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Abstract 
The typical terms "Symmetric as well as Normal" in Statistics require some 
classification, at least, including arithmetically symmetric and/or normal, geometrically 
symmetric and/or normal, or harmonically symmetric and/or normal. Tests for classifying 
the pattern and symmetricity and/or normality of the data; finding proper location and 
other characteristics, Box-plots, cut off points; outlier(s) detection criteria, criticism of 
the calculations of the location of the existing probability distributions, etc have been 
developed. 
 
Key Words: Arithmetically Normal, Arithmetically Symmetric, Geometrically 
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1. Introduction 
 
Statistics is a science of going from particular to general. Since, population along with 
characteristics might not be known to a researcher or an analyst before carrying out the 
prophesy, the analyst tries to figure out the characteristics or the shapes or tail behavior or 
the pattern of the distribution using various Meta analyses based sample estimates from 
sample(s). Unfortunately, some normality assumptions with bigger sample sizes 
ensemble some basic questions which are very invisibly and pragmatically pertinent as (i) 
How big sample size is big? (ii) What is optimum number and optimum length of the 
class interval of the histogram? (iii) What is the type of the sequence of the data? and so 
on. Data can be of arithmetic or geometric or harmonic pattern with their respective 
arithmetic or geometric or harmonic moments. It is better to discuss first about the pattern 
of the sequence of the data for the symmetric data rather than the asymmetric ones. At 
first it is needed to represent the data set with a location as for example one dimensional 
location or mean of the data since the successive higher dimensional locations are some 
functions of the very basic first location. So, it is important to have a biopsy of how local 
or representative is the first order moment to entire data of the sample.  
 
Although we are not considering order statistics, but still we represent all data of one 
variable on a real line which is some sort of representation from lower to upper values. 
That is, in traditional statistics, instead of assuming the dependent ordered observations 
we are assuming that all the observations are independent among themselves whereas we 
are presenting all the observations (along with their corresponding frequencies) on an 
ordered real line. So, we should not overlook the approach of ordering the data in (order 
free) traditional statistics. This is also evident in checking the normality for a data set 
using p-p plot.  
 
After ordering all the data, if we treat it as a sequence of several ordered observations, we 
will observe that the sequence follows either arithmetic or geometric or harmonic 
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progression. After checking goodness of fit test between observed quantiles and expected 
progression’s quantiles, we can guess the type of sequence of the data as either 
arithmetically or geometrically or harmonically Symmetric (or Asymmetric).  
 
Since we are entitled only for the symmetric distribution, we should only discuss here on 
the new way of classifying symmetric distributions is three types including (i) 
Arithmetically Symmetric, (ii) Geometrically Symmetric and (iii) Harmonically 
Symmetric.  
 
The aim of this paper is to develop the methods of (i) figuring out that the data comes 
from which type of patterned symmetric distributions: arithmetically symmetric or 
geometrically symmetric or harmonically symmetric? (ii) What would be the form of 
expected quantiles and moments of each of the typically symmetric data? (iii) What 
would be the graphical approaches of checking the Symmetricity of the type of the 
symmetric data using Box Plots, Histograms and P-P plots. (iv) What are the graphical 
and theoretical methods of Outlier detection using proper cutoff points for each of the 
symmetric patterned data? (v) What are the existing examples of the various types of 
traditional distributions along with the less local location?  
 
 
2. Statistical Methods and Methodologies for detecting the type of Normality 
 
Let 𝑥1,𝑥2  ,…, 𝑥𝑛 be a random sample of size 𝑛 from a population. We want to develop 
the goodness of fit criteria for deciding the data come from which distribution based on 
quantiles. Several series of new tests can be brought to light for Quartiles, Octiles, 
Deciles, Percentiles or any quantiles with chi-square test statistic with one or more than 
one degree of freedom. Ones we can figure out the progression of the ordered data, we 
can say data follows a specific type of symmetric distribution.    

 
2.1 Quartiles 
The concerned hypotheses are 

𝐻0: 𝑇ℎ𝑒 𝑑𝑎𝑡𝑎 𝑓𝑜𝑙𝑙𝑜𝑤𝑠 𝐴𝑟𝑖𝑡ℎ𝑚𝑒𝑡𝑖𝑐𝑎𝑙𝑙𝑦 𝑠𝑦𝑚𝑚𝑒𝑡𝑟𝑖𝑐 𝑑𝑖𝑠𝑡𝑟𝑖𝑏𝑢𝑡𝑖𝑜𝑛𝑠. 
𝐻1: 𝑇ℎ𝑒 𝑑𝑎𝑡𝑎 𝑓𝑜𝑙𝑙𝑜𝑤𝑠 𝐺𝑒𝑜𝑚𝑒𝑡𝑟𝑖𝑐𝑎𝑙𝑙𝑦 𝑠𝑦𝑚𝑚𝑒𝑡𝑟𝑖𝑐 𝑑𝑖𝑠𝑡𝑟𝑖𝑏𝑢𝑡𝑖𝑜𝑛𝑠. 
𝐻2: 𝑇ℎ𝑒 𝑑𝑎𝑡𝑎 𝑓𝑜𝑙𝑙𝑜𝑤𝑠 𝐻𝑎𝑟𝑚𝑜𝑛𝑖𝑐𝑎𝑙𝑙𝑦 𝑠𝑦𝑚𝑚𝑒𝑡𝑟𝑖𝑐 𝑑𝑖𝑠𝑡𝑟𝑖𝑏𝑢𝑡𝑖𝑜𝑛𝑠. 

