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Abstract 

In some clinical development programs, there are potential biomarkers with promising but uncertain 
predictive effect, while the probability of success in the overall population cannot be readily dismissed. It 
is risky to focus only on the overall population, or just the biomarker subpopulation. In 2009, Chen and 
Beckman proposed a Bayesian decision framework to optimize the type I error rate (alpha) allocation in a 
Phase III clinical study with possible predictive subset effect. The utilization of internal data in this 
framework is of particular interest because it provides an opportunity to mitigate the potential risk of mis-
specified study assumptions using an auto-adaptive strategy. In this paper, we examine this auto-adaptive 
strategy in detail through extensive numerical case studies, and provide guidance on the appropriate use 
of partial current trial (internal) data in this data-driven optimization framework. We show that internal 
data can be used to inform the alpha allocation to hypothesis testing in the overall population and the 
subgroup. The resulting adaptive testing strategy is robust with respect to the uncertainty in the predictive 
subgroup effect and biomarker prevalence. 
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1. Introduction 
With rising interest on targeted therapy and personalized medicine, Phase III clinical trials that are 
designed to test the treatment effect in both the overall general population and a biomarker-identified 
subgroup are becoming increasingly popular. These trials are often necessary due to uncertainty in the 
potential predictive biomarker effect. For an experimental therapy, preliminary evidence may suggest 
stronger treatment effect for patients with positive biomarker expressions, but the general population may 
also derive some benefit regardless of the biomarker status. Such uncertainty poses a challenge at the 
onset of the Phase III program. Traditionally, Phase III trials focused on the overall population. In the 
RADIANT trial [1] that compared adjuvant erlotinib versus placebo in EGFR positive patients with 
completely resected stage IB–IIIA non-small cell lung cancer (NSCLC), erlotinib improved disease free 
survival in the EGFR del19/L858R Activating Mutation (M+) Subgroup. The result was however not 
statistically significant due to the pre-specified hierarchical testing that prioritized the overall population. 
On the other hand, some sponsors chose to limit their Phase III trials to only the biomarker-positive 
subpopulation in search for a targeted therapy, when the drug worked reasonably well for a larger 
population, or when the correct biomarker subgroup was not what was expected. Gefitinib, an inhibitor of 
the epidermal growth factor receptor tyrosine kinase (EGFR-TK), improved disease-related symptoms 
and induced radiographic tumor regressions in later line patients with NSCLC, but later studies 
surprisingly found “ no consistent associations between levels of EGFR expression and  radiographic or 
symptomatic improvements” [2]. The correct subgroup was later found to be defined by the sequence of 
the EGFR receptor [3,4,5] 

The risk for not being able to identify a meaningful subgroup effect and the risk of unnecessarily 
restricting the target population may be mitigated by targeting both the overall population and the 
biomarker subgroup in the same trial. The trial will start out to enroll “all-comers”, including both 
biomarker positive and biomarker negative patients. The two co-primary hypotheses, one for the overall 
population, another for the pre-determined subgroup, are pre-specified in the statistical analysis plan. The 
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trial will be considered positive when the null hypothesis of no treatment effect is rejected in either the 
overall population, or the biomarker subgroup.  

Since the ongoing Phase III trial provides the best data to substantiate the biomarker effect for the 
experimental therapy, practitioners often turn to adaptive designs to modify the trial based on partial trial 
information (Wang [6]). If the subgroup identification or biomarker expression cutoff has not been 
finalized before the Phase III trial starts, partial data can be used to determine the subgroup; the remaining 
portion of the trial can be used to test for the subgroup treatment effect (Freidlin and Simon [7]). However, 
analytical validation of the new assay cutoff within the framework of a seamless trial may be challenging. 
If the subgroup has already been determined before Phase III trial starts, interim data can also be used to 
determine the viability of the identified subgroup. A significant literature has been developed in recent 
years for subpopulation enrichment in this setting. These strategies emphasize the adaptations upon 
determination of futility for the biomarker negative subgroup at an interim analysis. Notable examples 
include the work of Friede [8], Mehta [9], Brannath [10], and Jenkins [11]. The biomarker positive 
subpopulation would typically continue as the only target population (with possible enrichment) in this 
framework. An alternative scenario, where some possible therapeutic activities have also been observed 
in the biomarker negative group, cannot be addressed by subpopulation selection and enrichment. In 
practice, one might argue that the latter scenario could be more common, when the identification of a 
perfect biomarker remains an elusive goal. 

