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Abstract 
 
The magnitude of a treatment's effect on PFS is a key consideration for assessing the 
clinical meaningfulness of that effect. Various metrics can be used for this assessment, 
such as the hazard ratio or the absolute risk reduction. One metric in common use, 
particularly among clinicians, is the difference between groups with respect to median 
PFS. In this presentation I will discuss some limitations of this metric, including the fact 
that the difference in medians cannot be interpreted as the median causal effect of the 
treatment. I will also contrast the difference in medians with the absolute risk reduction 
and show that, for a given hazard ratio, they are in conflict with each other; based on that, 
I will argue that the hazard ratio is the most appropriate metric for assessing clinical 
meaningfulness. 
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1. Introduction 
 
In clinical trials, the effects of experimental treatments are measured on a variety of 
scales. For a time-to-event endpoint, such as progression-free survival (PFS) or overall 
survival (OS), effects can be measured on both a relative scale and an absolute scale. The 
most common relative scale is the hazard ratio, often calculated using a Cox proportional 
hazards model. In oncology trials, the most common absolute scale is the difference in 
medians calculated from the Kaplan-Meier curves. In this paper I will argue that 
assessing the treatment affect using the difference in medians is seriously flawed, for 
three reasons: 1) The difference in medians is not an average causal effect. 2) The 
difference in medians is measured with poor precision. 3) For a given hazard ratio, the 
difference in medians is in direct contradiction to another absolute measure of effect in 
widespread use, the absolute risk reduction. 
 
As examples of the use of the difference in medians, consider the Kaplan-Meier curves in 
Figures 1 and 2. Figure 1 represents the hypothetical results of a clinical trial in which the 
difference in medians is approximately 1 month, and Figure 2 represents the actual results 
of a published clinical trial (Van Cutsem et al 2007) in which the difference in medians is 
approximately 1 week. While this measure of the effect size is approximately 4 times 
greater in Figure 1 than in Figure 2, visual examination of the curves gives a far different 
impression. In Figure 1, the Kaplan-Meier curves are virtually overlapping, suggesting 
little, if any, treatment effect; the 1 month difference in medians is due to a barely 
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perceptible horizontal portion of the two curves in which one curve is slightly above 0.5 
and the other is slightly below 0.5. In Figure 2, on the other hand, there appears to be a 
considerable treatment effect, and the hazard ratio of 0.54 seems to validate that 
perception; however, while the curves remain separate throughout, they come close to 
touching when both cross a rate of 0.5 on the y-axis. 
 
Proponents of the use of the difference in medians must conclude, despite the visual 
evidence, that the treatment effect in Figure 1 is 4 times greater than that in Figure 2. If 
one uses the difference in medians in some cases when it is in agreement with the visual 
evidence, but not in cases like Figures 1 and 2, where there appears to be a contradiction, 
then one is basing the estimate of the treatment effect on judgment, not on a chosen 
metric. In the next section I will discuss how such contradictions can occur. 
 
 

2. The Difference in Medians Is Not an Average Causal Effect 
 
The goal of a randomized clinical trial is to learn about the causal effect of a treatment on 
a set of specified outcomes. Ideally, one would want to know the causal effect in each 
treated individual, in order to learn about the distribution of causal effects. In practice, 
however, the most one can typically learn about the distribution of causal effects is a 
summary statistic, such as the mean. This is due to the fact that measuring the causal 
effect in an individual involves an unobserved counterfactual. Specifically, for a treated 
patient, the causal effect is the difference between the observed outcome and the 
unobserved counterfactual outcome that would have been observed had the patient not 
been treated. While one might have a reasonable guess at the counterfactual, it is never 
known with certainty, and, therefore, the causal effect is never observed for an individual 
patient. 
 
Consider the results in Table 1 for 10 hypothetical subjects. The table contains the results 
that would be obtained for these 10 subjects under two scenarios: if taking the control 
treatment and if taking the experimental drug. The outcome measure is a continuous 
variable, and smaller values represent better outcomes. This table represents an ideal 
situation, since one can never know both potential outcomes for any individual subject, 
but it serves to illustrate the problem with the difference in medians. 
 
