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Abstract 
In this paper, we suggest a new method for imputing missing values by 
suggesting the use of new sensible constraints on a study variable and auxiliary 
variables.  While we limit ourselves to findings using only one auxiliary variable, 
extension of these results to multi–auxiliary variables is on the way. The 
proposed imputing method leads to an estimator which is asymptotically 
equivalent to the linear regression estimator. 
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1. Introduction 
 

Hansen and Hurwitz (1946) were the first to deal with the problem of non-
response in mail-surveys. These days that types of non-response occurs in other 
types of surveys such as web-surveys and telephone surveys. Today, mail 
surveys or telephone surveys are commonly used by bureaucratic or business 
organisations because of their low cost.  Rubin (1976) dealt with two concepts: 
missing at random (MAR) and observed at random (OAR).   One could refer to 
Heitjan and Basu (1996) to learn more about MAR and MCAR.  Let us consider 





i

iyNY 1                           (1.1) 

to be the population mean of a study variable y  in a finite population 

 .,..,,..,2,1 Ni  Assume a simple random and without replacement sample 

(SRSWOR), s , of size n  is taken from   to estimate this population mean Y .  
Assume that r  i.e. the number of responding units out of n  sampled units.  Let 
the set of responding units be denoted by A   and that of non-responding units be 

denoted by cA .  For every unit Ai , the value yi  is observed, and for the units 
cAi , the iy  values are missing and imputed values are to be derived.  The first 

choice is to consider dropping the missing )( rn   data values in the set cA  from 

the sample s  of n  data values and consider an estimator of the population mean 
Y  as: 
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            (1.2) 

which is the sample mean of the r  values in the responding set A .  Assuming 
the data is missing completely at random (MCAR), then applying the concept of 
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double sampling as given in Cochran (1963), it is easy to verify that the sample 

mean ry  in (1.2) is an unbiased estimator of the population mean Y  with 
conditional variance, for a given value of r , given by: 

 211
)( yr S

Nr
yV 


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
                      (1.3) 

where 212 )()1( 


 
i

iy YyNS  is the population mean squared error (or 

population variance) for the study variable. We will indicate the point estimator 
of the population mean, given by, 
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point                        (1.4) 

where id  are different data values based on different methods of imputation.  
Under mean method of imputation, the data after imputation take the form: 
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                                                              (1.5)  

and the point estimator (1.5) becomes 
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point

1
                                               (1.6) 

which remains the same as the sample mean obtained after discarding the non-
responding units in the sample.  Thus the mean method of imputation is as 
precise as the method of dropping the missing data values, that is, rm yy  . 
 

2. Proposed Method of Imputation   
 
We propose a new method of imputing missing values as: 

  

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
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i
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d

            ˆ̂
            

          (2.1) 

where iŷ̂ , cAi  is an imputed value by the proposed new method of imputation.   

We consider a chi-squared type distance function  fD   between the imputed 

mean values ry  and the new imputed values iŷ̂  for  cAi  as: 
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           (2.2) 

We assume that imputation is carried out with the aid of an auxiliary variable, x , 
such that ix , the value of x  for unit i , is known and positive for every 

cAAsi  .  In other words, the data  sixx is  :  are known.  Thus in 
case of missing data, the sample data values have the following structure: 
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         (2.3) 

We consider minimization of the proposed chi-squared distance fD  defined in 

(2.2) subject to the following sensible constraint: 
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or equivalently, 
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where 
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The constraint (2.4) makes sense in that, if the data is missing completely at 
random, then the covariance between the study variable and auxiliary variable for 
the responding units in a sample should be same as the covariance between the 
imputed values and the auxiliary variable for the non-responding units in a 
sample.  Note the use of rx  in the left hand side of equation (2.5); this is 

somewhat arbitrary, one could also use )( rnx  . At the same time please note the 

use of )( rn    and )1( r  in the denominator of non-responding and responding 
units; this adjustment is necessary to obtain consistent method of imputation. The 
proposed constraint in (2.4) has been named a “sensible constraint” on both the 
study variable and the auxiliary variable.   
 