Instead of selecting one of the subgroups to move forward, Phase III all-comer trials often have to test the 
treatment effect hypotheses in both the overall population and the biomarker subgroup. These trials are 
most useful given adequate prevalence of the biomarker subgroup; otherwise partial enrichment may be 
required. With the simultaneous testing of two hypotheses, multiplicity control becomes an important 
statistical consideration.  Let H0

(1) and H0
(2) be the null hypotheses of no treatment effects in the overall 

population and the subgroup respectively.  By the closed testing procedure the family-wise error rate is 

controlled at 𝛼 if 𝑃 �rejection�H0
(1) ∩ H0

(2)� ≤ 𝛼, and 𝑃 �rejection�H0
(𝑖)� ≤ 𝛼, 𝑖 = 1 or 2. Different testing 

strategies can be used to achieve the multiplicity control.  The fall-back or ordered testing strategy can 
prioritize testing in either the overall population or the subgroup; the Bonferroni or Simes procedure [12] 
allow the remaining hypothesis to be tested in case one hypothesis fails to be rejected. More recently, 
Spiessens and Debois [13] proposed a method to control the FWER while improving the overall study 
power by taking advantage of the positive correlation between the testing statistics in the subgroup and 
the overall population. None of these methods, however, consider what type I error rate (alpha) should be 
used for each hypothesis to optimize the probability of overall trial success (i.e. rejection of null 
hypothesis in either the overall population or the biomarker subgroup). 

In 2009, Chen and Beckman proposed a method that “provides objective decision rules for Phase III 
assuming a candidate subpopulation biomarker is available after Phase II, but it is not fully validated” 
[14]. They demonstrated that this method can be used to optimize “alpha-splitting” between the 
hypothesis for the overall population and the subgroup. The method of Chen and Beckman shares some 
common element with that of Spiessens and Debois in the treatment of correlated testing statistics. The 
additional optimization step in [14] is comparable to selecting an alpha-spending function that maximizes 
the overall study power in the setting of Spiessens and Debois. In this article, we expand on the concept 
of [14], and seek to optimize the alpha allocation to the overall population and the subgroup hypotheses 

JSM2015 - Section on Medical Devices and Diagnostics

3147



by maximizing the Bayesian conditional expected power given external and/or partial internal data. We 
show that by paying a pre-determined amount of penalty on nominal type I error rate, this auto-adaptive 
strategy can draw upon the trial information to guide the alpha allocation between the two hypotheses.  
The resulting testing strategy is robust for a variety of possible configurations regarding the treatment 
effects in subgroup and overall population. 

The article is organized as follows. Section 2 introduces the method and discusses the practical 
considerations of type I error control and sample size adjustment.  Section 3 presents a series of case 
studies that demonstrate the performance of the auto-adaptive alpha allocation strategy in a hypothetical 
Phase III oncology trial. We conclude with discussion in Section 4, including the possible extensions for 
subpopulation de-selection involving multiple biomarker cutoffs. 

2. Methods 
Consider a confirmative Phase III clinical trial with a biomarker of interest. The trial will be considered 
successful if the null hypothesis of no treatment effect for either the overall population or the biomarker 
subgroup is rejected. Let the planned total Fisher information of the Phase III trial be 𝐼(𝑖). The Fisher 
information measures the strength of the data in statistical inference, and is typically proportional to the 
number of events in a survival trial (total number of events divided by 4 in a 1:1 randomized study), or to 
the sample size in a trial studying a continuous or binary clinical endpoint. We shall refer to 𝐼(𝑖) as the 
total internal information of the Phase III trial, to differentiate from  𝐼(𝑒) , the external information. 
External information may be derived from Phase II studies or other publicly available data on drugs with 
similar mechanism. Point estimates and associated standard errors for the Phase III clinical endpoint 
based on a small exploratory study, for instance, could reasonably serve as the external information for 
the current trial. Often, however, such external information may be based on early surrogate endpoints 
that may not correlate well with the actual clinical benefit.  

