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Abstract
Bayesian technologies have been progressively applied to larger and larger domains. Here, nec-

essarily, probability judgments are made collaboratively and it is rare that one agent owns all the
judgments in the system. So interesting new foundational and methodological issues have arisen
associated with the status of inference supported by combinations of such judgments. In this paper
we review some recent work on Bayesian inference underlying integrated decision support for huge
processes. We argue that in a surprising number of such dynamic environments it is in fact formally
justified to distribute the inference between different panels of experts and then use an agreed frame-
work to knit these separate judgments to properly score different policies. We also briefly report
recent progress in applying this new technology to develop an integrating decision support system
for local government officials to use when trying to evaluate implications on food poverty of shocks
in the food supply chain if various ameliorating policies are applied.
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1. Introduction

There are now many probabilistic decision support systems for use in a wide range of
environments. These are designed to give benchmark assessments of the efficacy of var-
ious types of policies and to evaluate both the impacts of shocks to and the progressive
degradation of the processes being described in the system. Decision support systems are
becoming progressively larger, often need to use sophisticated architectures and sometimes
also advanced numerical algorithms to be able to calculate the outputs needed by the user
to inform their decisions.

However there are many environments where decisions need to be based on several cas-
cading or parallel and multifaceted stochastic processes. Each component of these systems
can be supported by probabilistic models but the sometimes bewildering array of outputs
need to be composed together somehow before a decision center can compare the efficacy
of various courses of action open to it. This paper reports some recent methodological de-
velopments to support inference in such huge and complex environments. Many of these
have been reported in Leonelli and Smith (2013a, 2013b, 2015) and especially Smith et al.
(2015) where most of the detailed technical developments used in this report are described.
We then reflect on the promise and future challenges facing us in this field.

One author’s first exposure to this problem - in the wake of the Chernobyl disaster -
was to work with Simon French and others for RODOS (Caminada et al., 1999; Smith
et al., 1997), in the development of uncertainty handling within a support tool for a deci-
sion center’s crisis management after a nuclear accident over 25 years ago. Here various
components of the description of a threatened developing crisis - probability models of the
processes at work within the nuclear plant, probability models of the dispersion of the con-
tamination, of the absorption of the contamination into water supply and the food chain, and
several models of health risk given exposure - were all supported by software developed
by different panels of experts. An example of relationships between the relevant processes
for nuclear emergency management is reported in Figure 1. The results of these sometimes
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Figure 1: A network of processes describing the consequence of an outworking at a nuclear
power plant.

very complex pieces of software then needed to be presented to the decision center to sup-
port their management of the crisis. A useful summary of how this was achieved can be
found in Papamichail and French (2005, 2013).

The architecture behind this earlier development, although sophisticated for its time,
was challenged by the prevailing culture. This meant in particular that within some of the
more complex components of the system, uncertainty associated with forecasts was often
not even formally acknowledged - the associated computational demands helping to pro-
vide an alibi for this. So any integrating architecture was forced to ignore uncertainty, at
least in some sources of the process. In fact, although the online estimation of parameters
was often acknowledged within some of the better components of the system, this uncer-
tainty was not usually transferred into the composite system. So decision makers within
the crisis management system were then left to fold in these uncertainties as best as they
could - aided by some simple heuristics - to arrive at an integrated assessment of the likely
efficacy of various policies to address the overall flow of the potential crisis. Statisticians
and decision analysts understand how misleading these heuristics can be (see e.g. Leonelli
and Smith, 2015, for an example).

However since that time there has been an enormous technological advance in the capa-
bility and speed of probabilistic expert systems that form the components of such systems.
Advances in Bayesian networks (BNs), especially object orientated ones (Koller and Pfef-
fer, 1997; Korb and Nicholson 2010), multiregression dynamic models (Queen and Smith,
1993), probabilistic emulators supported by Gaussian processes (Kennedy and O’Hagan,
2001), and a variety of other Bayesian spatio/temporal models (Cressie and Wikle, 2011)
has meant that, when properly tuned, the component probabilistic models can now pro-
duce almost instantaneously accurate expectations of arbitrary functions and especially the
variances of any conditioning variables needed to properly evaluate the efficacy of various
different courses of actions. So it is timely to next develop proper inferential methodolo-
gies that can harness this information appropriately and use this in a formally appropriate
way to guide the evaluation of policies which can take proper account of all the component
uncertainties within such a system.