The Lagrange function is given by: 
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where   is a Lagrange’s multiplier constant.  On differentiating (2.7) with 

respect to iŷ̂  and equating to zero, that is, on setting: 
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we have 
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which implies that the adjusted imputed mean values iŷ̂  are given by: 
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On substituting (2.8) in the sensible constraint (2.4), we have 
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Note that: 
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On substituting (2.10) in (2.9), the value of the Lagrange multiplier   is given by 
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On substituting the value of   from (2.11) into (2.8), the new imputed values are 
given by: 
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On substituting (2.12) into (2.1), the new method of imputation leads to a new 
data set given by: 
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With the new imputed valued values in (2.13), the point estimator of population 
mean  Y  becomes: 
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is an estimator of the regression coefficient  
2
xxy SS            (2.16) 
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In short using the new imputed values, the point estimator of the population mean 
Y  becomes: 
 

 rnrch xxyy  ch)1( ̂           (2.17) 

 
In the next section, we define some notation that is useful in studying the 
properties of the proposed estimator in (2.17) under the proposed new imputed 
method of imputation. 
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In the next, we investigate asymptotic properties of the estimator ch̂  of the 

regression coefficient   and the proposed regression type estimator chy  of the 

population mean Y . 
 

4 Properties of the Proposed Estimators 
 
We have the following theorems: 

Theorem 4.1. The estimator ch̂  is a consistent estimator of the regression 

coefficient  . 
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written as: 















 















 




2
)(

2
)(

2
)(

2
2

)(

)(
)(

ch
)1()(

)1(

)(
)(

ˆ

nx

rx

nx

rn
nx

rxy

rnr
rxy

s

sr

s

xxn
ns

s

xxyn
rns

  

       










































)1(

)1()1(

)1(

)}1()1({
)1()1(

)1(

)}1()1(){1(
)()1(

4
2

3
2

4
2

2
12

4
2

5

120
5















x

x

x
x

xy
xy

S

Sr

S

XXn
nS

S

XXYn
rnS

       

        









































)1(

)1)(1(

)1(

}{
)1()1(

)1(

}){1(
)()1(

4

3

4
2

2
12

2

4
2

5

120
5














r

S

Xn
nS

S

XYn
rnS

x
x

xy
xy

       

       



























 









1
432

1
4

2
12

2

4
2

1
5120

5

)1)(1)(1(
)1(}{

)1()1(

)1}(){1(
)()1(









r
S

Xn
nS

S

XYn
rnS

x
x

xy
xy

 

JSM2015 - Survey Research Methods Section

3210










































...)1)(1(
..)1(}{

)1()1(

)(

)1}(){1(
1)1()(

43
2
4432

2
44

2
12

2

4
2

1
5120

5









r
S

Xn
nS

Srn

XYn
Srn

x
x

xy
xy

 

















xySrn

XYn

)(

...}(
1..)1( 5152102012

54
2
445


               







































......)(
)(

)1(

...)(
)(

)1(

)(

...)1}(2{
1

2
43

2
4432

2

43
2
4432

2
4421

2
1

2
2

2






rn

r

rn

r

Srn

Xn

x  


 414251525152102012

54
2
445

)(
  

1












xySrn

XYn


)2(
)(

)1(
)(

)(

)1(

)(

)2(
43

2
4

2
32

2

43
2
4432

21
2
1

2
2

2



















rn

r

rn

r

Srn

Xn

x

 
















 )(
)(

)1(

)1(

)1(
414231322

2
4544353 

xySrn

XYrn

n

r
     




















 )()(
)(

)1(
)(

)(
2

431245  O
rn

r

Srn

XYn

xy
                    (4.1) 

 
Taking expected value on both sides of (4.1), we have 
 

   )(ˆ 1
)1(

 nOE ch                         (4.2) 

 
which proved the theorem. 
 
Theorem 4.2. The relative bias in the proposed estimator )1(chy , to the first order 

of approximation, is given by 
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 is a consistent estimator, in terms of r , of the population mean Y . 
 