We further assume that in both the external and internal data, the information ratio in the subgroup vs. 
overall population is 𝑟. Therefore, the external and internal information pertinent to the treatment effect in 
the subgroup is 𝑟𝐼(𝑒)  and 𝐼(𝑖)  , respectively. As in the case of external information for the treatment 
effects, prior/external information about the information ratio 𝑟 may be available, but the reliability of 
such information is often questionable. 

Let 𝑋1 and 𝑋2 be the two 𝑍 statistics for the overall population and the subgroup. The correlation between 

𝑋1  and 𝑋2  is √𝑟 . Under the global null hypothesis, (𝑋1,𝑋2)~𝑀𝑀𝑀�[0, 0], � 1 √𝑟
√𝑟 1

�� ; under an 

alternative hypothesis, (𝑋1,𝑋2)~𝑀𝑀𝑀��√𝐼(𝑖)𝛿1,�𝑟𝐼(𝑖)𝛿2� , � 1 √𝑟
√𝑟 1

�� , where 𝛿𝑖 ’s are the treatment 

effects in question, such as the log hazard ratio in a time-to-event trial, or the mean reduction of a 
continuous clinical endpoint.  

Denote 𝛼 as the Type I error rate of the entire trial. To control the familywise error under the global null 
hypothesis, the Type I error rates 𝛼1 and 𝛼2 allocated to the overall population and subgroup hypotheses 
should satisfy 
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 1 −𝛷√𝑟�𝑍1−𝛼1 ,𝑍1−𝛼2� = 𝛼,               (1) 
 

where 𝑍1−𝛼1 ,𝑍1−𝛼2 are the standard normal quantiles.  Since both 𝛼1  and 𝛼2  are smaller than 𝛼 , the 
familywise type I error is strongly controlled at 𝛼. There are infinite many pairs of (𝛼1,𝛼2)  that will 
satisfy (1), but a particular configuration of  (𝛼1,𝛼2)  may exist to achieve optimality as defined by an 
objective function of choice. In this article, we will focus on the (conditional) expected power as the 
objective function for the optimization. 

2.1. Auto-adaptive Alpha Allocation  
Suppose we would like to utilize a fraction 𝑡 ∈ [0,1) of the total internal information 𝐼(𝑖) in the Phase III 
trial to inform the alpha allocation. Let 𝑋𝑖,𝑡 and 𝑋𝑖,1−𝑡 be the 𝑍-statistics based on fraction 𝑡 and 1 − 𝑡 of 
the internal data.  The 𝑍-statistics of the final analysis are 𝑋𝑖 = √𝑡𝑋𝑖,𝑡 + √1 − 𝑡𝑋𝑖,1−𝑡  , 𝑖 = 1,2 . Under 
the alternative hypotheses, a reasonable strategy is to find the alpha allocation that will maximize the 
conditional power given 𝑋1𝑡 and 𝑋2𝑡: 

      𝑃��𝑋1 > 𝑍1−𝛼1� ∪  �𝑋2 > 𝑍1−𝛼2�  |𝑋1𝑡 = 𝑥1𝑡,𝑋2𝑡 = 𝑥2𝑡� 

               = 1 −Φ√𝑟 �𝑍1−𝛼1−√𝑡𝑥1,𝑡 

√1−𝑡
− �(1 − 𝑡)𝐼(𝑖)δ1, 𝑍1−𝛼2−√𝑡𝑥2,𝑡 

√1−𝑡
− �(1 − 𝑡)𝑟𝐼(𝑖)𝛿2�,                        (2) 

where δ1,δ2 are the treatment effects in question for the overall population and the subgroup respectively.  