 
After ordering the observations we may find the observed quartiles say 𝑄1, 𝑄2, 𝑄3 
respectively. Now if the data comes from arithmetically or geometrically or harmonically 
symmetric distributions the expected 2nd quartile will be 𝑄1+𝑄3

2
, √𝑄1𝑄3   or 2

1

𝑄1
+

1

𝑄3

 , 

respectively i.e., 𝑂2 =
𝑂1+𝑂3

2
, 𝑂2 = √𝑂1𝑂3, 𝑄2 =

2
1

𝑄1
+

1

𝑄3

. 

 

2.1.1 Goodness of Fit Test for Quartiles 
Now for the concerned sequences or progression-ed typed data the following statistics are 
true: 

 Arithmetic Fit (1):   
(𝑄2−

𝑄1+𝑄3
2

)
2

𝑄1+𝑄3
2

 ~ ᵡ1
2,    

 Geometric Fit (2):   (𝑄2−√𝑄1𝑄3)
2

√𝑄1𝑄3
 ~ ᵡ1

2,  
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 Harmonic Fit (3):   
(𝑄2−

2
1

𝑄1
+

1
𝑄3

)

2

2
1

𝑄1
+

1
𝑄3

 ~ ᵡ1
2. 

(Qi) If ᵡ2 <  ᵡ1
2, we will accept 𝐻.  Otherwise we will rejects 𝐻. 

(Qii) If any two of the aforesaid hypotheses are accepted, then  
    

ᵡ1
2

ᵡ1
2  ~𝐹1,1  

If 𝐹 <  𝐹1,1 , we will accept the hypothesis concerned to the denominator of the 𝐹 
statistic; otherwise accept that of the numerator of the 𝐹 statistic.  
 
 
2.2 Octiles 
After ordering the observations we may find the observed octiles say 
𝑂1, 𝑂2, 𝑂3, 𝑂4, 𝑂5, 𝑂6, 𝑂7 respectively. 
 
        
               𝑂1            𝑂2                 𝑂3                 𝑂4                  𝑂5                 𝑂6                 𝑂7 
Now if the data comes from arithmetically symmetric distributions the expected octiles 
will be respectively as follows.  

𝑂2 =
𝑂1+𝑂3

2
, 

𝑂3 =
𝑂2+𝑂4

2
=  

𝑂1+𝑂5

2
=

𝑂1+𝑂2+𝑂4+𝑂5

4
, 

𝑂4 =
𝑂1+𝑂7

2
=

𝑂2+𝑂6

2
=

𝑂3+𝑂5

2
=

𝑂2+𝑂3+𝑂5+𝑂6

4
=  

𝑂1+𝑂2+𝑂6+𝑂7

4
=  

𝑂1+𝑂3+𝑂5+𝑂7

4
=

𝑂1+𝑂2+𝑂3+𝑂5+𝑂6+𝑂7

6
, 

𝑂5 =
𝑂4+𝑂6

2
=

𝑂3+𝑂7

2
=

𝑂3+𝑂4+𝑂6+𝑂7

4
, 

𝑂6 =
𝑂5 + 𝑂7

2
 

 
For geometrically symmetric distribution, the expected octiles will be as below. 

𝑂2 = √𝑂1𝑂3, 
𝑂3 = √𝑂2𝑂4 = √𝑂1𝑂5 = √𝑂1𝑂2𝑂4𝑂5

4 , 
𝑂4 = √𝑂3𝑂5 = √𝑂2𝑂6 = √𝑂1𝑂7 = √𝑂2𝑂3𝑂5𝑂6

4 = √𝑂1𝑂2𝑂6𝑂7
4 = √𝑂1𝑂3𝑂5𝑂7

4  = 
√𝑂1𝑂2𝑂3𝑂5𝑂6𝑂7
6 , 

𝑂5 = √𝑂4𝑂6 = √𝑂3𝑂7 = √𝑂3𝑂4𝑂6𝑂7
4 , 

𝑂6 = √𝑂5𝑂7. 
 
Harmonically symmetric distribution will leave the expected octiles as below: 

𝑂2 =
2

1

𝑄1
+

1

𝑄3

, 

𝑂3 =
2

𝑂2
−1+𝑂4

−1 =  
2

𝑂1
−1+𝑂5

−1 =
4

𝑂1
−1+𝑂2

−1+𝑂4
−1+𝑂5

−1, 

𝑂4 =
2

𝑂1
−1+𝑂7

−1 =  
2

𝑂2
−1+𝑂6

−1 =
2

𝑂3
−1+𝑂5

−1 =
4

𝑂2
−1+𝑂3

−1+𝑂5
−1+𝑂6

−1  =

4

𝑂1
−1+𝑂2

−1+𝑂6
−1+𝑂7

−1 =  
4

𝑂1
−1+𝑂3

−1+𝑂5
−1+𝑂7

−1 =
6

𝑂1
−1+𝑂2

−1+𝑂3
−1+𝑂5

−1+𝑂6
−1+𝑂7

−1, 

𝑂5 =
2

𝑂4
−1+𝑂6

−1 =  
2

𝑂3
−1+𝑂7

−1 =
4

𝑂3
−1+𝑂4

−1+𝑂6
−1+𝑂7

−1, 
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𝑂6 =
2

1

𝑄5
+

1

𝑄7

. 

