−2Xt − γX(2)

)
+ op(1)

= A1

√
n
( 1
n

n∑
t=1

X2
t − γX(0)

)
+A2

√
n
( 1
n

n∑
t=2

Xt−1Xt − γX(1)
)
+

A3

√
n
( 1
n

n∑
t=3

Xt−2Xt − γX(2)
)
+ op(1).

In view of Theorem 3, if (Z1, Z2, Z3)
T possesses the multivariate normal distribution as in

(1), then

A1

√
n
( 1
n

n∑
t=1

X2
t − γX(0)

)
+A2

√
n
( 1
n

n∑
t=2

Xt−1Xt − γX(1)
)
+

A3

√
n
( 1
n

n∑
t=3

Xt−2Xt − γX(2)
)
→d A1Z1 +A2Z2 +A3Z3 ∼ N(0, τ21 ),

where

τ21 = V ar(A1Z1 +A2Z2 +A3Z3)

= A2
1V ar(Z1) +A2

2V ar(Z2) +A2
3V ar(Z3) +

2A1A2Cov(Z1, Z2) + 2A1A3Cov(Z1, Z3) + 2A2A3Cov(Z2, Z3)

= A2
1V0,0 +A2

2V1,1 +A2
3V2,2 + 2A1A2V0,1 + 2A1A3V0,2 + 2A2A3V1,2.

Hence, by Theorem 3 we deduce that

√
n

(
ϕ1

( 1
n

n∑
t=1

X2
t ,

1

n

n∑
t=2

Xt−1Xt,
1

n

n∑
t=3

Xt−2Xt

)
− ϕ1

(
γX(0), γX(1), γX(2)

))
→d N(0, τ21 ).
An analogous representation holds for the bootstrapped version. By applying Theorem 4
we obtain

√
n

  1
n

∑n
t=1X

∗2
t

1
n

∑n
t=2X

∗
t−1X

∗
t

1
n

∑n
t=3X

∗
t−2X

∗
t

−

 γ̂X(0)
γ̂X(1)
γ̂X(2)

 

→d N3

  0
0
0

 ,

 V ∗
0,0 V ∗

0,1 V ∗
0,2

V ∗
1,0 V ∗

1,1 V ∗
1,2

V ∗
2,0 V ∗

2,1 V ∗
2,2

 
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and

√
n
(
θ̂∗1 − θ̂1

)
=

√
n

(
ϕ1

( 1
n

n∑
t=1

X∗2
t ,

1

n

n∑
t=2

X∗
t−1X

∗
t ,

1

n

n∑
t=3

X∗
t−2X

∗
t

)
−

ϕ1

( 1
n

n∑
t=1

X2
t ,

1

n

n∑
t=2

Xt−1Xt,
1

n

n∑
t=3

Xt−2Xt

))
→d N(0, τ2∗1 ),

where τ2∗1 is the bootstrapped version of τ21 .
Analog with the previous discussion, the asymptotic distribution for θ̂∗2 is obtained as

follows. For sake of the simplicity of notation, writeB1 =
2γX(0)γX(1)2−γX(0)2γX(2)−γX(1)2γX(2)(

γX(0)2−γX(1)2
)2 ,

B2 =
2γX(0)γX(1)

(
γX(2)−γX(0)

)(
γX(0)2−γX(1)2

)2 , and B3 =
γX(0)

γX(0)2−γX(1)2
. By Theorem 3, we obtain

√
n

(
ϕ2

(
1
n

∑n
t=1X

2
t ,

1
n

∑n
t=2Xt−1Xt,

1
n

∑n
t=3Xt−2Xt

)
− ϕ2

(
γX(0), γX(1), γX(2)

))

= ϕ′2(γX(0),γX(1),γX(2))


√
n
(

1
n

∑n
t=1X

2
t − γX(0)

)
√
n
(

1
n

∑n
t=2Xt−1Xt − γX(1)

)
√
n
(

1
n

∑n
t=3Xt−2Xt − γX(2)

)
+ op(1)

=
(
B1 B2 B3

)


√
n
(

1
n

∑n
t=1X

2
t − γX(0)

)
√
n
(

1
n

∑n
t=2Xt−1Xt − γX(1)

)
√
n
(

1
n

∑n
t=3Xt−2Xt − γX(2)

)
+ op(1)

= B1

√
n
( 1
n

n∑
t=1

X2
t − γX(0)

)
+B2

√
n
( 1
n

n∑
t=2

Xt−1Xt − γX(1)
)
+

B3

√
n
( 1
n

n∑
t=3

Xt−2Xt − γX(2)
)
+ op(1).

According to Theorem 3, we assert that

B1

√
n
( 1
n

n∑
t=1

X2
t − γX(0)

)
+B2

√
n
( 1
n

n∑
t=2

Xt−1Xt − γX(1)
)
+

B3

√
n
( 1
n

n∑
t=3

Xt−2Xt − γX(2)
)
→d B1Z1 +B2Z2 +B3Z3 ∼ N(0, τ22 ),

where

τ22 = V ar(B1Z1 +B2Z2 +B3Z3)

= B2
1V0,0 +B2

2V1,1 +B2
3V2,2 + 2B1B2V0,1 + 2B1B3V0,2 + 2B2B3V1,2.

Thus, applying Theorem 3 we conclude that
√
n

(
ϕ2

(
1
n

∑n
t=1X

2
t ,

1
n

∑n
t=2Xt−1Xt,

1
n

∑n
t=3Xt−2Xt

)
− ϕ2

(
γX(0), γX(1), γX(2)

))
→d N(0, τ22 ).
Both Bose (1988) and Freedman (1985) proved that the residuals bootstrapping work well
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when it is applied to the autoregressive model. Hence, by applying Theorem 4 and em-
ploying the plug-in principle, we obtain the limiting distribution of bootstrapped version as
follows

√
n
(
θ̂∗2 − θ̂2

)
=

√
n

(
ϕ2

( 1
n

n∑
t=1

X∗2
t ,

1

n

n∑
t=2

X∗
t−1X

∗
t ,

1

n

n∑
t=3

X∗
t−2X

∗
t

)
−

ϕ2

( 1
n

n∑
t=1

X2
t ,

1

n

n∑
t=2

Xt−1Xt,
1

n

n∑
t=3

Xt−2Xt

))
→d N(0, τ2∗2 ),

where τ2∗2 is the bootstrapped version of τ22 .

5. Conclusions

We conclude that the bootstrap parameter estimators of the AR(2) process are asymptotic
and converge in distribution to the normal distribution.
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