A Bayesian auto-adaptive strategy has been proposed to account for the uncertainty in the true values of 
δ1,δ2 (Chen and Beckman, 2009). This strategy explicitly maximizes the conditional expected power 

 
𝑄𝑡�𝛼1,𝛼2;𝑥1,𝑡,𝑥2,𝑡� = ��1 −Φ√𝑟 �

𝑍1−𝛼1 − √𝑡𝑥1,𝑡 
√1 − 𝑡

− �(1 − 𝑡)𝐼(𝑖)Δ1, 

                               
𝑍1−𝛼2 − √𝑡𝑥2,𝑡 

√1 − 𝑡
− �(1 − 𝑡)𝑟𝐼(𝑖)Δ2��𝑑𝐺𝑡�Δ1,Δ2|𝑥1,𝑡,𝑥2,𝑡� 

 

 
 
 

(3) 

under the constraint of 

 1 −𝛷√𝑟�𝑍1−𝛼1 ,𝑍1−𝛼2� = 𝛼𝑡 (4) 
where 𝛼𝑡  is the penalized type I error rate for using a given t-fraction of internal information. The 
expectation is taken with respective to the posterior joint distribution 𝐺𝑡(Δ1,Δ2) given 𝑥1𝑡,𝑥2𝑡, and any 
available prior (external) information for the treatment effects.  

At 𝑡 = 0, the above strategy maximizes the probability of success, or the Bayesian expected power given 
the external information about the treatment effects in the overall population and the biomarker subgroup. 
A particularly interesting special case arises when 𝐼(𝑒) = 0. The alpha allocation becomes completely 
auto-adaptive based on a fraction of the internal data when no external data is available.   
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An alternative strategy to utilize partial trial data for alpha allocation is to reserve a fraction of data to 
estimate the treatment effects and biomarker prevalence, and use the remaining data for the hypothesis 
testing. In section 3, we show that this approach is sensitive to the information fraction of the partial data, 
and in general less powerful than the above adaptive allocation strategy. 

For a pair of true treatment effect parameters (𝛿1,𝛿2), the unconditional power is the expectation of (2) 
with respect to the partial data (𝑋1𝑡 ,𝑋2𝑡), with (𝛼1,𝛼2) determined by (3) and (4). Since for every 
possible values of (𝑋1𝑡,𝑋2𝑡), a different set of (𝛼1,𝛼2) needs to be derived by an optimization procedure, 
the calculation of unconditional power is computationally demanding. We have made extensive use of 
parallel computing on a high-performance computing cluster for the numerical examples in Section 3.  

2.2. Penalized Type I Error Rate 
Denote �𝛼�1,𝑡,𝛼�2,𝑡� = arg max 𝑄(𝛼1,𝛼2 ;𝑥1𝑡, 𝑥2𝑡,𝛼𝑡) . The actual type I error under the global null 
hypothesis is: 

𝑃(𝛼𝑡) = ∫ �1−Φ√𝑟 �
𝑍1−𝛼�1,𝑡−√𝑡𝑥1𝑡 

√1−𝑡
,  
𝑍1−𝛼�2,𝑡−√𝑡𝑥2𝑡 

√1−𝑡
��× 𝜙√𝑟(𝑥1𝑡,𝑥2𝑡)𝑑𝑥1𝑡𝑥2𝑡, 

where 𝜙√𝑟 is the probability density function for a bivariate normal distribution with correlation of √𝑟. 
For any 𝑡 > 0, 𝑃(𝛼𝑡) > 𝛼𝑡. Intuitively, this is due to the adaptive nature of the alpha allocation procedure, 
which attempts to assign more alpha to the hypothesis that exhibits more promising trend in the partial 
data. Under the null hypotheses, such a procedure will inflate type I error. If we can calculate 𝑃(𝛼𝑡) for 
each value of 𝛼𝑡 , an 𝛼𝑡 < 𝛼  can be identified so that 𝑃(𝛼𝑡) = 𝛼  (see Chen & Beckman, 2009 for a 
numerical procedure to calculate 𝛼𝑡). This can be interpreted as a penalty on the type I error rate for using 
internal data to inform the alpha allocation. To maintain the strong control of the familywise type I error, 
the auto-adaptive strategy needs to operate under the constraint (4) using the penalized type I error rate 𝛼𝑡. 