 
2.2.1 Goodness of Fit Test for Octiles 
For testing whether the distribution is arithmetically symmetric or not, we can have 
various types of hypotheses checked due to the properties of the octiles distance squares. 
 
2.2.1.1a Test of Arithmetic Symmetricity about the origin 𝑂4 
A bunch of hypotheses have been disclosed immediately to check the level of arithmetic 
symmetricity.  
𝐻𝐴1: 𝑇ℎ𝑒 𝑡𝑤𝑜 𝑠𝑖𝑑𝑒𝑑 𝑚𝑖𝑑𝑑𝑙𝑒 25 % 𝑑𝑎𝑡𝑎 𝑓𝑜𝑙𝑙𝑜𝑤𝑠 𝑎𝑟𝑖𝑡ℎ𝑚𝑒𝑡𝑖𝑐𝑎𝑙𝑙𝑦 𝑠𝑦𝑚𝑚𝑒𝑡𝑟𝑖𝑐 𝑑𝑖𝑠𝑡𝑟𝑖𝑏𝑢𝑡𝑖𝑜𝑛𝑠. 
𝐻𝐴2: 𝑇ℎ𝑒 𝑡𝑤𝑜 𝑠𝑖𝑑𝑒𝑑 𝑒𝑥𝑡𝑟𝑒𝑚𝑒 25 % 𝑑𝑎𝑡𝑎 𝑓𝑜𝑙𝑙𝑜𝑤𝑠 𝑎𝑟𝑖𝑡ℎ𝑚𝑒𝑡𝑖𝑐𝑎𝑙𝑙𝑦 𝑠𝑦𝑚𝑚𝑒𝑡𝑟𝑖𝑐 𝑑𝑖𝑠𝑡𝑟𝑖𝑏𝑢𝑡𝑖𝑜𝑛. 

𝐻𝐴3: 𝑇ℎ𝑒 25 % 𝑡𝑤𝑜 𝑠𝑖𝑑𝑒𝑑 𝑑𝑎𝑡𝑎 𝑖𝑛𝑏𝑒𝑡𝑤𝑒𝑒𝑛 𝑚𝑖𝑑𝑑𝑙𝑒 𝑎𝑛𝑑 𝑒𝑥𝑡𝑟𝑒𝑚𝑒 𝑓𝑜𝑙𝑙𝑜𝑤𝑠  
𝑎𝑟𝑖𝑡ℎ𝑚𝑒𝑡𝑖𝑐𝑎𝑙𝑙𝑦 𝑠𝑦𝑚𝑚𝑒𝑡𝑟𝑖𝑐 𝑑𝑖𝑠𝑡𝑟𝑖𝑏𝑢𝑡𝑖𝑜𝑛. 

𝐻𝐴4: 𝑇ℎ𝑒 𝑡𝑤𝑜 𝑠𝑖𝑑𝑒𝑑 𝑚𝑖𝑑𝑑𝑙𝑒 50 % 𝑑𝑎𝑡𝑎 𝑓𝑜𝑙𝑙𝑜𝑤𝑠 𝑎𝑣𝑒𝑟𝑎𝑔𝑒𝑙𝑦 𝑎𝑟𝑖𝑡ℎ𝑚𝑒𝑡𝑖𝑐𝑎𝑙𝑙𝑦 𝑠𝑦𝑚𝑚𝑒𝑡𝑟𝑖𝑐 𝑑𝑖𝑠𝑡𝑟𝑖𝑏𝑢𝑡𝑖𝑜𝑛. 
𝐻𝐴5: 𝑇ℎ𝑒 𝑡𝑤𝑜 𝑠𝑖𝑑𝑒𝑑 𝑒𝑥𝑡𝑟𝑒𝑚𝑒 50 % 𝑑𝑎𝑡𝑎 𝑓𝑜𝑙𝑙𝑜𝑤𝑠 𝑎𝑣𝑒𝑟𝑎𝑔𝑒𝑙𝑦 𝑎𝑟𝑖𝑡ℎ𝑚𝑒𝑡𝑖𝑐𝑎𝑙𝑙𝑦 𝑠𝑦𝑚𝑚𝑒𝑡𝑟𝑖𝑐 𝑑𝑖𝑠𝑡𝑟𝑖𝑏𝑢𝑡𝑖𝑜𝑛. 
𝐻𝐴6: 𝑇ℎ𝑒 50 % 𝑡𝑤𝑜 𝑠𝑖𝑑𝑒𝑑 𝑑𝑎𝑡𝑎 𝑖𝑛𝑏𝑒𝑡𝑤𝑒𝑒𝑛 𝑚𝑖𝑑𝑑𝑙𝑒 𝑎𝑛𝑑 𝑒𝑥𝑡𝑟𝑒𝑚𝑒 𝑓𝑜𝑙𝑙𝑜𝑤𝑠 𝑎𝑣𝑒𝑟𝑎𝑔𝑒𝑙𝑦  