Two years ago we were charged with developing a proper inferential system that would
be both formal and feasible to address uncertainty handling in such environments. We have
recently reported this work in Leonelli and Smith (2015) and Smith et al. (2015). We are
now beginning the process of applying this methodology to a new domain. Over this time,
whilst fear of the next nuclear accident has waned and the world has become better pro-
tected through good countermeasure plans to this threat, there has been a growing aware-
ness of the challenges of food security both locally and globally. This has most recently
been stressed by climate change, population explosion and the developing competition for
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Figure 2: A simplified network of systems to support decision making in food security.

food in second and third world countries which is changing both the demand for food and
its affordability everywhere else in the world (Kneafsey et al., 2013; Loopstra et al., 2015).
Consequently there is an imperative within the western world to develop a decision support
tool for local governments to help them address the various threats of food poverty within
their populations. As in the nuclear example above, these types of processes are dynamic
and spatial and can be conveniently broken down into a number of separate components
each overseen by its own panel of experts (an example of how to knit these processes in
such a domain is described in Figure 2). The methodological developments outlined here
have been informed by our experience in the study of nuclear crisis management but de-
veloped with this new application in mind. Some preliminary results of the application of
these methods in food security domains is reported in Barons et al. (2014).

In the next section we present some of the special challenges in adapting foundational
statistical thinking so that methodology can be developed to inform decision support sys-
tems for huge systems like the two outlined above. After discarding some obvious solu-
tions as unfeasible, we propose an alternative based on a new distributed decision focused
methodology. Then in Section 3 we report some recent results about when such systems are
applicable. In Section 4 we illustrate through a toy example how the system can use algo-
rithms like tower rules to integrate uncertainty in practice and briefly describe how similar
methodologies extend to large systems. We conclude by discussing some of the promise
and challenges facing this development.

2. Integrating decision support

2.1 Some special features

Perhaps the most important distinction between the standard setting for Bayesian decision
theory and the one encountered in our scenarios is that the decision maker is a center
rather than an individual. Even when - as in our examples - this center is constituted of
individuals who largely want to act constructively and collaboratively to formally capture
the underlying processes driving the crisis it is nevertheless necessary to address this mul-
tiagent environment as a game. In particular all rationality ideally needs to be expressed
through hypotheses that form the common knowledge base of the agent panels.

Taking this on board, a second important distinction is that typically here each agent has
expertise only about particular aspects of the problem from which the center needs to draw.
Any common knowledge base within this game must therefore capture a formal structure
that is able to represent a unanimity about who might be expert about what. In particular
it needs to capture what it might mean for the different agents to be prepared to adopt the
beliefs of the most appropriate domain expert panel. Under such conditions it will then
be rational for panels to agree to delegate their reasoning and evaluation to the appropriate
domain experts. In the next section we outline how a center’s probability distribution can
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be constructed around the salient features of the panels’ delivered beliefs.
Thirdly it will typically be necessary within these environments for a center to be able

to justify its choices to the outside world and to be able to give a plausible explanation of
the reasons behind its choices. This is unlike many single agent systems. There the agent
makes the best probability judgments she can - using her own personal and sometimes only
partially explicable evaluations - to obtain a good outcome. Furthermore that individual is
often also free to choose what “good” might mean in her given context without needing to
justify that choice.

A center managing a crisis rarely enjoys this freedom: it will also usually need to be
able to provide the rationale behind the adoption of a policy to supplement the policy itself.
In such a scenario the center will therefore need to be able to provide:

1. an agreed qualitative structure, providing a plausible description about how different
features of the development relate to one another and how the future might potentially
unfold. This structure must be transparent enough to be understood by all experts in
the systems.

2. a compelling narrative based on best evidence about what might happen within each
component of the process.

3. a plausible numerical evaluation within each component of the extent to which the
critical variables within the system might be affected by the developing environment
when the most promising mitigating policies might be applied.

As well as encapsulating all the elements above - which concern the underlying process
- any common knowledge base must, of course, also be sufficiently rich to contain an agreed
set of policies that might be considered and an appropriate utility structure on which the
efficacy of these different options can be scrutinized. Furthermore, the Bayesian paradigm
demands that it must be possible to calculate the expected utility scores for each potential
policy applied to this huge system and to evaluate these policies accurately and quickly
with respect to a shared probability measure.