The penalized Type I error rate at an information fraction 𝑡 depends on the information ratio 𝑟 between 
the subgroup and the overall population, and the ratio between the external/prior information 𝐼(𝑒) and the 
total current trial information 𝐼(𝑖) . It also depends on the family of distributions to which 𝑔(Δ1,Δ2) 
belongs.  Figure 1 illustrates 𝛼𝑡 at different ratios of  𝐼(𝑒): 𝐼(𝑖), assuming 𝑟 = 0.5, and 𝑔(Δ1,Δ2) takes the 
shape of a bivariate normal distribution. In all cases, 𝛼𝑡 decreases when more internal data are used to 
inform the alpha allocation as expected. Comparing different ratios of prior versus current trial 
information 𝐼(𝑒): 𝐼(𝑖) , the most stringent penalty is taken when there is no external information (i.e. 
𝐼(𝑒): 𝐼(𝑖) = 0: 80 ). With more external information available (i.e. 𝐼(𝑒): 𝐼(𝑖) = 5: 80  or  15: 80 ), the 
optimization depends less on the internal data, and the type I error rate is less penalized. 

The auto-adaptive strategy pays a penalty on the type I error rate for the flexibility of allocating alpha 
based on external and/or partial internal data.  Consequently the overall study power under the auto-
adaptive strategy will always be lower than the maximal power that can be achieved if the true treatment 
effects are known and no alpha penalty is taken. Such a tradeoff is commonly seen in adaptive trials. An 
example is the seamless design that picks the winners from the dose-ranging stage of the study: if the final 
analysis of best treatment vs. control comparison includes data from the first stage, appropriate 
adjustment to the critical values or weighting of the data from two stages are needed to control the type I 
error level.  
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Figure 1: Nominal Type I error for intersection hypothesis 𝐇𝟎
(𝟏) ∩ 𝐇𝟎

(𝟐) after using a fraction of trial data to inform the 
alpha allocations. Information ratio between the subgroup and the overall population is 𝒓 = 𝟎.𝟓. 

3. Case Studies 
Consider a Phase III oncology trial with two arms: the experimental treatment, and the control. Patients 
are randomized to the two treatment arms according to 1:1 allocation ratio.  Assume the trial is designed 
to provide 𝐼(𝑖) = 80 units of information for the overall population. The information ratio between the 
biomarker subgroup and the overall population is expected to be  𝑟 = 0.5 , therefore the biomarker 
subgroup may have 40 units of information. If the true treatment effect parameter δ1 = 0.36, this study 
has 88% power to reject the null hypothesis of no treatment effect in the overall population (𝛼 = 0.025  is 
allocated to the overall hypothesis). For an oncology trial with terminal events as the clinical endpoint, 
this is equivalent to detecting a hazard ratio of 0.7 in a study with 320 events (e.g. overall survival or 
progression-free survival) between two treatment arms.  

The optimal alpha allocation depends on the treatment effect in the biomarker subgroup and the overall 
population, as well as the prevalence of the biomarker. For example, if the true treatment effect 
parameters δ1 = 0.36, δ2 = 0.60, and the information ratio is 𝑟 = 0.5, the power can be maximized by 
allocating 𝛼1 = 0.0033 to the overall population, and 𝛼2 = 0.0236 to the subgroup; on the other hand, if 
δ1 = δ2 = 0.36, the maximal power will be achieved by allocating all 0.025 to 𝛼1. In practice, there will 
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always be considerable uncertainty about these treatment effects.  An auto-adaptive strategy can estimate 
the unknown treatment effect using data from the same trial that supports the formal hypothesis testing.  

3.1 Auto-adaptation Using Current Trial Information 
While mature Phase II data would provide the best external information for the planning of Phase III trials, 
in some cases Phase III trials may be directly triggered by promising Phase I results on surrogate 
endpoints. This is often seen in therapeutic areas with urgent needs for new life-saving treatments.  Better 
response in a surrogate endpoint from a subset may prompt interest in this subgroup, but a sensible 
statistical strategy for the Phase III trial should be informed by direct evidence on the clinical endpoint. In 
this section, we will assess the auto-adaptive strategy to allocate alpha based on partial internal data alone 
in the Phase III trial.  