𝑎𝑟𝑖𝑡ℎ𝑚𝑒𝑡𝑖𝑐𝑎𝑙𝑙𝑦 𝑠𝑦𝑚𝑚𝑒𝑡𝑟𝑖𝑐 𝑑𝑖𝑠𝑡𝑟𝑖𝑏𝑢𝑡𝑖𝑜𝑛. 
𝐻𝐴7: 𝑇ℎ𝑒 𝑡𝑤𝑜 𝑠𝑖𝑑𝑒𝑑 𝑚𝑖𝑑𝑑𝑙𝑒 75 % 𝑑𝑎𝑡𝑎 𝑓𝑜𝑙𝑙𝑜𝑤𝑠 𝑎𝑣𝑒𝑟𝑎𝑔𝑒𝑙𝑦 𝑎𝑟𝑖𝑡ℎ𝑚𝑒𝑡𝑖𝑐𝑎𝑙𝑙𝑦 𝑠𝑦𝑚𝑚𝑒𝑡𝑟𝑖𝑐 𝑑𝑖𝑠𝑡𝑟𝑖𝑏𝑢𝑡𝑖𝑜𝑛. 
𝐻𝐴8: 𝑇𝑤𝑜 𝑠𝑖𝑑𝑒 𝑎𝑛𝑦 𝑚𝑖𝑑𝑑𝑙𝑒 25 % 𝑑𝑎𝑡𝑎 𝑓𝑜𝑙𝑙𝑜𝑤𝑠 𝑎𝑟𝑖𝑡ℎ𝑚𝑒𝑡𝑖𝑐𝑎𝑙𝑙𝑦 𝑠𝑦𝑚𝑚𝑒𝑡𝑟𝑖𝑐 𝑑𝑖𝑠𝑡𝑟𝑖𝑏𝑢𝑡𝑖𝑜𝑛𝑠. 
𝐻𝐴9: 𝑇𝑤𝑜 𝑠𝑖𝑑𝑒𝑑 𝑎𝑛𝑦 𝑚𝑖𝑑𝑑𝑙𝑒 50 % 𝑑𝑎𝑡𝑎 𝑓𝑜𝑙𝑙𝑜𝑤𝑠 𝑎𝑟𝑖𝑡ℎ𝑚𝑒𝑡𝑖𝑐𝑎𝑙𝑙𝑦 𝑠𝑦𝑚𝑚𝑒𝑡𝑟𝑖𝑐 𝑑𝑖𝑠𝑡𝑟𝑖𝑏𝑢𝑡𝑖𝑜𝑛𝑠. 

𝐻𝐴10: 𝑇ℎ𝑒 𝑡𝑤𝑜 𝑠𝑖𝑑𝑒𝑑 𝑑𝑎𝑡𝑎 𝑓𝑜𝑙𝑙𝑜𝑤𝑠 𝑎𝑟𝑖𝑡ℎ𝑚𝑒𝑡𝑖𝑐𝑎𝑙𝑙𝑦 𝑠𝑦𝑚𝑚𝑒𝑡𝑟𝑖𝑐 𝑑𝑖𝑠𝑡𝑟𝑖𝑏𝑢𝑡𝑖𝑜𝑛. 
 
All squared distanced octiles follow chi-square statistic with 1 degree of freedom. As 
such the explicit forms of all of the squared distanced octiles are presented below. 

  
(𝑂4−

𝑂1+𝑂7
2

)
2

𝑂1+𝑂7
2

,
(𝑂4−

𝑂2+𝑂6
2

)
2

𝑂2+𝑂6
2

,
(𝑂4−

𝑂3+𝑂5
2

)
2

𝑂3+𝑂5
2

,
(𝑂4− 

𝑂2+𝑂3+𝑂5+𝑂6
4

)
2

𝑂2+𝑂3+𝑂5+𝑂6
4

, 

(𝑂4− 
𝑂1+𝑂2+𝑂6+𝑂7

4
)

2

𝑂1+𝑂2+𝑂6+𝑂7
4

,
(𝑂4− 

𝑂1+𝑂3+𝑂5+𝑂7
4

)
2

𝑂1+𝑂3+𝑂5+𝑂7
4

 ,
(𝑂4− 

𝑂1+𝑂2+𝑂3+𝑂5+𝑂6+𝑂7
6

)
2

𝑂1+𝑂2+𝑂3+𝑂5+𝑂6+𝑂7
6

~ ᵡ1
2, 

 
(O Ai) For the following inequality, the concerned hypothesis will be accepted  

(𝑂4−
𝑂3+𝑂5

2
)

2

𝑂3+𝑂5
2

< ᵡ1
2, 

𝐻𝐴1: 𝑇ℎ𝑒 𝑡𝑤𝑜 𝑠𝑖𝑑𝑒𝑑 𝑚𝑖𝑑𝑑𝑙𝑒 25 % 𝑑𝑎𝑡𝑎 𝑓𝑜𝑙𝑙𝑜𝑤𝑠 𝑎𝑟𝑖𝑡ℎ𝑚𝑒𝑡𝑖𝑐𝑎𝑙𝑙𝑦 𝑠𝑦𝑚𝑚𝑒𝑡𝑟𝑖𝑐 𝑑𝑖𝑠𝑡𝑟𝑖𝑏𝑢𝑡𝑖𝑜𝑛𝑠. 
(O Aii) For the next inequality, the post stated hypothesis will be accepted  

