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Abstract 
 
Pharmaceutical clinical trials with multiple comparisons require adjustment for 
familywise false positive error. Positively correlated tests have less alpha inflation than 
independent tests. Dmitrienko, Tamhane, and Bretz (2010) outline general test 
procedures which can take advantage of alpha inflation reduction resulting from positive 
correlation. In many cases, the design itself results in structural correlation implicit in 
design assumptions. A customized adjustment taking into account the specific design 
context can result in greater power and/or reduced sample sizes. This presentation 
outlines the approach, briefly covers background theory, and discusses and provides 
theory-derived and/or simulation results for examples including a multi-arm trial with a 
common control arm, a trial with an overall population and a subgroup, and correlation 
between PFS and OS under a correlated bivariate exponential model.  
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1. Background 

 
Pharmaceutical industry regulators require strong control of the family-wise error rate 
(FWER) when submitting  trials with multiple endpoints and/or comparisons. The topic 
has attracted significant regulatory attention. In 2002, the EMEA issued “Points to 
Consider on Multiplicity Issues in Clinical Trials.” The FDA has been developing a draft 
“Guidance for Industry: Analysis of Clinical Trials with Multiple Endpoints”  
 
Clinical trialists have sought to gain more from each trial by increasing the number of 
treatments and endpoints evaluated, and developing a more comprehensive picture of the 
effect of a treatment on patient survival, disease status, symptoms, and quality of life. 
These efforts have tended to increase the number of endpoints and hypotheses tested in 
each trial.   
 
Because strong multiplicity control can be costly in study power, sample size, and 
duration, a variety of techniques have been developed to make multiplicity control more 
efficient. Efficient techniques have tended to focus on composite endpoints and on closed 
testing procedures with parallel, sequential, or hybrid testing techniques. 
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2. Correlated Tests 

 
When tests are positively correlated, the family-wise error rate is less than under 
independence, as rejection of one null hypothesis increases the likelihood of rejection of 
others (and vice versa). Dmitrienko et al (2010) note that standard nonparametric testing 
procedures (e.g. Bonferroni, Holm) perform poorly in the presence of correlated data, 
Semi-parametric procedures (e.g. Hochberg, Hommel) perform better in the presence of 
strongly correlated data but are not optimal. Procedures based on specific distributional 
assumptions (e.g. Dunnett’s Test) perform best.  
 
Incorporating information about test correlation structure into the method for controlling 
the FWER can result in more efficient trial designs.  
 
Several general techniques have been developed to evaluate and incorporate correlation 
structure during analysis, including  the boostrapping approach of Westfall and Young 
(1993), and Romano and Wolf (2011) These techniques rely on assumptions which 
reduce the number of elements in the correlation matrix to a manageable number, 
including subset pivotality for Westfall and Young, and monotonicity of critical values 
for Romano and Wolf.   
  

3. Structural Correlation 
 
The approach proposed in this paper uses correlation structure inherent in a study design 
and its fundamental assumptions to reduce the degree of alpha adjustment, and hence the 
sample size, needed to achieve a given FWER at a given power. This approach uses study 
distributional assumptions and requires a method specific to a particular study design. It 
is not a general method and not appropriate for all trials. 
 
Unlike general methods, it does not require introducing an array of new assumptions, and 
it is not dependent on the results of post-hoc analyses.  It depends only on protocol and 
endpoint definition assumptions. The alpha adjustment can be calculated in advance and 
pre-specified in the protocol or SAP.  Although the correlation characteristics and degree 
of alpha adjustment can in principal be derived from theory, simulations are required in 
practice. The needed simulations are often computationally intense.   
 
Many common trial designs and endpoints have characteristics resulting in structural 
correlation between hypothesis tests, and hence potentially can be used to support a 
study-specific alpha adjustment. The use of structural correlation proposed here is not 
necessarily always acceptable for regulatory use. Even where its acceptability is 
questionable, it can still be used for evaluations of sponsor risk (study power and sample 
size), and might be usable in situations where regulatory leniency is possible (e.g. rare 
diseases, accelerated approval, etc.).  
 
  

4. Three Examples 
 
This paper presents three examples which should help illustrate the breadth of the      
potential applicability of the approach. These examples are: 
 

 Correlation between tests on an overall study population, and on a subgroup. 
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 Correlation between the treatment vs. control hypothesis tests in a multi-arm   

study sharing  a control arm.  
 

 Correlation between PFS and OS due to the common death events. 
 
 

5. Correlation Between Population and Subgroup 
 
We’ll use a single-arm response example for illustration 
 
Suppose a population has two subgroups, Group 1 which is the subpopulation of interest 
and Group 2 comprising the remaining patients.  
 