Proof. The proposed regression type estimator )1(chy , in terms of i , can be 

approximated as: 
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Thus the asymptotic bias in the proposed estimator )1(chy  is given by: 
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The relative bias in the proposed estimator )1(chy  is given by 
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which proves the theorem. 
 
Theorem 4.3. The mean squared error of the proposed estimator, )1(chy , to the 

first order of approximation, is given by: 
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Proof.  The mean squared error of the proposed estimator )1(chy  is given by 
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In the next section, we compare the proposed methods of imputations with the 
mean method of imputation through a simulation study using a real population. 
 

5. Illustrations with a real data set 
 
We use a dataset, FEV.DAT, available on the CD that accompanies the text by 
Rosner (2006) that contains data on 654N  children from the Childhood 
Respiratory Disease Study done in Boston.  
 

2015105

6

5

4

3

2

1

AGE

FE
V

Scatterplot of FEV vs AGE

Fig. 5.1. Scatter plot of AGE versus FEV 
 
 Among the variables are Age and FEV (forced expiratory volume). We consider 
the problem of imputing the FEV (=Y) of a child given the AGE (=X) value of 
that child.   To investigate several situations, following Singh (2013), we also 
used a Box-Cox transformation on the auxiliary variable AGE given by: 

 
T

X
T 1(AGE) 

            (5.1)  

for values of T  between -4 to +4 with a step of 0.5. We choose simple random 
and with replacement sample (SRSWR) of 60n  units, which is approximately 
9.17% of the total population size N .  We let r , the number of respondents, vary 
between 5 and 50 with a step of 5, which means a response rate of 8.3% to 
83.33% with an increase in response rate of 8.33% in every step. We compute the 
value of approximate percent relative bias in the proposed method of imputation 
as:  
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The percent relative efficiency of the proposed method of imputation with 
respect to the mean method of imputation, is computed as: 

 %100
)(Min.V

)(
RE

new(ch)
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y

yV r                                       (5.3) 

We wrote FORTRAN codes (see Appendix) to find the values of the percent 
relative bias (RB) and the percent relative efficiency of the proposed method of 
imputation over the mean method of imputation. In producing the following 
output given in Table 5.1 we exclude those cases where the percent relative bias 
exceed 10%  
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Table 5.1. Relative Bias (RB) and Relative Efficiency (RE) of the proposed 
 imputation method with one auxiliary variable. 

T    r  RR  RB RE T    r  RR  RB 
-4 0.374 10 16.67 -6.07 113.44   0.737 35 58.33 -2.69 131.42 
  0.374 15 25 -4.31 112.04   0.737 40 66.67 -2.38 123.89 
  0.374 20 33.33 -3.43 110.65   0.737 45 75 -2.15 117.07 
  0.374 25 41.67 -2.9 109.28   0.737 50 83.33 -1.95 110.87 
  0.374 30 50 -2.55 107.91 0.5 0.761 10 16.67 -9.93 196.21 
  0.374 35 58.33 -2.3 106.57   0.761 15 25 -6.63 180.1 
  0.374 40 66.67 -2.11 105.23   0.761 20 33.33 -4.97 166.24 
  0.374 45 75 -1.96 103.9   0.761 25 41.67 -3.98 154.18 
  0.374 50 83.33 -1.84 102.59   0.761 30 50 -3.32 143.6 

5.3  0.43 10 16.67 -6.27 118.56   0.761 35 58.33 -2.85 134.24 
  0.43 15 25 -4.43 116.55   0.761 40 66.67 -2.49 125.9 
  0.43 20 33.33 -3.51 114.57   0.761 45 75 -2.22 118.42 
  0.43 25 41.67 -2.96 112.64   0.761 50 83.33 -2 111.68 
  0.43 30 50 -2.59 110.73 1 0.757 15 25 -6.93 178.33 
  0.43 35 58.33 -2.32 108.86   0.757 20 33.33 -5.18 164.89 
  0.43 40 66.67 -2.13 107.03   0.757 25 41.67 -4.12 153.16 
  0.43 45 75 -1.97 105.23   0.757 30 50 -3.42 142.83 
  0.43 50 83.33 -1.85 103.45   0.757 35 58.33 -2.92 133.67 