Although these challenges appear almost insurmountable, there are in fact certain fac-
tors in our favor. The first is that a center with a remit like the ones described above is not
usually concerned that the composite system provides auditable and compelling judgments
about everything. It will typically be responsible for properly delivering and explaining
only those aspects of the process that might have a significant impact on the critical fea-
tures of any unfolding crisis within this remit. Within a Bayesian context these critical
features are defined by the attributes of a utility function specified by the center.

Of course such attributes need to be elicited. However this is one of the more straight-
forward tasks in building support. For example, in the context of evaluating countermea-
sures after an accidental nuclear release this process was successfully conducted decades
ago. There, appropriate measures could be categorized into three subsets: measures of
the predicted health consequences on the population, the public acceptability of any policy
and the resource implications of applying particular policies to a given scenario. Another
example is given in our most recent project: through a sequence of decision conferences
a local authority have outlined four main categories within which to assess the impact to
them of food poverty within their jurisdiction, each measured by a well defined vector of
attributes. In our first parse these factors were articulated as the effects of malnutrition or
threats of malnutrition on health, the effects on children on their academic performance, the
potential for social unrest - such as riots - provoked by the non availability of food stuffs
and of course the cost and resource implications of applying any ameliorating strategy.
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There is therefore often a strong focus on a small number of measurable consequences
associated with an unfolding crisis. Now, of course, the types of description we have in
mind must be rich enough to explore the knock on effects that might happen to components
of the system when that system is stressed by abrupt changes to the physical environments
or by new policy directives it might receive. We see later that the progressive impact of such
shocks can often be conveniently modeled though chains of causal relationships between
the mediating processes when the term “causal” has a precise technical meaning.

Despite the challenges presented by these causal chains it can often be shown that
there nevertheless exists a proportionately much smaller vector of variables which might
significantly impact on the utility attributes of the problem. This would not be the case were
we using the system to solve completely general inferential tasks. So this vastly reduces
the modeling task and gives guidance about the necessary underlying granularity in space
and time, the type of integrating model and the players whose judgments will be needed
in order to score different policies. In particular it is not necessary to capture all available
expert judgments for such support but only those features that might be critical in helping
to discriminate between the potential effectiveness of one enactable policy against another.

There is a second reason to be optimistic about the feasibility of developing this sort
of support. There has been a recent vigorous development of various graphical model
classes for example object oriented BNs and these now enjoy a strong formal foundational
basis. These frameworks can provide an overarching structure around which to model
processes whose variables can exhibit highly heterogeneous relationships to one another.
Now sadly in practice for the scale of the problems we have in mind here there is often
no generic framework - and so no generic software - which is either logically capable of
faithfully expressing our underlying process or sufficiently focused and powerful to make
calculations quickly enough to be of practical use.

However what this development has given us is new inferential axioms that provide a
way of scrutinizing and justifying in a generic way many different families of models - es-
pecially those that can be depicted by different families of graphs. Such axiomatic systems
- for example semigraphoid, graphoids and separoids (Dawid, 2001; Pearl, 1988, 2000;
Smith, 2010) - have provided compelling reasoning rules to justify qualitative hypotheses
about whether or not one piece of information is relevant to the prediction of a second given
information from a third. These are often couched in terms of rules about reasoning about
irrelevance. In our context we argue that these reasoning rules can be plausibly accommo-
dated within the common knowledge framework of the multiagent game discussed earlier
describing the collaboration of agents in the center. Thus let (X,Y ,Z) be arbitrary vectors
of measurements in the product space of variables defining a decision maker’s problem.

Definition 1. Say that a decision maker believes that the measurement X is irrelevant for
predicting Y given the measurement Z (written Y qX|Z) if she believes now that once
she learns the value of Z then the measurement X will provide her with no extra useful
information with which to predict the value of Y .