In this ideal situation one can calculate the causal effect of the treatment in each subject, 
and this is contained in the rightmost column of Table 1. Of the 10 subjects, 8 
experienced a reduction of 5 units, while 2 experienced no change. The mean causal 
effect is, therefore, 4 units, and the median causal effect is 5 units. This represents the 
information that one would want to learn from a clinical trial. 
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Table 1 
 

 
 
 
Now consider Table 2, in which the same 10 subjects have been assigned to the two 
treatments in a balanced way (as indicated in the column labeled “Group”). The shaded 
cells represent unobserved information. For example, Subject 1 is assigned to the Drug 
group; therefore, “Outcome w/Control” is unobserved for that subject. Since only one 
outcome is observed for any individual subject, the causal effect is unobserved for all 
subjects. 
 
Without the information on individual causal effects, it is not possible to fully determine 
the distribution of causal effects. However, it is possible to learn something about that 
distribution through the distributions of outcomes for each of the two treatments. For 
example, the mean of the outcomes with the control is 7 units, and the mean of the 
outcomes with the drug is 3 units. Taking the difference, we obtain a mean causal effect 
of 4 units, in agreement with the mean calculated from the rightmost column, containing 
the individual causal effects. 
 
Now consider a similar calculation of the difference in medians. The median outcome in 
the control group is 5 units, and the median outcome in the drug group is also 5 units. 
Taking the difference, therefore, one would calculate a difference in medians of 0 units, 
which is in disagreement with the median causal effect of 5 units calculated from the 
rightmost column. This example illustrates a key flaw in the calculation of the difference 
in medians: it is not, in general, an average causal effect. 
 
To summarize, what we want to know is the distribution of differences between outcomes 
in individuals (i.e., the distribution of causal effects). However, that is not possible, since 
that would involve knowledge of the unobserved counterfactual. What we are able to 
calculate the separate distributions of outcomes with the two treatments, and from this we 
can calculate the difference in means. Since the difference in means is equal to the mean 
of the differences, this is a valid approach to estimate the mean causal effect. However, 
the difference in medians is not, in general, the same as the median of the differences; 
therefore, the difference in medians is not, in general, equal to the median causal effect. 
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Table 2 
 

 
 
 
Note the use of the words “in general” in the previous paragraph. It is true that under 
certain distributional assumptions the difference in medians will be equal to the median 
causal effect. However, without making distributional assumptions, it is not clear what 
relationship the difference in medians has to the distribution of causal effects, other than 
the following: the difference in medians must lie somewhere between the smallest 
possible causal effect and the largest possible causal effect. 
 
It is this issue that can lead to the visual inconsistencies illustrated by Figures 1 and 2. In 
Figure 1, the difference in medians of 1 month is most likely an outlying causal effect 
from a distribution that is tightly packed around 0. In Figure 2, the difference in medians 
of 1 week is most likely at the very low end of the distribution of causal effects. 
 
 

3. The Difference in Medians Is Measured With Poor Precision 
 
Estimation of the median for a specific treatment group is straightforward: it is the point 
in time at which the Kaplan-Meier curve crosses 0.5 on the y-axis. Calculation of the 
confidence interval for median is somewhat more complicated, and involves the well-
know Greenwood estimate of the variance of the Kaplan-Meier curve: 
 

 
In this equation, S represents the Kaplan-Meier estimate as a function of time, and ni and 
di represent the number of subjects at risk and the number of events, respectively, at event 
time ti. Using this estimate of the variance, one can put a confidence interval around the 
Kaplan-Meier estimate, and the corresponding confidence bounds for the median are the 
points in time at which the upper and lower confidence bounds for the Kaplan-Meier 
curve cross 0.5 on the y-axis. 
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Clearly, a small study with a small number of events will result in poor precision for any 
measure of treatment effect. In fact, the variance of the estimate of the log hazard ratio is 
closely approximated by 4/d, where d is the total number of events in the two treatment 
groups. For the estimate of the median, however, there are two additional factors that 
play a large role in determining precision. The first is sample size, most importantly the 
size of the risk set in the vicinity of the median. This is apparent from the Greenwood 
formula. In other words, the larger the fraction of subjects censored prior to reaching the 
median the worse the precision. The second factor is the slope of the Kaplan-Meier 
curves in the vicinity of the median. If the curve is relatively flat (as in the 1-month flat 
portion of the curves in Figure 1) then the precision will be worse than if the curve is 
descending rapidly (as in Figure 2). Various authors have proposed approaches for 
calculating a confidence interval for the difference between the estimated medians of the 
two treatment groups (Karrison 2007), but clearly the precision of the estimate of the 
difference will depend on the same factors as the precision of the estimate of the median 
for an individual treatment group. 
 