-3 0.491 10 16.67 -6.54 125.58   0.757 40 66.67 -2.54 125.5 
  0.491 15 25 -4.59 122.66   0.757 45 75 -2.25 118.15 
  0.491 20 33.33 -3.62 119.83   0.757 50 83.33 -2.02 111.52 
  0.491 25 41.67 -3.03 117.09 1.5 0.743 15 25 -7.21 173.42 
  0.491 30 50 -2.64 114.43   0.743 20 33.33 -5.36 161.11 
  0.491 35 58.33 -2.36 111.85   0.743 25 41.67 -4.25 150.27 
  0.491 40 66.67 -2.15 109.34   0.743 30 50 -3.52 140.65 
  0.491 45 75 -1.99 106.91   0.743 35 58.33 -2.99 132.07 
  0.491 50 83.33 -1.86 104.54   0.743 40 66.67 -2.59 124.35 

-2.5 0.552 10 16.67 -6.88 134.8   0.743 45 75 -2.28 117.38 
  0.552 15 25 -4.8 130.58   0.743 50 83.33 -2.04 111.05 
  0.552 20 33.33 -3.75 126.55 2 0.722 15 25 -7.47 166.63 
  0.552 25 41.67 -3.13 122.7   0.722 20 33.33 -5.53 155.82 
  0.552 30 50 -2.71 119.03   0.722 25 41.67 -4.37 146.19 
  0.552 35 58.33 -2.41 115.51   0.722 30 50 -3.6 137.55 
  0.552 40 66.67 -2.19 112.15   0.722 35 58.33 -3.05 129.76 
  0.552 45 75 -2.01 108.92   0.722 40 66.67 -2.63 122.69 
  0.552 50 83.33 -1.88 105.83   0.722 45 75 -2.31 116.26 

-2 0.611 10 16.67 -7.3 146.27   0.722 50 83.33 -2.05 110.38 
  0.611 15 25 -5.05 140.23 2.5 0.696 15 25 -7.69 159.12 
  0.611 20 33.33 -3.92 134.6   0.696 20 33.33 -5.68 149.9 
  0.611 25 41.67 -3.24 129.32   0.696 25 41.67 -4.48 141.56 
  0.611 30 50 -2.79 124.36   0.696 30 50 -3.67 133.99 
  0.611 35 58.33 -2.47 119.7   0.696 35 58.33 -3.1 127.08 
  0.611 40 66.67 -2.23 115.3   0.696 40 66.67 -2.67 120.75 
  0.611 45 75 -2.04 111.15   0.696 45 75 -2.34 114.94 
  0.611 50 83.33 -1.89 107.23   0.696 50 83.33 -2.07 109.57 

-1.5 0.664 10 16.67 -7.78 159.45 3 0.666 15 25 -7.89 151.7 
  0.664 15 25 -5.33 151.1   0.666 20 33.33 -5.81 143.95 
  0.664 20 33.33 -4.11 143.47   0.666 25 41.67 -4.57 136.85 
  0.664 25 41.67 -3.38 136.46   0.666 30 50 -3.74 130.32 
  0.664 30 50 -2.89 130.02   0.666 35 58.33 -3.15 124.29 
  0.664 35 58.33 -2.54 124.06   0.666 40 66.67 -2.7 118.71 
  0.664 40 66.67 -2.28 118.54   0.666 45 75 -2.36 113.53 
  0.664 45 75 -2.07 113.41   0.666 50 83.33 -2.08 108.71 
  0.664 50 83.33 -1.91 108.64 3.5 0.635 15 25 -8.06 144.85 