Since the effect size from the subgroup relative to the overall population is unknown, we cannot optimize 
the alpha allocation based on external data.  In practice two ordered testing strategies are often used: 1) 
allocating all alpha to the overall population, and step-down to the testing of hypothesis in the subgroup if 
the trial is positive in the overall population; 2) allocating all alpha to the subgroup, and test the 
hypothesis in the overall population if and only if the trial is positive in the subgroup.  Both strategies 
maintain the strong control of familywise type I error.  

Figure 2 illustrates the performance of the alpha allocation strategies when the biomarker subgroup has 
significant stronger treatment effect ( δ2 = 0.60) compared to the overall population ( δ1 = 0.36).  In this 
case, allocating more alpha to the biomarker subgroup hypothesis improves the overall study power. The 
auto-adaptive allocation strategy correctly identifies the trend, and the overall study power is significantly 
improved compared to the strategy that prioritizes the overall population. It is interesting to note that the 
information fraction to be used to inform the auto-adaptive allocation has minor impact on the overall 
study power. In contrast, if the partial data used to inform alpha allocation are excluded from the 
hypothesis tests, the power decreases quickly as more data are used to estimate the treatment effects and 
biomarker prevalence, as shown by the dot-dash line in Figure 2. 

In Figure 2 the biomarker-focused strategy has the highest power. Such strategy, however, carries 
significant risk. Figure 3 presents the two scenarios in which a biomarker-focused strategy has low 
probability of success:  

a. Prevalence of biomarker-expressed subset is 50% as expected, but biomarker subgroup does not 
have improved treatment effect over the overall population.  

b. Prevalence of biomarker-expressed subset is 20%, lower than the expected 50%, although 
biomarker subgroup does have significantly better treatment effect than the overall population  

In both Figure 3a and 3b, the auto-adaptive strategy appropriately adjusts the alpha allocation according 
to the treatment effect and the actual biomarker prevalence. The overall power is significantly higher than 
the biomarker-focused strategy. Similar to Figure 2, the information fraction used for such auto-
adaptation does not significantly impact the overall study power. 

The auto-adaptive strategy does not have the highest power in either Figure 2 or 3. This is not surprising 
considering the type I error penalty paid for using partial trial data. The non-adaptive strategy may 
achieve better power in a particular case, but performs poorly in other cases. The auto-adaptive strategy 

JSM2015 - Section on Medical Devices and Diagnostics

3152



will always be reasonably close to the highest power one can achieve in any given scenario. The global 
robustness of the auto-adaptive strategy is a desirable property.  
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Figure 2: Comparison of overall study power when biomarker subgroup exhibits better treatment effect compared to 
overall population (𝛅𝟐 = 𝟎.𝟔 vs 𝛅𝟏 = 𝟎.𝟑𝟔), and the prevalence of biomarker positive patients is 50% of overall 
population. 

 

Figure 3: Comparison of overall study power when a) biomarker does not correlate with treatment effect (𝛅𝟏 = 𝛅𝟐 =
𝟎.𝟑𝟔), and b) biomarker subgroup has better treatment effect ( 𝛅𝟏 = 𝟎.𝟑𝟔 vs. 𝛅𝟐 = 𝟎.𝟔), but biomarker prevalence is 
lower than expected (20% vs. 50%).  
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3.2 Auto-adaptation vs. Optimization Using External Information  
In other cases, some direct or indirect evidence on the Phase III clinical endpoint is available from Phase 
II trials or reports on drugs in the same therapeutic class. Such information can be used to form an 
informative prior for the treatment effects in question. In addition to the ordered testing strategy as 
discussed in Section 3.1, we may also optimize the alpha allocation based on the prior distribution. For 
example, the special case of (2) when 𝑡 = 0 can be used to maximize the expected power based on the 
prior distribution 𝐺0(Δ1,Δ2), and the estimated information ratio �̂� between the subgroup and the overall 
population. 