Let Group 1 have proportion q1=q and response rate p1, Y ~ Bin(n; q) 
Let Group 2 have proportion q2=1-q and response rate p2 
 
Then the total population can be modeled as a 2-component mixture of binomial 
populations 
 

𝑃(𝑋 = 𝑚) =  ∑ 𝑞𝑖

2

𝑖=1

𝑝𝑖
𝑚(1 − 𝑝𝑖)𝑛−𝑚 

 
The total population variance is accordingly 
 

VT = (∑ 𝑞𝑖[𝑛𝑝𝑖(1 − 𝑝𝑖) + (𝑛𝑝𝑖)2]2
𝑖=1 ) −  (∑ 𝑞𝑖𝑛𝑝𝑖

2
𝑖=1 )

2 
 
The correlation between population and subgroup response is thus 
 

𝑛[(1 − 𝑞1𝑝1)(𝑞1𝑝1 + 𝑞2𝑝2)]

√𝑉𝑇√𝑞1𝑝1(1 − 𝑝1)
 

 
In practice, particularly for multiple subgroups and/or use of a multi-stage design, the 
correlation between tests is calculated using simulations. 
 
 

6. Multi-Arm Trials Sharing a Control 
 
Multi-arm efficacy trials are used, especially in Phase II, to evaluate different 
formulations or regimens in a single trial. Sample sizes in Phase II are usually insufficient 
to support direct pairwise comparison of all treatments. Instead, hypothesis tests are 
performed only for comparisons with the control arm. 
 
Wason and Jaki (2012) showed that under simplifying assumptions (e.g. the allocation to 
each experimental arm is equal), the correlation between normal test statistics at each 
stage is 1/(1 +r), where r is the proportion of the total sample size allocated to the control 
arm.  Because of the complexity of the analytic forms as shown by Magirr et al. (2012), 
Wason and Jaki recommend simulations to establish trial operating characteristics.  
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Wason and Jaki propose a quicker method of simulating trials than generating each 
individual patient outcome. They propose generating matrices of test statistics for each 
comparison at each stage and using them to obtain simulated operating characteristics. 
They note a large number of replicates is necessary to reduce error in the estimates, and 
recommend 250,000 replicates for “a good estimate in practice” 
 
In real-world practice, trial durations and interim stopping probabilities need to be 
estimated with non-constant accrual and drop-out patterns taken into account. Designs 
often have other complicating characteristics, and may require sensitivity analyses for 
contingencies such as cross-over or additional population heterogeneity. Accordingly, in 
evaluating a real large-scale trial, it will often be necessary to simulate at the individual-
patient level to take these additional specification characteristics and sensitivity 
contingencies into account.  
 
Simulating at the individual patient level with a sufficient number of replicates to obtain a 
reliable calculation can be computationally intensive. Multiple runs should be performed 
to evaluate computational replicability for the number of replicates chosen. Efficient 
programming and monitoring of computational resource use is critical. So long as the 
alpha is estimated accurately, other characteristics such as power, study duration, etc. can 
be and in practice will often need to be estimated with somewhat less than ideal 
reliability in order to reduce the number of replicates to manageable proportions. As 
underlying distributional, efficacy, and accrual assumptions are imperfect and often 
merely educated guesses, a small amount of imprecision (e.g. calculating power to 
nearest percent) is generally a reasonable tradeoff to obtain a smaller sample size. 
 
 

7. Correlation Between PFS and OS 
 
Progression-free survival (PFS) is a common time-to-event endpoint in Phase II oncology   
studies.  PFS events are defined as occurring at the earlier of tumor progression or death.  
It is a   composite of time to tumor progression (TTP) and overall survival (OS).  Because 
death events are common to PFS and OS. the two endpoints are correlated. Taking the 
correlation into account requires making assumptions about their joint distribution. 
 
Fleischer et al. (2009) proposed a model they characterized as the “maximal 
independence” model, making the minimum dependence assumptions necessary to share 
death events. 
 
Under the model:  
 
OS ~ Exp(λ1) 
TTP ~ Exp(λ2) 
PFS = min(OS, TTP) 
 
It follows that PFS ~ Exp(λ1+λ2) 
 
Fleischer et al. showed that Corr(PFS, OS) = λ1/(λ1+λ2) = MedPFS/MedOS 
 
In their paper Fleischer et al. discuss a more general model that takes into account   
additional assumptions about dependence between PFS and OS. For our purposes, 
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however, we want to assume only structural correlation, dependence inherent in PFS and 
OS having  death events in common.  
 