-1 0.706 10 16.67 -8.3 173.05   0.635 20 33.33 -5.93 138.39 
  0.706 15 25 -5.65 162.05   0.635 25 41.67 -4.65 132.39 
  0.706 20 33.33 -4.32 152.21   0.635 30 50 -3.8 126.8 
  0.706 25 41.67 -3.52 143.38   0.635 35 58.33 -3.19 121.59 
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  0.706 30 50 -2.99 135.39   0.635 40 66.67 -2.73 116.71 
  0.706 35 58.33 -2.61 128.14   0.635 45 75 -2.38 112.14 
  0.706 40 66.67 -2.33 121.52   0.635 50 83.33 -2.09 107.85 
  0.706 45 75 -2.11 115.46 4 0.603 15 25 -8.2 138.76 
  0.706 50 83.33 -1.93 109.89   0.603 20 33.33 -6.02 133.38 

-0.5 0.737 10 16.67 -8.85 185.05   0.603 25 41.67 -4.72 128.32 
  0.737 15 25 -5.98 171.49   0.603 30 50 -3.84 123.56 
  0.737 20 33.33 -4.54 159.61   0.603 35 58.33 -3.22 119.08 
  0.737 25 41.67 -3.68 149.12   0.603 40 66.67 -2.76 114.84 
  0.737 30 50 -3.1 139.78   0.603 45 75 -2.39 110.83 

     Continued…    0.603 50 83.33 -2.1 107.03 

 
6. Discussion of the Results 

 
For a T  value  of 4 , the value of the correlation coefficient   between  the 
study variable Y (=FEV) and the auxiliary variable X(=AGE) is 0.3741, the 
values of the percent relative bias (RB) lie between -6.01% and -1.84% and that 
of the percent relative efficiency (RE) lie between 113.44% and 102.39% as the 
response rate increases from 16.67% to 83.33%. For 5.3T , the value of the 
correlation coefficient   increase to 0.4301, the RB value varies between -
6.27% and -1.85% and the value of RE varies between 118.56% and  103.45% as 
the response rate increases from 16.67% to 83.33%. For 0.3T , the value of 
the correlation coefficient   increase to 0.4906, the RB value varies between -
6.54% and -1.86% and the value of RE varies between 125.58% and  104.54% as 
the response rate increases from 16.67% to 83.33%. For 5.2T , the value of 
the correlation coefficient   increase to 0.5523, the RB value varies between -
6.88% and -1.88% and the value of RE varies between 134.80% and  105.83% as 
the response rate increases from 16.67% to 83.33%. For 0.2T , the value of 
the correlation coefficient   increase to 0.6114, the RB value varies between -
7.30% and -1.89% and the value of RE varies between 146.27% and  107.23% as 
the response rate increases from 16.67% to 83.33%. For 5.1T , the value of 
the correlation coefficient   increase to 0.6637, the RB value varies between -
7.78% and -1.91% and the value of RE varies between 159.45% and  108.64% as 
the response rate increases from 16.67% to 83.33%. For 0.1T , the value of 
the correlation coefficient   increase to 0.7063, the RB value varies between -
8.30% and -1.93% and the value of RE varies between 173.05% and  109.89% as 
the response rate increases from 16.67% to 83.33%. For 5.0T , the value of 
the correlation coefficient   increase to 0.7369, the RB value varies between -
8.85% and -1.95% and the value of RE varies between 185.05% and  110.87% as 
the response rate increases from 16.67% to 83.33%. For 5.0T , the value of the 
correlation coefficient   increase to 0.7612, the RB value varies between -
9.93% and -2.00% and the value of RE varies between 196.21% and  111.68% as 
the response rate increases from 16.67% to 83.33%.  For 0.1T , the value of the 
correlation coefficient   decreases to 0.7565, the RB value varies between -
6.93% and -2.02% and the value of RE varies between 178.33% and  111.52% as 
the response rate increases from 25.00% to 83.33%.  Note that in this situation if 
the response rate (RR) is less than 25% then the percent relative bias (RB) in the 
proposed imputing method remains higher than 10%, so those results are not 
reported in the table.  For 5.1T , the value of the correlation coefficient   
decreases to 0.7427, the RB value varies between -7.21% and -2.04% and the 
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value of RE varies between 173.42% and  111.05% as the response rate increases 
from 25.00% to 83.33%.  For 0.2T , the value of the correlation coefficient   
decreases to 0.7218, the RB value varies between -7.47% and -2.05% and the 
value of RE varies between 166.63% and  110.38% as the response rate increases 
from 25.00% to 83.33%.  For 5.2T , the value of the correlation coefficient   
decreases to 0.6957, the RB value varies between -7.69% and -2.07% and the 
value of RE varies between 159.12% and  109.57% as the response rate increases 
from 25.00% to 83.33%.  For 0.3T , the value of the correlation coefficient   
decreases to 0.6663, the RB value varies between -7.89% and -2.36% and the 
value of RE varies between 151.70% and  108.71% as the response rate increases 
from 25.00% to 83.33%.  For 5.3T , the value of the correlation coefficient   
decreases to 0.6351, the RB value varies between -8.06% and -2.09% and the 
value of RE varies between 144.85% and  107.85% as the response rate increases 
from 25.00% to 83.33%.   For 0.4T , the value of the correlation coefficient   
decreases to 0.6033, the RB value varies between -8.20% and -2.10% and the 
value of RE varies between 138.76% and  107.03% as the response rate increases 
from 25.00% to 83.33%.   
 
