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Abstract
Observation times in time series data are usually assumed to be known and evenly spaced. These

assumptions enable many methods for statistical inference of the measured process, such as ARMA
models and spectral estimation using the Fast Fourier Transform. Thankfully, the measurement
process is usually controlled by the experimenter, limiting the effect of these assumptions by design.
However, for paleoenvironmental studies based on core data, measurement times must be inferred
from depth and dating information (using radioisotopes, for example). Inference of measurement
times is required for depths with and without dating information. We have previously described a
method to estimate chronologies – the relationship between depth and time – that provides posterior
distributions of sampling times (Springford 2013). In this paper we extend the results of Springford
(2013) to examine the effect of sampling time uncertainty on time series analysis estimates.
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1. Introduction

Time series data can be expressed as

x(t(1)), x(t(2)), . . . , x(t(N))

where the observations are represented by x(), and the times at which the observations were
collected are represented by t() such that t(i) ≤ t(j) for i < j. It is usual that the {t(i), i =
1, 2, . . . , N} are selected when designing the data collection program or experiment, and
are thus considered to be known quantities. It is also usual that the time increments di =
t(i)− t(i− 1) are equal for all i = 2, 3, . . . , N . In fact, the large majority of popular time
series analysis methods assume that the observations are collected at known and evenly
spaced times – two examples are auto-regressive/moving-average (ARMA) models and
spectrum analysis using the fast fourier transform.

However, the observer doesn’t always control the observation times. Moreover, there
are cases in which the observation times themselves are not known and this uncertainty
should be considered when performing time series analysis.

Perhaps the most common examples of time series in which the times are not known are
paleoenvironmental records based on cores extracted from material that has accumulated
over time. For example, paleolimnology studies often collect cores from lakebed sedi-
ments. These cores are then sectioned into samples as a function of depth, and the samples
are analyzed for proxies of past environmetal conditions (Last et al. 2001). Although the
samples are collected at known depths, variations in the accumulation rate of the core ma-
terial, compression of the core, uncertainties in dating estimates, and so on, mean that the
corresponding times are unknown. In order to perform time series analysis on these data,
it is necessary to estimate the unkown times. Moreover, the uncertainty in the estimates of
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the unknown times should be incorporated into the overall time series analysis (Blaauw and
Heegaard 2012). We have previously described a method to estimate chronologies – the re-
lationship between depth and time – that provides posterior distributions of sampling times
(Springford 2013). In this paper we extend the results of Springford (2013) to examine the
effect of sampling time uncertainty on time series analysis estimates.

2. Motivating dataset and methods

Following Springford (2013), the motivating dataset is from a study of climate on the Ti-
betan Plateau, in particular the strength of summer and winter monsoons in the region (Yu
et al. 2006). The data come from a peat core that was sectioned into 649 one-centimetre
intervals, covering roughly 11,000 years. Proxy records from each section were obtained,
as well as 14C isotope ratios from a subset of eleven sections. As described in Springford
(2013), these raw 14C age estimates were converted into likelihoods using the calibration
software Calib6.11 (Stuiver et al. 1998). The time series data x() are the proxy measure-
ments greyscale and humification, thought to represent the strength of summer monsoons,
and the proxy measurement ash content, thought to represent the strength of winter mon-
soons (Yu et al. 2006).

2.1 Bayesian hierarchical chronology model

Details regarding the development of the chronology model can be found in Spring-
ford (2013). The chronology data consist of the section depths {di : i = 0, 1, . . . , N},
assumed known, and the ages {aj : j = 1, 2, . . . ,M} with corresponding ageing errors
{σj : j = 1, 2, . . . ,M}, from which the likelihoods {f(aj , σj) : j = 1, 2, . . . ,M} for the

calibrated ages
{
acj : j = 1, 2, . . . ,M

}
were obtained. From the section depths, the depth

increments are the first differences {vk : k = 1, 2, . . . , N − 1}, vk = dk − dk−1, each with
a corresponding (latent) time increment uk. We assume that t0 = 0. To relate the ageing
data with the latent times, let φj be the index k of t corresponding to the age acj . Modelling
the time increments and forcing the condition uk ≥ 0 for all k restricts the time-depth
relationship to be monotonically increasing.

We assume that the standardized time increments follow the prior

wk ∼ N(µ, 1/τ2) for all k (1)

where µ is the mean and τ2 is the information (reciprocal of variance) of the distribution.
The likelihood is the probability distribution for the calibrated 14C ages acj , which are
assumed to follow

acj ∼ f(aj , σj) (2)

where acj = tφj =
∑φj

l=1 ul =
∑φj

l=1wlvl. These likelihoods were obtained using the
calibration software Calib6.11 (Stuiver et al. 1998).