We next assume that the center accepts that for their problem all aspects of dependence
satisfy the semigraphoid axioms. Explicitly this means that any irrelevant operator q cho-
sen by the center respects two properties (see Smith, 2010). The first, called the symmetry
property, asks that for any three disjoint vectors of measurementsX,Y ,Z:

X q Y |Z ⇔ Y qX|Z

This property holds for most probabilistic and non-probabilistic methods of measuring
irrelevance. Even more compelling - see e.g. Pearl (1988) for an explanation of this - is a
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second property, called perfect composition. This asks that for any four disjoint vectors of
measurementsX,Y ,Z,W :

X q (Y, Z)|W ⇔X q Y |(W,Z) &X qZ|W

Bayesians automatically satisfy this reasoning rule as do a host of alternative inferential
systems.

These two reasoning rules together with both various statements about relevance within
the system at hand and a finite numbers of other qualitative hypotheses can then be used
to populate a common knowledge framework belonging to a decision center. Note that
because the widely used BN models use such reasoning rules, these are now well researched
and their plausibility are widely accepted as valid.

It is these properties that will allow us to formally appraise when it is or is not appropri-
ate to attempt to systematically integrate judgments for large scale decision support. This
allows us then to customize a given center’s semantics over a bespoke sets of hypotheses -
not necessarily expressible within a single current generic graphical framework - but nev-
ertheless enjoying the same level of justifiability of more established frameworks. How
we proceed to develop such frameworks and how they can be used to guide the inference
needed by our centers is described in more detail below.

2.2 Distributivity and the autonomous elements of a supporting narrative

We call a support system which is able to use irrelevance axioms and other agreed structural
assumptions to coherently knit together the expert judgments of several different panels
with diverse expertise an integrating decision support system (IDSS). For such a system to
be formal and functional we usually need to be able to prove that the system can perform
its task in a distributed way. By this we mean that it is legitimate for each component panel
to reason autonomously about the parts of the system over which they have oversight and
that the center can then legitimately adopt the delivered judgments of the nominated expert
panel as its own. The first reason we need distributivity is that it is usually impractical,
inappropriate and often extremely time consuming to demand that panels meet to agree
numerical combinations of expert judgments - especially when no-one panel shares good
knowledge about the interface of any two areas. A second issue concerns the construction
of the narrative we have argued above is likely to be needed to support any policy choice.
If the judgments expressed within the system are not consistent with those expressed by the
particular panel which is supposedly expert in that domain then how can those judgments
be credible?

Thankfully, if an appropriate common knowledge framework is adopted by a center, if
it is ensured that there is no demand which implicitly allows different panels’ judgments to
contradict one another and that the delivery is sufficiently rich (“adequate”) for the qual-
itative common knowledge structure to provide formulae and algorithms to knit together
panel quantitative donations to fully score its options, then the semigraphoid axioms en-
able us to prove that this is possible in a wide range of contexts: see below. This means that
it is legitimate for each panel to autonomously populate the system with their own quan-
titative local domain knowledge, sometimes supported by their own much more detailed
dynamic probability models such as dynamic BNs (Korb and Nicholson, 2010; Murphy,
2002), multiregression dynamic models (Queen and Smith, 1993) or event trees (Smith,
2010). As more observational, survey and experimental information becomes available to
a particular panel they can then transparently update their beliefs dynamically using these
models if necessary and continually refine their inputs to the system without disrupting the
agreed overarching structure and its quantitative narrative. Furthermore we will see that
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when such distributivity is possible it is often the case that each panel need only donate
a vector of prearranged conditional expectations for scores to be calculated. This in turn
makes it possible to score each policy option almost instantaneously.

3. A formal integrating decision support system

At this point it is convenient to introduce some terminology. Thus we first think of the
decision center as a rational expected utility maximizing SupraBayesian (SB). The SB takes
the agreed structural framework discussed above. It then embellishes this framework with
summaries of some predetermined conditional expectations Πi , {Πi(d) : d ∈ D} about
various quantities of interest when a policy d ∈ D might be employed,D being the decision
space, where these expectations are donated by an appropriate panel of experts Gi, i =
1, . . . ,m, where m panels of experts inform the integrating system. The SB then plans to
use these inputs together with the center’s common knowledge framework to construct the
expectations Π = f(Π1,Π2, . . . ,Πm) needed to calculate her expected utilities U(d) for
each d ∈ D. The plan is then that these scores will be approved and owned by everyone.