(𝑂4−
𝑂1+𝑂7

2
)

2

𝑂1+𝑂7
2

< ᵡ1
2, 

𝐻𝐴2: 𝑇ℎ𝑒 𝑡𝑤𝑜 𝑠𝑖𝑑𝑒𝑑 𝑒𝑥𝑡𝑟𝑒𝑚𝑒 25 % 𝑑𝑎𝑡𝑎 𝑓𝑜𝑙𝑙𝑜𝑤𝑠 𝑎𝑟𝑖𝑡ℎ𝑚𝑒𝑡𝑖𝑐𝑎𝑙𝑙𝑦 𝑠𝑦𝑚𝑚𝑒𝑡𝑟𝑖𝑐 𝑑𝑖𝑠𝑡𝑟𝑖𝑏𝑢𝑡𝑖𝑜𝑛. 
 
(O Aiii) For the following inequality, the next hypothesis will be accepted 

(𝑂4−
𝑂2+𝑂6

2
)

2

𝑂2+𝑂6
2

< ᵡ1
2, 

𝐻𝐴3: 𝑇ℎ𝑒 25 % 𝑡𝑤𝑜 𝑠𝑖𝑑𝑒𝑑 𝑑𝑎𝑡𝑎 𝑖𝑛𝑏𝑒𝑡𝑤𝑒𝑒𝑛 𝑚𝑖𝑑𝑑𝑙𝑒 𝑎𝑛𝑑 𝑒𝑥𝑡𝑟𝑒𝑚𝑒 𝑓𝑜𝑙𝑙𝑜𝑤𝑠  
𝑎𝑟𝑖𝑡ℎ𝑚𝑒𝑡𝑖𝑐𝑎𝑙𝑙𝑦 𝑠𝑦𝑚𝑚𝑒𝑡𝑟𝑖𝑐 𝑑𝑖𝑠𝑡𝑟𝑖𝑏𝑢𝑡𝑖𝑜𝑛. 

(O Aiv) For the next inequality, the following hypothesis will be accepted 
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(𝑂4− 
𝑂2+𝑂3+𝑂5+𝑂6

4
)

2

𝑂2+𝑂3+𝑂5+𝑂6
4

< ᵡ1
2, 

𝐻𝐴4: 𝑇ℎ𝑒 𝑡𝑤 𝑠𝑖𝑑𝑒𝑑 𝑚𝑖𝑑𝑑𝑙𝑒 50 % 𝑑𝑎𝑡𝑎 𝑓𝑜𝑙𝑙𝑜𝑤𝑠 𝑎𝑣𝑒𝑟𝑎𝑔𝑒𝑙𝑦 𝑎𝑟𝑖𝑡ℎ𝑚𝑒𝑡𝑖𝑐𝑎𝑙𝑙𝑦 𝑠𝑦𝑚𝑚𝑒𝑡𝑟𝑖𝑐 𝑑𝑖𝑠𝑡𝑟𝑖𝑏𝑢𝑡𝑖𝑜𝑛. 
(O Av) For the next stated inequality, the concerned hypothesis will be accepted  

(𝑂4− 
𝑂1+𝑂2+𝑂6+𝑂7

4
)

2

𝑂1+𝑂2+𝑂6+𝑂7
4

< ᵡ1
2, 

𝐻𝐴5: 𝑇ℎ𝑒 𝑡𝑤𝑜 𝑠𝑖𝑑𝑒𝑑 𝑒𝑥𝑡𝑟𝑒𝑚𝑒 50 % 𝑑𝑎𝑡𝑎 𝑓𝑜𝑙𝑙𝑜𝑤𝑠 𝑎𝑣𝑒𝑟𝑎𝑔𝑒𝑙𝑦 𝑎𝑟𝑖𝑡ℎ𝑚𝑒𝑡𝑖𝑐𝑎𝑙𝑙𝑦 𝑠𝑦𝑚𝑚𝑒𝑡𝑟𝑖𝑐 𝑑𝑖𝑠𝑡𝑟𝑖𝑏𝑢𝑡𝑖𝑜𝑛. 
(O Avi) For the following inequality, the posterior hypothesis will be accepted  

(𝑂4− 
𝑂1+𝑂3+𝑂5+𝑂7

4
)

2

𝑂1+𝑂3+𝑂5+𝑂7
4

< ᵡ1
2, 

𝐻𝐴6: 𝑇ℎ𝑒 50 % 𝑡𝑤𝑜 𝑠𝑖𝑑𝑒𝑑 𝑑𝑎𝑡𝑎 𝑖𝑛𝑏𝑒𝑡𝑤𝑒𝑒𝑛 𝑚𝑖𝑑𝑑𝑙𝑒 𝑎𝑛𝑑 𝑒𝑥𝑡𝑟𝑒𝑚𝑒 𝑓𝑜𝑙𝑙𝑜𝑤𝑠 
 

 𝑎𝑣𝑒𝑟𝑎𝑔𝑒𝑙𝑦 𝑎𝑟𝑖𝑡ℎ𝑚𝑒𝑡𝑖𝑐𝑎𝑙𝑙𝑦 𝑠𝑦𝑚𝑚𝑒𝑡𝑟𝑖𝑐 𝑑𝑖𝑠𝑡𝑟𝑖𝑏𝑢𝑡𝑖𝑜𝑛. 
(O Avii) For the inequality, the hypothesis will be accepted  