𝑄0(𝛼1,𝛼2) = ��1 −Φ√�̂� �𝑍1−𝛼1 − �𝐼(𝑖)Δ1,  𝑍1−𝛼2 − ��̂�𝐼(𝑖)Δ2��𝑑𝐺0(Δ1,Δ2)                          (5) 

For ease of exposition, we assume that the 𝑍 test statistics for (Δ1,Δ2) based on the external data are: 

�
𝑋1

(𝑒)

𝑋2
(𝑒)�~𝑀𝑀𝑀�� Δ1�𝐼(𝑒)

Δ2��̂�𝐼(𝑒)� ,  � 1 √�̂�
√�̂� 1

��, 

which in turn gives the prior distribution of (Δ1,Δ2) for the Phase III trial: 

�Δ1Δ2�� 𝑋1
(𝑒),𝑋2

(𝑒)~𝑀𝑀𝑀��
𝑋1

(𝑒) √𝐼(𝑒)⁄

𝑋2
(𝑒) √�̂�𝐼(𝑒)⁄

� ,  �1/𝐼(𝑒) 1/𝐼(𝑒)

1/𝐼(𝑒) 1/(�̂�𝐼(𝑒))
��                                 (6) 

The utility of auto-adaptive strategy in the presence of prior information depends on the strength and 
accuracy of the external data. In general, when the external information on the key trial parameters is 
reliable, it is sufficient to use an informative prior to guide the alpha allocation to the two hypotheses of 
interest. The potential gain in power by using additional internal information for the alpha allocation has 
to be balanced against the alpha penalty. Nevertheless, in some cases where the prior is weak and its point 
estimates are potentially biased, the auto-adaptive alpha allocation could help mitigate the risk. 

In Figure 4, we consider a study where the overall population treatment effect  Δ1 = 0.36 , the subgroup 
treatment effect  Δ2 = 0.60, and the information ratio 𝑟 = 0.3 between the subgroup and the overall 
population.  The overall study power at different levels of overall nominal alpha level is illustrated, 
corresponding to the cases where 0%, 10% and 20% of current trial data are used to allocate alpha by 
optimization of (3). The overall study power that can be achieved depends on the alpha allocated to the 
overall population (which in turn determines the alpha for the subgroup hypothesis based on (4)).  The 
total nominal alpha available for the allocation decreases as the fraction of trial information used for alpha 
allocation increases.   
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Figure 4: Comparison of overall study power achieved by allocating different levels of alpha to the overall population, 
when 0%, 10% and 20% of current trial data are used to inform the alpha allocation to overall population hypothesis and 
the subgroup hypothesis.  The point marked on the solid line is the alpha allocation calculated based on a prior 
distribution that indicates strong subgroup effect. 

Considering a scenario where a possible prior for the treatment effects is   

𝑀𝑀𝑀�� 0.22�𝐼(𝑒)

0.69��̂�𝐼(𝑒)� ,  � 1 √�̂�
√�̂� 1

��, 

where  �̂� = 0.5, and 𝐼(𝑒) = 15.  This corresponds to a realistic case where the external information prior 
to the Phase III trial points to a more significant subgroup treatment effect, and a higher prevalence for 
the subgroup identifying biomarker in the general patient population.  

Using this misleading prior, the optimization for (5) would allocate alpha of 0.002 to the overall 
population, and 0.0239 to the subgroup. The power achieved by this alpha allocation is 88%, as marked 
by the horizontal dashed line in Figure 4. In contrast, the power achieved by the auto-adaptive alpha 
allocation using 10% or 20% of the current trial data is approximately 90%.  Since the adaptive procedure 
depends on the partial data 𝑥1,𝑡,𝑥2,𝑡, the alpha allocated to the overall population cannot be illustrated in 
Figure 4  by a stationary point. Note that the power achieved by adaptive alpha allocation using 20% of 
trial information in this example is 90%, while the maximal power from any fixed alpha allocation 
resulting from auto-adaptive allocation, after penalizing alpha for the auto-adaptation, is below 90%.  A 
possible explanation for this phenomenon is that the power curves in Figure 4 are generated by assuming 
the auto-adaptive procedure had generated a fixed alpha allocation unrelated to the observed 𝑥1,𝑡,𝑥2,𝑡, 
while the proposed procedure maximizes the expected conditional power based on the observed partial 
data. Although they are under the same alpha constraint by 𝛼𝑡|𝑡 = 0.2, the adaptive procedure optimizes 
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the alpha allocation for each specific incidence of the partial data, which also contributes to the final test 
statistics for the entire trial.     