But are there circumstances when such a combination is formally justified? The answer
is “Yes” surprisingly often. Here is a recent theorem proving one such case. Let I0(d) be in-
formation common knowledge to all panels, Iij(d) be information panel i brings to θj i, j =
1, . . . ,m, where θj parametrizesGj’s chosen model, I+(d) , {Iij(d) : 1 ≤ i, j ≤ m} and
I(d) , {Ijj(d) : 1 ≤ j ≤ m}. Let θ = (θT

1 , . . . ,θ
T
m).

Definition 2. An IDSS is:

• adequate if the SB can calculate U(d) from the panels’ delivered outputs only;

• delegatable if there exists a consensus that θ q I+(d)|I0(d), I(d), for any d ∈ D;

• separately informed if qm
j=1(θj , Ijj(d))|I0(d), for any d ∈ D.

Definition 3. An IDSS is sound if adequate and, by adopting the structural consensus, all
panel members can faithfully adopt {U(d) : d ∈ D}, calculated from probabilities donated
by relevant panels of domain experts, as their own.

Assuming the semigraphoid axioms above we can then prove the following theorem.

Theorem 1. An adequate, delegatable and separately informed IDSS is sound.

Proof. See Smith et al. (2015).

So we have a set of conditions under which an ideal type of IDSS can be built. Fur-
thermore these conditions, whilst not always being satisfied, can be scrutinized in common
language. Through discussing which information sets may or may not be relevant when
making inferences about different elements of the multivariate processes the center can
determine whether or not a particular framework fulfills the requirements of the theorem
above. Note in passing here that this theorem does not only concern probabilistic sys-
tems but also any inferential system agreed by the center which satisfies the semigraphoid
axioms and which can deliver scores unambiguously - e.g. linear Bayes (Goldstein and
Wooff, 2007).

The necessity for adequacy is obvious and the condition of delegatability is simply a
formalization of the demand that each expert panel is assumed by everyone to be suffi-
ciently well informed to be genuinely more expert than others in the system. The critical
assumption is therefore that panels are separately informed. Within a Bayesian context
we can use the usual properties of conditional independence to usefully break this condi-
tion down into a set of two separate conditions - prior panel independence and likelhood
separability - which together are equivalent to the system being separately informed.
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Definition 4. We have prior panel independence if qm
j=1θj , |I0(d). Data x with likelihood

l(θ|x, d), d ∈ D, is panel separable over θi, i = 1, . . . ,m, when

l(θ|x, d) =
m∏
i=1

li(θi|ti(x), d),

where li(θi|ti(x)) is a function of θ only through θi and ti(x) is a function of the data x,
i = 1 . . . ,m, for each d ∈ D.

Those with some knowledge of Bayesian inference within BNs will recognize panel
independence in the context where different panels can have oversight of different nodes
given their parents, as simply a generalization of the global independence assumption. This
assumption is almost universally adopted in practical applications of BNs (Cowell et al.,
1999).

The critical assumption therefore is that the collection of data sets gives a likelihood
that separates over the subvectors of panel parameters. Of course, this is far from automatic.
Even if the system is carefully and compatibly structured it may be impossible to define the
parameter vector θ of the likelihood of a given statistical model in this way - especially
in the presence of unobserved confounders. And when vectors of observations can have
missing values then this condition is also almost inevitably violated. However there are
also many circumstances when this condition can apply. This is most common in settings
where any observational data accommodated into the system is complete and when the
underlying dynamic structure is causal in a sense that generalizes the definitions of Pearl
(2000) so that this can also apply to domains other than the simple BN. We will discuss
why causal systems often lead to distributed IDSS below.

When likelihoods are not separable then we can, of course, still approximate - for exam-
ple using techniques like variational Bayes (Fox and Roberts, 2012). Our formal framework
above then gives us a benchmark against which to judge such an approximation. Alterna-
tively - and perhaps more in harmony with the game theoretic basis of this type of analysis
- we can instead assume that the SB imposes an admissibility protocol. This would de-
mand that expert judgments used in the system would only be based on information that
would not give rise to ambiguity in subsequent joint inference. Even though it might cause
some divergence between public pronouncements made by the IDSS and the private beliefs
of panel members, the need for each individual panel to explain its reasoning to outsiders
strongly encourages the adoption of such a protocol. Furthermore it has the expedient ten-
dency of being conservative about the accuracy with which various assertions can be made.
To adopt such a protocol the center would of course need to agree that only certain types of
evidence are accommodated into the system. However note that such protocols - and most
notably those of the Cochrane Library (Higgins and Green, 2008) - are currently widely
used within decision support systems designed for collections of users.