(𝑂4− 
𝑂1+𝑂2+𝑂3+𝑂5+𝑂6+𝑂7

6
)

2

𝑂1+𝑂2+𝑂3+𝑂5+𝑂6+𝑂7
6

< ᵡ1
2, 

𝐻𝐴7: 𝑇ℎ𝑒 𝑡𝑤𝑜 𝑠𝑖𝑑𝑒𝑑 𝑚𝑖𝑑𝑑𝑙𝑒 75 % 𝑑𝑎𝑡𝑎 𝑓𝑜𝑙𝑙𝑜𝑤𝑠 𝑎𝑣𝑒𝑟𝑎𝑔𝑒𝑙𝑦 𝑎𝑟𝑖𝑡ℎ𝑚𝑒𝑡𝑖𝑐𝑎𝑙𝑙𝑦 𝑠𝑦𝑚𝑚𝑒𝑡𝑟𝑖𝑐 𝑑𝑖𝑠𝑡𝑟𝑖𝑏𝑢𝑡𝑖𝑜𝑛. 
(O Aviii) For the following inequality, the concerned hypothesis will be accepted  

(𝑂4−
𝑂1+𝑂7

2
)

2

𝑂1+𝑂7
2

+
(𝑂4−

𝑂2+𝑂6
2

)
2

𝑂2+𝑂6
2

+
(𝑂4−

𝑂3+𝑂5
2

)
2

𝑂3+𝑂5
2

< ᵡ3
2, 

𝐻𝐴8: 𝑇𝑤𝑜 𝑠𝑖𝑑𝑒𝑑 𝑎𝑛𝑦 𝑚𝑖𝑑𝑑𝑙𝑒 25 % 𝑑𝑎𝑡𝑎 𝑓𝑜𝑙𝑙𝑜𝑤𝑠 𝑎𝑟𝑖𝑡ℎ𝑚𝑒𝑡𝑖𝑐𝑎𝑙𝑙𝑦 𝑠𝑦𝑚𝑚𝑒𝑡𝑟𝑖𝑐 𝑑𝑖𝑠𝑡𝑟𝑖𝑏𝑢𝑡𝑖𝑜𝑛𝑠. 
(O Aix) For the next inequality, the following hypothesis will be accepted  

(𝑂4− 
𝑂2+𝑂3+𝑂5+𝑂6

4
)

2

𝑂2+𝑂3+𝑂5+𝑂6
4

+
(𝑂4− 

𝑂1+𝑂2+𝑂6+𝑂7
4

)
2

𝑂1+𝑂2+𝑂6+𝑂7
4

+  
(𝑂4− 

𝑂1+𝑂3+𝑂5+𝑂7
4

)
2

𝑂1+𝑂3+𝑂5+𝑂7
4

< ᵡ3
2, 

𝐻𝐴9: 𝑇𝑤𝑜 𝑠𝑖𝑑𝑒𝑑 𝑎𝑛𝑦 𝑚𝑖𝑑𝑑𝑙𝑒 50 % 𝑑𝑎𝑡𝑎 𝑓𝑜𝑙𝑙𝑜𝑤𝑠 𝑎𝑟𝑖𝑡ℎ𝑚𝑒𝑡𝑖𝑐𝑎𝑙𝑙𝑦 𝑠𝑦𝑚𝑚𝑒𝑡𝑟𝑖𝑐 𝑑𝑖𝑠𝑡𝑟𝑖𝑏𝑢𝑡𝑖𝑜𝑛𝑠. 
(O Ax) If 

[
(𝑂4−

𝑂1+𝑂7
2

)
2

𝑂1+𝑂7
2

+
(𝑂4−

𝑂2+𝑂6
2

)
2

𝑂2+𝑂6
2

+
(𝑂4−

𝑂3+𝑂5
2

)
2

𝑂3+𝑂5
2

+
(𝑂4− 

𝑂2+𝑂3+𝑂5+𝑂6
4

)
2

𝑂2+𝑂3+𝑂5+𝑂6
4

+
(𝑂4− 

𝑂1+𝑂2+𝑂6+𝑂7
4

)
2

𝑂1+𝑂2+𝑂6+𝑂7
4

+

 
(𝑂4− 

𝑂1+𝑂3+𝑂5+𝑂7
4

)
2

𝑂1+𝑂3+𝑂5+𝑂7
4

+
(𝑂4− 

𝑂1+𝑂2+𝑂3+𝑂5+𝑂6+𝑂7
6

)
2

𝑂1+𝑂2+𝑂3+𝑂5+𝑂6+𝑂7
6

] <  ᵡ7
2, 

we will accept the hypothesis 
𝐻𝐴10: 𝑇ℎ𝑒 𝑡𝑤𝑜 𝑠𝑖𝑑𝑒𝑑 𝑑𝑎𝑡𝑎 𝑓𝑜𝑙𝑙𝑜𝑤𝑠 𝑎𝑟𝑖𝑡ℎ𝑚𝑒𝑡𝑖𝑐𝑎𝑙𝑙𝑦 𝑠𝑦𝑚𝑚𝑒𝑡𝑟𝑖𝑐 𝑑𝑖𝑠𝑡𝑟𝑖𝑏𝑢𝑡𝑖𝑜𝑛. 
(O Ai) For the following inequality, the concerned hypothesis will be accepted  