Hyperpriors for the Normal prior (equation 1) are on µ and τ2. Given τ2, the condi-
tional distribution for µ is

P (µ|w1, . . . , wN−1, τ
2) ∝ exp

−(N − 1)τ2

2

(
µ− 1

N − 1

N−1∑
k=1

wk

)2
 .

The conjugate hyperprior is

π(µ|µ1, τ21 ) =
τ1√
2π

exp

(
−τ

2
1

2
(µ− µ1)2

)
(3)
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with hyperparameters µ1 and τ21 . The posterior for µ has hyperparameters

µ
′
1 =

µ1τ
2
1 + τ2

∑N−1
k=1 wk

τ21 + (N − 1)τ2
(4)

τ2
′

1 = τ21 + (N − 1)τ2

Given µ, the conditional distribution for τ2 is

P (τ2|w1, . . . , wN−1, µ) ∝ τN−1 exp

(
−
τ2
∑N−1

k=1 (wk − µ)2

2

)
.

The conjugate hyperprior is a Gamma distribution, however this hyperprior choice is not
recommended in general because it is difficult to make weakly informative with respect to
the posterior (Gelman 2006). We chose instead to use the uniform distribution on τ−1

π(τ2|σL, σU ) =

{
1

σU−σL σL ≤ τ−1 ≤ σU
0 otherwise

with hyperparameters σL and σU , 0 ≤ σL < σU . For this hyperprior, the posterior is

π(τ2|σL, σU , µ, w1, . . . , wk) ∝

τN−1 exp
(
− τ2

∑N−1
k=1 (wk−µ)2

2

)
σL ≤ τ−1 ≤ σU

0 otherwise
(5)

which was sampled numerically.
A hybrid Gibbs sampler was used to generate 1000 samples from the posterior distribu-

tion of model parameters as in Springford (2013). Time series analysis was then performed
using each of the 1000 chronologies.

2.2 Time series analysis

Because climate processes are well-known to exhibit periodic behaviour, we chose to inves-
tigate the effect of timing uncertainty on spectrum estimates of the proxies. We computed a
multitaper spectrum estimate (Thomson 1982) for each of three proxies using the ensemble
of 1000 equally probable time series. In order to make use of the fast Fourier transform
when obtaining spectrum estimates, we resampled the time series using linear interpolation
to obtain equally-spaced times for each of the 1000 series. This simple method is expected
to perform nearly as well as more sophisticated methods, although it is expected to be bi-
ased slightly high when estimating variance at low frequencies and increase the amount of
noise when estimating variance at high frequencies (Lepage 2009). The ensemble of 1000
spectrum estimates for each proxy represent the uncertainty introduced by the unknown
sampling times.

3. Results

We show the results of our investigation into the effects of sampling time uncertainty on
time series analysis. We investigated each of the three sampled proxies, but omit graphical
results for greyscale which were characteristically similar to the results for humification
and ash content.

The ensemble of 1000 spectrum estimates for the humification and ash content proxies
are displayed in Figure 1. For each ensemble, we computed intervals containing 99, 95,
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Figure 1: Ensemble of spectrum estimates showing the effects of uncertainty in sampling
times. The left panel shows results for the proxy humification and the right panel shows
results for the proxy ash content. The shaded areas, from lightest to darkest, contain 99,
95, and 50 percent of the spectrum estimates, respectively. The black line is the ensemble
mean spectrum estimate.
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and 50 percent of the spectrum estimates at each frequency, as well as the average spectrum
value at each frequency. The results show that low-frequency signals are retained in spite
of uncertainties in sample timing, but that the high-frequency portion of the spectrum is
relatively featureless at frequencies above 0.01 cycles per year.

Multitaper spectrum estimation provides a way to characterize the periodicity of a sig-
nal at a given frequency using an F-statistic (Thomson 1982). The larger the F-statistic,
the more a signal appears to be periodic. It is natural to consider both the variance of a
signal at a given frequency as well as the periodicity of a signal at a given frequency when
examining time series of paleoclimate because many processes in climate are periodic.

For each ensemble, we computed intervals containing 99, 95, and 50 percent of the
F-statistic for periodicity at each frequency, as well as the average F-statistic value at each
frequency. The results show that uncertainty in the value of the F-statistic due to sampling
time uncertainty increases as the frequency increases (Figure 2).