In order to have another look at the values of the percent relative bias (RB) and 
percent relative efficiency (RE) as a function of response rate (RR), we 
developed the scatter plots shown in Figure 6.1  For each value of the response 
rate (RR) there are several dots showing the percent relative bias and percent 
relative efficiency values corresponding to the values of the correlation 
coefficient    between 0.3741 and 0.7612 obtained through the different values 
of the Box-Cox transformation T . 
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Fig. 6.1.  Percent RB and Percent RE versus response rate (RR) 

From Fig. 6.1, it is clear that if the response rate (RR) is high, then the absolute 
value of the percent relative bias (RB) remains close to zero, while at the same 
time there is adverse effect of having a low value of the percent relative 
efficiency (RE).  If the response rate is low then the absolute value of the percent 
relative bias remains less than 4%, and the relative efficiency can vary up to 
140%, depending on the value of the correlation coefficient.  Thus if the response 
rare (RR) is moderate and value of the correlation coefficient between the study 
and auxiliary variable is also moderate, the use of proposed imputing method 
based on sensible constraint is useful.  We devote Figure 6.2 to visualizing the 
RR and RE values as functions of the value of correlation coefficient   
(=RHO(y,x) ) between the study variable and auxiliary variables. 

JSM2015 - Survey Research Methods Section

3216



 

0.80.70.60.50.4

-1

-2

-3

-4

-5

-6

-7

-8

-9

-10

0.80.70.60.50.4

200

180

160

140

120

100

RB

RHO(y,x)

RE

Scatterplot of RB, RE vs RHO(y,x)

 
Fig. 6.2.  RB and RE values as a function of correlation coefficient with varying RR.   

 

From Fig. 6.2 it is obvious that higher value of the correlation coefficient   
yield higher values of the percent relative efficiency (RE) but at the same time, 
may produce more biased estimates.  The finding from Fig. 6.2 are not as clear as 
were those from Fig. 6.1, because of noisy nature of RB when the value of   
becomes more than 0.6.  Fig. 6.3 provides closer look at the behaviour of RB 
versus the correlation coefficient  , with the panel variable being RR. 
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Fig. 6.3.  RB as a function of correlation coefficient for different levels of RR. 
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Figure 6.4 provides a close look at the behaviour of RE versus the correlation 
coefficient  , with the panel variable being RR. 

200

150

100

0.80.60.4

200

150

100

0.80.60.4

200

150

100

0.80.60.4

16.67

RHO(y,x)

R
E

25.00 33.33

41.67 50.00 58.33

66.67 75.00 83.33

Scatterplot of RE vs RHO(y,x)

Panel variable: RR
 

Fig. 6.4.  RE as a function of correlation coefficient for different levels of RR. 
 