(𝑂4−
𝑂3+𝑂5

2
)

2

𝑂3+𝑂5
2

< ᵡ1
2, 

𝐻𝐴1: 𝑇ℎ𝑒 𝑡𝑤𝑜 𝑠𝑖𝑑𝑒𝑑 𝑚𝑖𝑑𝑑𝑙𝑒 25 % 𝑑𝑎𝑡𝑎 𝑓𝑜𝑙𝑙𝑜𝑤𝑠 𝑎𝑟𝑖𝑡ℎ𝑚𝑒𝑡𝑖𝑐𝑎𝑙𝑙𝑦 𝑠𝑦𝑚𝑚𝑒𝑡𝑟𝑖𝑐 𝑑𝑖𝑠𝑡𝑟𝑖𝑏𝑢𝑡𝑖𝑜𝑛𝑠. 
(O Aii) For the next inequality, the post stated hypothesis will be accepted  

(𝑂4−
𝑂1+𝑂7

2
)

2

𝑂1+𝑂7
2

< ᵡ1
2, 

𝐻𝐴2: 𝑇ℎ𝑒 𝑡𝑤𝑜 𝑠𝑖𝑑𝑒𝑑 𝑒𝑥𝑡𝑟𝑒𝑚𝑒 25 % 𝑑𝑎𝑡𝑎 𝑓𝑜𝑙𝑙𝑜𝑤𝑠 𝑎𝑟𝑖𝑡ℎ𝑚𝑒𝑡𝑖𝑐𝑎𝑙𝑙𝑦 𝑠𝑦𝑚𝑚𝑒𝑡𝑟𝑖𝑐 𝑑𝑖𝑠𝑡𝑟𝑖𝑏𝑢𝑡𝑖𝑜𝑛. 
(O Aiii) For the following inequality, the next hypothesis will be accepted 

(𝑂4−
𝑂2+𝑂6

2
)

2

𝑂2+𝑂6
2

< ᵡ1
2, 

𝐻𝐴3: 𝑇ℎ𝑒 25 % 𝑡𝑤𝑜 𝑠𝑖𝑑𝑒𝑑 𝑑𝑎𝑡𝑎 𝑖𝑛𝑏𝑒𝑡𝑤𝑒𝑒𝑛 𝑚𝑖𝑑𝑑𝑙𝑒 𝑎𝑛𝑑 𝑒𝑥𝑡𝑟𝑒𝑚𝑒 𝑓𝑜𝑙𝑙𝑜𝑤𝑠  
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𝑎𝑟𝑖𝑡ℎ𝑚𝑒𝑡𝑖𝑐𝑎𝑙𝑙𝑦 𝑠𝑦𝑚𝑚𝑒𝑡𝑟𝑖𝑐 𝑑𝑖𝑠𝑡𝑟𝑖𝑏𝑢𝑡𝑖𝑜𝑛. 
(O Aiv) For the next inequality, the following hypothesis will be accepted 

(𝑂4− 
𝑂2+𝑂3+𝑂5+𝑂6

4
)

2

𝑂2+𝑂3+𝑂5+𝑂6
4

< ᵡ1
2, 

𝐻𝐴4: 𝑇ℎ𝑒 𝑡𝑤 𝑠𝑖𝑑𝑒𝑑 𝑚𝑖𝑑𝑑𝑙𝑒 50 % 𝑑𝑎𝑡𝑎 𝑓𝑜𝑙𝑙𝑜𝑤𝑠 𝑎𝑣𝑒𝑟𝑎𝑔𝑒𝑙𝑦 𝑎𝑟𝑖𝑡ℎ𝑚𝑒𝑡𝑖𝑐𝑎𝑙𝑙𝑦 𝑠𝑦𝑚𝑚𝑒𝑡𝑟𝑖𝑐 𝑑𝑖𝑠𝑡𝑟𝑖𝑏𝑢𝑡𝑖𝑜𝑛. 
(O Av) For the next stated inequality, the concerned hypothesis will be accepted  

(𝑂4− 
𝑂1+𝑂2+𝑂6+𝑂7

4
)

2

𝑂1+𝑂2+𝑂6+𝑂7
4

< ᵡ1
2, 

𝐻𝐴5: 𝑇ℎ𝑒 𝑡𝑤𝑜 𝑠𝑖𝑑𝑒𝑑 𝑒𝑥𝑡𝑟𝑒𝑚𝑒 50 % 𝑑𝑎𝑡𝑎 𝑓𝑜𝑙𝑙𝑜𝑤𝑠 𝑎𝑣𝑒𝑟𝑎𝑔𝑒𝑙𝑦 𝑎𝑟𝑖𝑡ℎ𝑚𝑒𝑡𝑖𝑐𝑎𝑙𝑙𝑦 𝑠𝑦𝑚𝑚𝑒𝑡𝑟𝑖𝑐 𝑑𝑖𝑠𝑡𝑟𝑖𝑏𝑢𝑡𝑖𝑜𝑛. 
(O Avi) For the following inequality, the posterior hypothesis will be accepted  