The Fleischer maximal independence model represents a natural representation of 
structural correlation. It results in both PFS and OS having a simple exponential 
distribution, which is consistent with general protocol assumptions. It can be incorporated 
into patient-level clinical trial simulations in a straightforward way, with the FWER 
(probability of OS or PFS succeeding under joint H0) estimated without additional 
complexity. 
 
 

8. Example Simulation 
 
An example simulation study is presented, evaluating the correlation between a subgroup 
and the total study population for a survival analysis endpoint. The simulation scenarios 
shown use a subgroup proportion between 10% and 90%. Each simulated trial 
randomizes 500 simulated patients into subgroup vs. other and treatment vs. control 
groups. For the simulation performed under H0, all patients receive a simulated random 
survival time from the same exponential distribution.  
 
The simulation performs a log-rank test for treatment vs. control separately for all 
patients, and for patients in the subgroup. A 2-sided log-rank p-value is obtained. The 
correlation coefficients between the subgroup and overall Kaplan-Meier medians and log-
rank p-values are calculated. For each comparison, alpha is calculated as the proportion 
of log-rank trials for which the simulated p-value was < 0.05. The FWER is calculated as 
the proportion of trials at which at least one of the group and subgroup comparisons had a 
simulated p-value < 0.05. Simulations used SAS 9.2. 50,000 replicates were used. Results 
are shown in Table 1. 
 
 

Table 1: Simulation Results 
 
Percent 

in 

Sub-

group 

Simulated 

Alpha  

Total 

Population 

Simulated 

Alpha  

Subgroup 

Simulated 

Correlation 

Between 

Kaplan-

Meier 

Medians 

Simulated 

Correlation 

Between 

Log-Rank 

p-values 

Simulated  

FWER 

Hochberg 

and 

Hommel 

 FWER 

10% 0.0505 0.0568 0.282 0.055 0.1016 0.1049 
10% 0.0505 0.0568 0.282 0.055 0.1016 0.1049 
20% 0.0518 0.0538 0.421 0.121 0.0974 0.1013 
30% 0.0513 0.0530 0.521 0.206 0.0934 0.0981 
40% 0.0524 0.0510 0.610 0.277 0.0889 0.0950 
50% 0.0519 0.0523 0.683 0.363 0.0866 0.0925 
60% 0.0515 0.0528 0.756 0.459 0.0835 0.0908 
70% 0.0496 0.0505 0.820 0.560 0.0761 0.0849 
80% 0.0511 0.0502 0.880 0.688 0.0721 0.0843 
90% 0.0507 0.0509 0.939 0.823 0.0655 0.0802 
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9. Discussion 
 

The simulated FWER was close to the nominal 0.10 for small subgroup proportions, but 
became noticeably smaller as the proportion of patients in the subgroup increases. Using 
the actual correlation structure resulted in a reduced total alpha compared to the 
Hochberg and Hommel procedures (which had identical results in this example). The 
Holm procedure (not shown) had nominal alpha of 0.10 (same as Bonferroni). 
 
Consistent with Wason and Jaki’s findings regarding multi-arm trials, a very large 
number of replicates is required for each simulation which may be beyond feasible 
computing capacity absent enhanced computing facilities. 50,000 replicates took over an 
hour for each overnight run on a Unix system. As indicated by the noticeable differences 
in simulated total population alpha across scenario runs, 50,000 replicates appeared 
inadequate for regulatory use, and Wason and Jaki’s estimate of 250,000 replicates might 
be more appropriate. 
 
To obtain a desired FWER value, simulations would need to be run iteratively, adjusting 
the nominal alpha values until the simulated FWER value reaches the desired value. 
 
 

10. Conclusions 
 
Structural correlation is potentially available  for exploitation in many common 
clinical trial situations. Utilizing structural correlation can result in spending less 
alpha than standard nonparametric and semi-parametric procedures.  
 
Simulation-based approaches based on fundamental, generally-accepted, pre-hoc 
protocol assumptions may be more reliable in a pharmaceutical-trial context than 
bootstrap methods based on post-hoc analyses of a single trial dataset.  
 
However, the simulations needed to account for structural correlation are complex 
and extremely computationally intensive. The method is not appropriate for all 
situations.  It may be infeasible absent enhanced computing resources.  
 
The approach is not, however, without potential. Pivotal oncology trial costs per 
patient can run in the tens of thousands of dollars and potential sales can be in the 
hundreds of millions or billions. In this context, the sample size reduction and/or 
increased success chance of even a modest relaxation of the nominal FWER alpha 
requirements can justify the costs, especially as computing efficiency improves. 
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