7. Conclusion 
 

As a result of this paper, we conclude that the proposed imputing method 
performs better than the mean method of imputation under the assumption of 
satisfying a set of sensible constraints imposed on the auxiliary variables and the 
study variable for the responding and non-responding units in a sample.  The 
proposed imputing method is computationally oriented and allows for extension 
to the use of multi auxiliary variables. This is a first attempt in the literature of 
imputing methodology, and seems to have broad possibilities for extending to 
various sampling schemes and different situations.   It will be worth mentioning 
that the proposed ‘sensible constraints’ are not unique, and it will always be 
possible to come up with an improved set of “sensible constraint” based on 
experience. We  look forward to developing more such sensible constraints in our 
future research.  In these proceedings paper, we have provided only preliminary 
results of the main article which will appear somewhere else in future. 

 
8. Appendix 

! FORTRAN CODES CHOUKRI10.F95 
              USE NUMERICAL_LIBRARIES 
               IMPLICIT NONE 
               INTEGER NP,I,NS,NR,ID(1000) 
               REAL Y1(1000), X1(1000),T, SUMY, SUMX, SMU12 
               REAL Y(1000),X(1000),V1(1000),V2(1000),V3(1000) 
               REAL ANR, ANS,ANP,BIASP,YM,XM,SUMX2,SUMY2,SUMXY 
               REAL RHOXY,AMU12,COVXY,VARX,VARY,RE,RR 
               CHARACTER*20 OUT_FILE 
               CHARACTER*20 IN_FILE 
               WRITE(*,'(A)') 'NAME OF THE INPUT FILE' 
               READ(*,'(A20)') IN_FILE 
               OPEN(41, FILE =IN_FILE, STATUS='OLD') 
               WRITE(*,'(A)') 'NAME OF THE OUTPUT FILE' 
               READ(*,'(A20)') OUT_FILE 
               OPEN(42, FILE=OUT_FILE, STATUS='UNKNOWN') 
               READ(41,*)NP 
              ANP = NP 
              DO 10 I =1, NP 
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10          READ(41,*)ID(I),Y1(I),X1(I),V1(I),V2(I),V3(I) 
              DO 16 T = -4, 4, 0.5 
             DO 11 I= 1, NP 
             Y(I) = Y1(I) 
11          X(I) = (X1(I)**T-1)/T 
              NS = 60 
              ANS = NS 
              DO 21 NR = 5, 50, 5 
              ANR = NR 
              SUMY = 0.0 
              SUMX = 0.0 
              DO 12 I=1, NP 
              SUMY = SUMY + Y(I) 
12          SUMX = SUMX + X(I) 
              YM = SUMY/ANP 
              XM = SUMX/ANP 
              SMU12 = 0.0 
              SUMXY = 0.0 
              SUMY2 = 0.0 
              SUMX2 = 0.0 
              DO 14 I = 1, NP 
              SMU12 = SMU12 + (Y(I)-YM)*(X(I)-XM)**2 
              SUMXY = SUMXY + (Y(I)-YM)*(X(I)-XM) 
              SUMX2 = SUMX2 + (X(I)-XM)**2 
14          SUMY2 = SUMY2 + (Y(I)-YM)**2 
              AMU12 = SMU12/(ANP-1) 
              COVXY = SUMXY/(ANP-1) 
              VARX = SUMX2/(ANP-1) 
              VARY = SUMY2/(ANP-1) 
              RHOXY = COVXY/SQRT(VARX*VARY) 
              BIASP = -( (1/ANR-1/ANS)*AMU12/(YM*VARX)+1/ANR )*100 
              RE=(1/ANR-1/ANP)*100/((1/ANS-1/ANP)+(1/ANR-1/ANS)*(1-RHOXY**2)) 
              RR = ANR*100/ANS 
              IF(ABS(BIASP).LT.10) THEN 
              WRITE(42,101)NP,NS,NR,RR,T,RHOXY,BIASP,RE 
101       FORMAT (2X,3(I5,1X),2X,F7.3,2X,F7.3,2X,F9.4,2X,F9.2,2X,F9.2)  
             ENDIF 
21         CONTINUE 
16         CONTINUE 
            STOP 
            END 
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