3.1 Causal hypotheses and their relationship to a distributed IDSS

Led by Pearl (2000), many authors have recently set about formalizing what is actually
meant by causation by framing causal hypotheses in terms of control. All the original work
centered on causal hypotheses that could be captured through a BN (Cooper and Yoo, 1999;
Pearl, 1995; Spirtes et al., 1993). However the semantics have since been extended so that
they can also apply to other frameworks, see e.g. Eichler and Didelez (2010), Harbord et al.
(2013), Queen and Albers (2009), Lauritzen and Richardson (2002), Thwaites (2013) and
Thwaites et al. (2010). Typically these assume that there is an implicit partial order to the
objects in the system that provides the basis of a putative causal order (see e.g. Riccomagno
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and Smith, 2004). Using this partial order we then assume that the joint distributions of
variables not downstream of a controlled variable remain unaffected by that control, whilst
the effect on downstream variables in response to this control of a causal variable to a given
value is the same as if the controlled variable had simply taken that value (Smith et al.,
2015). Many of the newest of these generalizations apply these principles to the sorts of
stochastic processes that typically describe an unfolding threat: see Smith et al. (2015) for
a review of some of these advances.

We saw above that most of the IDSSs needed to entertain the predicted effects of differ-
ent potential policies that might be applied to try to control the adverse affects of a threat-
ened crisis. In the reference above we show that if a center adopts various causal hypotheses
which exploit the generalizations of “causality” to this dynamic domain, then structural hy-
potheses can be articulated and, if appropriate, adopted into the common knowledge basis
of the center. In this way causal hypotheses help framing the underlying inferential meth-
ods.

There is, however, perhaps an even more compelling reason for demanding conditions
related to causal hypotheses if an IDSS is to be valid. Note above that when we encour-
age expert panels to accommodate information into an IDSS, the information they would
like to input will often arise from designed experiments. Here, within such experiments,
covariates are often controlled to take specific values. The experimenter then assumes that
the parameters she estimates in these experiments can be equated with parameters in the
observational system defining the development of the crisis. Furthermore she typically as-
sumes that the parameters of observational system will still respect the same probability
law as that of the parameters in the experiment. This point was recognized some time ago
by Cooper and Yoo (1999) who developed collections of assumption which enabled formal
learning of discrete BNs where some available data came from designed experiments rather
than observational studies. They noted that if the BN was causal in the sense given above
then experimental data could be introduced in a simple way. This technology has recently
since been extended so that it also applies to other domains (see e.g. Freeman and Smith,
2011; Cowell and Smith, 2014). It is interesting to note that, from a methodological point
of view, the panel independence assumption which is necessary to ensure distributivity of
an IDSS is in fact intimately linked and plausible only when certain causal hypotheses can
be entertained: see Daneshkhah and Smith (2004).

However again in many settings such causal hypotheses are plausible - indeed very
often made unconsciously - see Smith et al. (2015). In particular note that if a panel designs
an experiment well then randomization and conditioning often leads to a likelihood which
is a function only of its own parameters. So in this case the likelihood trivially separates
and it then follows that the likelihood of any collections of such experiments also separates.

So, for example, it can be shown fairly straightforwardly that when there is a consensus
that the overarching causal structure is either a (dynamic) causal BN or a casual chain
event graph (Smith and Anderson, 2007) or a causal multiregression model and an IDSS
is sound at any time t, then that IDSS remains sound under a likelihood composed of
ancestral sampling experiments as well as observational sampling: see Smith et al. (2015)
for examples of such results. It follows that many of the IDSS frameworks we would like
to use can be designed so that they are distributive, especially if the center is prepared to
entertain the possibility of vetting some of the available evidence as too ambiguous to be
formally accommodated into the system. How we can exploit this property is discussed
below.
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4. Tower rules and efficient transfer of information

If an IDSS is distributive then it is often possible to prove, provided the agreed form of the
utility function has an appropriate polynomial form, that each panel often needs to deliver
only a few conditional expectations and not whole joint distributions. This is because the
types of structural overarching frameworks embed collections of conditional independences
which lead to particular tower rules being respected: see Leonelli et al. (2015b). This in
turn means that each panel often needs only deliver a short vector of conditional moments.
The SB is then able to evaluate a number of polynomials in these donations recursively
to calculate the expected utility scores of the different policies she has available to her.
So the various contributions needed from the different panels can be quickly elicited at
any time. Furthermore the necessary calculations can be made almost instantaneously. In
particular this allows us to hard wire into the IDSS various formulae - looking like forward
expectation propagation algorithms (Cowell et al. 1999) - that can then be used to make
all its necessary calculations for the center. Of course the form of these functions will be
customized to the particular underlying framework agreed across the different panels.