For the reasons described above, there are many cases where the precision of the estimate 
of the hazard ratio is far better than the precision of the estimate of the difference in 
medians. It is therefore counterintuitive that the hazard ratio is nearly always presented 
along with a confidence interval, while the difference in medians is often presented 
without one. A hazard ratio with a very small p-value and a narrow confidence interval 
that does not cross unity will often be accompanied by a difference in medians that has a 
confidence interval extending well beyond zero, but if the confidence interval is not 
calculated then the researcher might not be aware of this issue. 
 
 
4. The Difference in Medians Is in Direct Contradiction to the Absolute Risk 

Reduction 
 
To be approved and used by clinicians, a new drug must have an effect that is not only 
statistically significant, but also clinically meaningful. Some researchers believe that a 
relative measure of the treatment effect, such as the hazard ratio, can overstate the 
magnitude of benefit, and therefore prefer absolute measures, such as the difference in 
medians, for assessing clinical meaningfulness. However, as discussed by Snapinn and 
Jiang (2010), it is not well understood that, for a given hazard ratio, the difference in 
medians is in direct contradiction to another absolute measure in common use, the 
absolute risk reduction. 
 
Consider the results of two hypothetical trials in Figure 3. In each trial the survival 
distributions are exponential, and in both trials the hazard ratio for the treatment group 
(the dashed line) is 0.6 relative to the control (the solid line). The only difference between 
trials is that the hazard rates are relatively low in trial A and relatively high in trial B. 
Considering the difference in medians as the measure of treatment effect (i.e., the 
horizontal difference between curves at 0.5 on the y-axis), the effect size in trial A (5 
years) is considerably larger than in trial B (9 months). However, when considering the 
absolute risk reduction at 1 year as the measure of treatment effect (i.e., the vertical 
difference between curves at 1 year on the x-axis), the effect size in trial B (14.9%) is 
considerably larger than in trial A (3.7%). In general, for a given hazard ratio, the study 
with lower hazard rates will have a better treatment effect when measured by the 
difference in medians, while the study with higher hazard rates will have a better 
treatment effect when measured by the absolute risk reduction. 
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The fact that proponents of the difference in medians and proponents of the absolute risk 
reduction come to opposite conclusions regarding clinical meaningfulness calls into 
question the value of both of these absolute measures of effect. It might be surprising to 
both proponents that cost-effectiveness, as measured by lifetime cost per life-year saved, 
can be shown to be a function solely of the cost (assumed to accrue uniformly over time) 
and the hazard ratio; i.e., for a given hazard ratio, cost-effectiveness is unrelated to either 
the difference in medians or to the absolute risk reduction. This might suggest that the 
hazard ratio is the most appropriate measure of clinical meaningfulness as well. But it is 
certain that if the difference in medians is a good measure of clinical meaningfulness, 
then the absolute risk difference must be an extremely poor measure, and vice versa. 
 
 
5. Summary 
 
In this paper I have argued that the difference in medians is a poor metric for assessing 
the clinical meaningfulness of a treatment’s effect. Examples showing dramatic 
differences between the calculation of the difference in medians and the overall visual 
impression of the Kaplan-Meier curves can be explained by the fact that the difference in 
medians does not have a clear relationship to the distribution of causal effects. This issue 
alone should be a strong reason to avoid this metric. In addition, the difference in 
medians is often measured with extremely poor precision. In fact, if the confidence for 
the difference in medians were routinely provided, making the poor precision obvious to 
all, investigators might quickly abandon this metric. Finally, for a given hazard ratio, use 
of the difference in medians as a measure of clinical meaningfulness leads to conflicting 
conclusions relative to use of the absolute risk reduction. For all these reasons, relative 
measures of the treatment effect such as the hazard ratio are preferable to the difference 
in medians for assessing clinical meaningfulness. 
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Figure 1 
 

A Pair of Kaplan-Meier Curves for Two Treatments With a 1-Month Difference in 
Medians 
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Figure 2 
 

A Pair of Kaplan-Meier Curves for Two Treatments With a 1-Week Difference in 
Medians  
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Figure 3 
 

Hypothetical Kaplan-Meier Curves for Two Clinical Trials Each With Exponential 
Survival Distributions and Hazard Ratio = 0.6 

 

 

JSM2015 - Biopharmaceutical Section

3254