As another example, suppose the overall population treatment effect  δ1 = 0.22 , the subgroup treatment 
effect  δ2 = 0.79, and the information ratio 𝑟 = 0.2 between the subgroup and the overall population. The 
subgroup effect is highly significant, but the prevalence of the subgroup in the final data is only 20%, i.e. 
𝑟 = 0.2.  The prior distribution for the treatment effect, on the other hand, could be: 

𝑀𝑀𝑀�� 0.43�𝐼(𝑒)

0.51��̂�𝐼(𝑒)� ,  � 1 √�̂�
√�̂� 1

��, 

where  �̂� = 0.5, and 𝐼(𝑒) = 15.  These external data support the prior assumption of a moderate subgroup 
effect, and 50% prevalence for the biomarker.  

Using this prior, the optimization for (5) would allocate alpha of 0.018 to the overall population, and 
0.009 to the subgroup. The power achieved by this alpha allocation is 83%, marked by the horizontal 
dashed line in Figure 5. In contrast, the power achieved by the auto-adaptive alpha allocation using 10% 
or 20% of the current trial data is approximately 86%. Again, the power achieved by the auto-adaptive 
procedure is close to or even exceeds the maximal power achieved by fixed alpha allocation under the 
same nominal alpha constraint.  

 

Figure 5: Comparison of overall study power achieved by allocating different levels of alpha to the overall population, 
when 0%, 10% and 20% of current trial data are used to inform the alpha allocation to overall population hypothesis and 
the subgroup hypothesis.  The point marked on the solid line is the alpha allocation calculated based on a prior 
distribution that indicates moderate subgroup effect and higher prevalence. 
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Note for the two scenarios we considered, the conventional approach would likely allocate all alpha to the 
subgroup or the overall population completely based on the prior data, which would lead to further power 
loss when the actual treatment effect deviates from our prior assumption. The adaptive allocation strategy 
could ensure that reasonable power is maintained. 

4. Discussion 
We have demonstrated through a series of examples that the auto-adaptive alpha allocation based on the 
optimization of a Bayesian conditional power function can mitigate the risk of incorrect assumptions on 
critical trial parameters.  Notwithstanding the penalty on nominal type I error one has to pay for using 
partial trial information, the power remains stable as the hypothesis testing strategy is adaptive to the 
observed data. The benefit of auto-adaptation is particularly evident when the predictive effect of a 
biomarker or the prevalence of the biomarker is not well understood.  

Although the auto-adaptation may occur at an interim analysis, the methodology presented in Section 2 
does not stipulate when and how the partial data should be chosen. In theory, a representative subset of 
the final data upon conclusion of the Phase III trial can be selected. This is potentially helpful to alleviate 
the temporal bias that is sometimes observed in survival trials when sicker patients tend to enroll early, or 
when standard of care progresses over the duration of the trial. In addition, the methodology discussed in 
Section 2 can even accommodate the use of the full trial data for 𝐺𝑡�Δ1,Δ2|𝑥1,𝑡,𝑥2,𝑡� at 𝑡 = 1, where the 
penalized nominal alpha level is 1.5%. The use of full data to inform alpha allocation may seem 
controversial, but a parallel might be drawn with the Hochberg step-up method. In both approaches, the 
testing strategies are adaptive to the test statistics, or the corresponding p-values. The adaptive alpha 
allocation in this case simply makes use of the distributional assumptions for the test statistics in the 
subgroup and overall population.  

In this article we have only discussed the alpha allocation for the hypotheses in the overall population and 
a pre-specified subgroup.  In practice a Phase III trial may consider more than one tentative cut-point for 
the biomarker expressions; the choice of target subgroup (e.g. patients with any positive biomarker 
expressions, or patients with very strong expressions in the biomarker) may become a data-driven 
decision. Whether partial data from the current trial can be used to inform both the cut-point decision and 
the subsequent alpha allocation is further discussed in [15].  
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