Once these formulae are in place each panel is encouraged to update its inputs in the
light of any new information available to it, either concerning the nature of the current
unfolding crisis or in the form of new data from recent experiments and surveys or as a
refinement of its expert judgments. Note that whenever new data is accommodated this
will require the panel to perform a prior to posterior analysis and often in these large en-
vironments this will involve performing new numerical analyses. However such numerical
analyses routinely and trivially can calculate the numerical values (conditional means, vari-
ances) of the conditional moments the SB needs.

If the plausibility of some of the outputs donated by a particular panel is queried by an
outside auditor or another panelist then this request for clarification can be referred to that
panel. Because the judgments donated by this panel are its sole responsibility, it can use
any current software it owns and documentation of its underlying statistical model class to
provide a much more detailed explanation of how its evaluation has been arrived at and why
the judgments it expressed are appropriate. This facility is critical to any decision center of
the form we discuss here because it may well be that the situation as it dynamically evolves
no longer supports some of these background hypotheses. If this happens then this can be
quickly fed back to the panel so that it is able to adapt its donations in the light of this new
information.

In order to see how this process can be enacted, consider the following toy example.

Example 1 (A Tower Rule for Food). Consider the following hypothetical framework
where the effect of malnutrition on children’s educational attainment in a state school test
of academic ability in a population of 11 year old children is studied. This is analogous to
one of the educational attributes used by a local authority to measure one deleterious im-
pact of food poverty within its catchment. Here we consider only two panels which within
the center’s common knowledge base are assumed to be currently panel independent. The
first, G1, has taken the various belief inputs it needs from other panels - associated, for
example, with predictions of the economic climate that apply in the forecast period, the
predicted availability of food in the current crisis and household demography indexed by
income and number of children - to determine the distribution of an index X of the level of
malnutrition across the relevant population under study at the time of the next future test.
The second panel, G2, is expert in determining the likely SATS performance Y over this
population given this index. Various policies d ∈ D are proposed both aimed at supple-
menting the diets of this particular group of vulnerable children and in directly enhancing
those children’s education. Suppose it is commonly agreed that a marginal utility function
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of this attribute, U , is an arbitary function of d but is a function of Y as a polynomial of de-
gree no greater than 2. Note that this will then imply that all scoresU(d) will be expressible
as a function of d,

{
mY (d) , E(Y (d)) : d ∈ D

}
and

{
σ2Y (d) , V ar(Y (d)) : d ∈ D

}
.

In this setting the nutritional expert panel G1 needs only donate

Π1 ,
{
mX(d) , E(X(d)), σ2X(d) , V ar(X(d)) : d ∈ D

}
.

To predict the performance index Y of these exam results, suppose G2 plans to use the
simple linear regression model

Y = θX + ε,

where θ is a parameter and ε is a mean zero random error with variance τ2(d). Using this
model G2 is able to calculate{

µ(d) , E(θ|d), σ2(d) , V ar(θ|d), τ2(d) , V ar(ε|d)) : d ∈ D
}
,

and so the conditional expectations needed by the SB are

Π2 ,
{
E(Y |X) = µ(d)X,E(Y 2|X) =

(
σ2(d) + µ(d)2

)
X2 + τ2(d) : d ∈ D

}
.

Now the standard tower rules give us that for each d ∈ D

mY (d) = µ(d)mx(d),

σ2Y (d) =
(
σ2(d) + µ(d)2

) (
σ2X(d) + µX(d)2

)
+ τ2(d).

So the center can combine the expert judgments of the two panels using these polynomial
formulae to calculate the scores it needs. Note that the delivered expert judgments here can
be associated with different levels of complexity. For example G2’s assessments Π2 could
be based on non-conjugate sampling, themselves based on many diverse forms of relevant
experiments, in which case it would usually only be possible to deliver numerical values
of the required summaries

{
µ(d), σ2(d), τ2(d) : d ∈ D

}
and not the formulae behind their

calculation. In this example this would not matter and the scores of the competing policy
options could still be calculated trivially.