The F-test results show some common frequencies being identified as significant be-
tween the three proxies. In particular, all three proxies were found to have significant
variance on a period of 440-446 years. In addition, Humification and Greyscale showed
matching significant variance at periods of 1508 and 14456 years. The rest of the sig-
nificant periodicities seem to be proxy-specific: Ash Content has noticeably significant
periodicities at 964 and 5120 years; Humification has noticeably significant periodicities at
474, and 620 years; Greyscale has a noticeably significant periodicity at 655 years. These
results support the assertion of Yu et al. (2006) that the climatic dynamics of the Tibetan
Plateau as reflected in the monsoon proxies are not simple.

4. Discussion

The focus of this analysis was on demonstrating the effects of sampling time uncertainty
on a common time series analysis. One thousand posterior samples were obtained from the
chronology model, and a spectrum estimate was obtained for each. We have demonstrated
in this example that sampling time uncertainty can have a noticeable effect on time series
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Figure 2: Ensemble of F-statistic estimates showing the uncertainty introduced by uncer-
tainty in sampling times. The left panel shows results for the proxy humification and the
right panel shows results for the proxy ash content. The shaded areas, from lightest to
darkest, contain 99, 95, and 50 percent of the spectrum estimates, respectively. The black
line is the ensemble mean F-statistic estimate. Also plotted for reference is the F = 1 line
(dashed). Square points denote those frequencies with corresponding 99 percent F-statistic
intervals that do not contain 1. Round points denote those frequencies with corresponding
95 percent F-statistic intervals that do not contain 1.
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analysis and should not be ignored. Moreover, the effect is frequency dependent in the case
of spectrum estimation, especially when considering the F-test for periodicity of Thomson
(1982).

The ensemble of spectrum estimates can be viewed in one of two ways: (1) The esti-
mate can be viewed as a parametric bootstrap procedure that is conditional on the posterior
for the chronology model; or (2) The estimate can be viewed as a posterior distribution
for the spectrum if we begin with an independent and flat prior on the spectrum for each
of the three proxies. Here, we have avoided the issue of defining a proper prior for the
three spectra associated with the three proxies, treating the analysis more as a parametric
bootstrap procedure. Devising an appropriate prior is an obvious next step in the analysis.
For instance, a prior that models the coherence between proxies (which is evident in this
example) might be appropriate. Alternatively, a prior that treats certain known frequencies
of interest separately may help to focus our inference on just those frequencies.

Examining the spectra for the three proxies, it seems that any structure at high fre-
quencies is obliterated. This could be due to the uncertainties in the times, or due to the
linear interpolation before calculating the spectrum, or both. It makes intuitive sense that
structure at high frequencies would be lost if times are jittered - the standard error in time
increments is on the order of nine years (Springford 2013), meaning that time increments
are jittered over approximately forty years or more. When attempting to estimate the spec-
trum at frequencies shorter than 80-100 years, the effect of the jitter is apparently to smear
out any details (Figure 1).

We view the example analysis presented as a first step in the development of a coherent
framework for analysis of time series in which the times are latent. Future developments
aim to round out this framework and improve estimates of latent times and time series
models:
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1. Determination of suitable prior(s) for the spectrum. Including a group-level prior on
the spectrum might help with multiple comparisons issues that arise when examining
the significance of many frequencies simultaneously. Instead of focusing on rejection
of the null hypothesis (usually, a spectrum that is locally white) for each of the many
frequencies present in the spectrum, the focus is on detection of frequencies that
carry an appreciable amount of power compared to the larger group of frequencies
(Gelman et al. 2012).

2. Examination of the use of time-series models (ARMA, state-space models). These
time-series models provide a complementary approach to spectrum estimation, espe-
cially when modelling the underlying processes that gave rise to the data.

3. Obtaining combined time series model or spectrum estimates for multiple proxies
from the same core using correlation or coherence. It could also be advantageous to
allow core accumulation to be correlated with proxy measurements, since in many
cases it would make sense that both accumulation and proxy values are driven by
the same underlying process. In our example, the strength of monsoons might affect
both the growth rate of peat and the measured proxies. A key challenge will be
computational efficiency; depending on the prior structure used for the spectrum
of each proxy, generating posterior samples will require repeated calculation of the
spectrum.

4. Obtaining combined time series model or spectrum estimates for multiple proxies
from different locations. Often it is the case that paleoclimate is examined region-
ally, using multiple records collected as different locations. The main challenge here
will be determining a suitable model relating the proxies across sites. The default
option might be similar to the case of multiple proxies from the same core - that is,
provide no particular structure when estimating covariance or coherence between
proxies. However, an alternative option is to model the strength of relationship
between proxies parametrically, for example as a function of the distance between
cores. This stronger class of assumption might lead to improved estimates, or easier
interpretability of results, or both.
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