Now of course this example is absurdly simple. We have suppressed the dynamics of
the problem, the fact that the linear models used in these circumstances have a number
of covariates, that the population needs to be specified as aggregates of various different
subpopulations and that the recurrences range over many such steps. However although
such necessary embellishments lead to polynomials of much higher degree and dramat-
ically longer vectors of donations, the form of these polynomials and their calculability
nevertheless scales up under very general conditions. The nature and construction of these
recurrences, as a function of various types of hypotheses and assumptions, are now well
documented and discussed in detail in Leonelli et al. (2015b). In the most complex scenar-
ios these recurrences can be still often be expressed in terms of relationships between high
dimensional tensors.

5. Conclusions and future research

Currently we are well on the way to build a working integrating decision support system
to address issues of food poverty. We have found that most components of the system can
be plausibly structured so that each panel component is distributed. We are beginning to
discover that quite decent support can be given on the basis of a rather small scale digest of
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the processes with a total of a few hundred inputs needed from our panels, where some of
these inputs can be supplied in very routine and transparent ways. So, at least within this
domain, the integration of the various probability distributions is feasible and the supporting
evaluation can be made to be very quick. We are finding that the impact of judgments at the
end of the chains have the biggest impact on the scoring and so currently we are initially
concentrating on eliciting and modeling these. Rather interestingly the elicited attributes
seem to have close parallels to areas of responsibility that have been independently defined
by various local government councils. When, as here, the assessment of attributes already
has an obvious owner the elicitation of the judgments and utilities is obviously much more
straightforward.

The inferential foundational issues on which this paper focuses appear particularly in-
teresting. Firstly, we see that, although the analyses we present here are designed to be
shared by many agents and observers, the system is nevertheless in no sense “objective”.
To set up uninformative priors and “let the data speak for itself” is clearly impossible in
this type of setting: so much strong domain knowledge and so many domain judgments
would be needed before anything sensible could be delivered by the IDSS. What we can
build is instead a system based on a kind of benchmark subjectivity which captures all
that can be said unambiguously: the agreed common knowledge structure collated together
with all admitted supporting information form the different expert panels. It represents the
expressed shared judgment of all participants when they trust one another’s particular ex-
pertise and need to be able to be confident that they can justify their choices. We would
argue in fact that this is perhaps more useful than something labeled as objective and has
interesting links to Smets’ ideas of pignistic probability (Smets, 2005): a gathering of as-
sessments based on what can be agreed before discussions and divergence of opinions take
place. Note, in particular, that casting inference in terms of decision support places people
rather than outputs from hard wired algorithms at the center of the decision making process
which we believe is most appropriate to inference within large systems: essentially seeing
this as an activity best addressed by applied statisticians rather than machine learners. In
what we describe above probability model outputs have a vital but secondary role to the
underlying decision making processes.

Secondly, the sorts of formalisms we have introduced here need not be conventionally
Bayesian. Any reasoning system which satisfies the semigraphoid axioms has the potential
for providing the basis of an IDSS of the type we discuss above. The main reason we
have focused on probabilistic systems here is simply because these are widespread and
have been demonstrated to be provenly useful over a wide range of application. However
other methods based on belief functions (Shafer, 1976) or linear Bayes methods (Goldstein
and Wooff, 2007) could, perhaps, prove even more efficacious. The latter option might
be especially attractive because it would allow further simplifications of the inferential
structure. Only transparently justified statements would then be used within the different
panel’s accommodation of information. We are currently exploring the efficacy of such
methods.

Finally, because we have discovered that collection of polynomial equations so often
describe the embellished structure of an IDSS, it appears that often techniques using com-
puter algebra (Capani et al., 2000, Char et al., 1991) provide an especially useful framework
for determining the donations needed by the different panels. Techniques borrowed from
algebraic and differential geometry can be applied both to construct bespoke efficient algo-
rithms for quickly computing the scores the center might need in huge systems and also for
formally studying the robustness of evaluations to various types of perturbations. For some
recent initial work in this area see Leonelli et al. (2015a).
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