(𝑂4− 
𝑂1+𝑂3+𝑂5+𝑂7

4
)

2

𝑂1+𝑂3+𝑂5+𝑂7
4

< ᵡ1
2, 

𝐻𝐴6: 𝑇ℎ𝑒 50 % 𝑡𝑤𝑜 𝑠𝑖𝑑𝑒𝑑 𝑑𝑎𝑡𝑎 𝑖𝑛𝑏𝑒𝑡𝑤𝑒𝑒𝑛 𝑚𝑖𝑑𝑑𝑙𝑒 𝑎𝑛𝑑 𝑒𝑥𝑡𝑟𝑒𝑚𝑒 𝑓𝑜𝑙𝑙𝑜𝑤𝑠 
 𝑎𝑣𝑒𝑟𝑎𝑔𝑒𝑙𝑦 𝑎𝑟𝑖𝑡ℎ𝑚𝑒𝑡𝑖𝑐𝑎𝑙𝑙𝑦 𝑠𝑦𝑚𝑚𝑒𝑡𝑟𝑖𝑐 𝑑𝑖𝑠𝑡𝑟𝑖𝑏𝑢𝑡𝑖𝑜𝑛. 

(O Avii) For the inequality, the hypothesis will be accepted  
(𝑂4− 

𝑂1+𝑂2+𝑂3+𝑂5+𝑂6+𝑂7
6

)
2

𝑂1+𝑂2+𝑂3+𝑂5+𝑂6+𝑂7
6

< ᵡ1
2, 

𝐻𝐴7: 𝑇ℎ𝑒 𝑡𝑤𝑜 𝑠𝑖𝑑𝑒𝑑 𝑚𝑖𝑑𝑑𝑙𝑒 75 % 𝑑𝑎𝑡𝑎 𝑓𝑜𝑙𝑙𝑜𝑤𝑠 𝑎𝑣𝑒𝑟𝑎𝑔𝑒𝑙𝑦 𝑎𝑟𝑖𝑡ℎ𝑚𝑒𝑡𝑖𝑐𝑎𝑙𝑙𝑦 𝑠𝑦𝑚𝑚𝑒𝑡𝑟𝑖𝑐 𝑑𝑖𝑠𝑡𝑟𝑖𝑏𝑢𝑡𝑖𝑜𝑛. 
(O Aviii) For the following inequality, the concerned hypothesis will be accepted  

(𝑂4−
𝑂1+𝑂7

2
)

2

𝑂1+𝑂7
2

+
(𝑂4−

𝑂2+𝑂6
2

)
2

𝑂2+𝑂6
2

+
(𝑂4−

𝑂3+𝑂5
2

)
2

𝑂3+𝑂5
2

< ᵡ3
2, 

𝐻𝐴8: 𝑇𝑤𝑜 𝑠𝑖𝑑𝑒𝑑 𝑎𝑛𝑦 𝑚𝑖𝑑𝑑𝑙𝑒 25 % 𝑑𝑎𝑡𝑎 𝑓𝑜𝑙𝑙𝑜𝑤𝑠 𝑎𝑟𝑖𝑡ℎ𝑚𝑒𝑡𝑖𝑐𝑎𝑙𝑙𝑦 𝑠𝑦𝑚𝑚𝑒𝑡𝑟𝑖𝑐 𝑑𝑖𝑠𝑡𝑟𝑖𝑏𝑢𝑡𝑖𝑜𝑛𝑠. 
(O Aix) For the next inequality, the following hypothesis will be accepted  

(𝑂4− 
𝑂2+𝑂3+𝑂5+𝑂6

4
)

2

𝑂2+𝑂3+𝑂5+𝑂6
4

+
(𝑂4− 

𝑂1+𝑂2+𝑂6+𝑂7
4

)
2

𝑂1+𝑂2+𝑂6+𝑂7
4

+  
(𝑂4− 

𝑂1+𝑂3+𝑂5+𝑂7
4

)
2

𝑂1+𝑂3+𝑂5+𝑂7
4

< ᵡ3
2, 

𝐻𝐴9: 𝑇𝑤𝑜 𝑠𝑖𝑑𝑒𝑑 𝑎𝑛𝑦 𝑚𝑖𝑑𝑑𝑙𝑒 50 % 𝑑𝑎𝑡𝑎 𝑓𝑜𝑙𝑙𝑜𝑤𝑠 𝑎𝑟𝑖𝑡ℎ𝑚𝑒𝑡𝑖𝑐𝑎𝑙𝑙𝑦 𝑠𝑦𝑚𝑚𝑒𝑡𝑟𝑖𝑐 𝑑𝑖𝑠𝑡𝑟𝑖𝑏𝑢𝑡𝑖𝑜𝑛𝑠. 
(O Ax) If  

[
(𝑂4−

𝑂1+𝑂7
2

)
2

𝑂1+𝑂7
2

+
(𝑂4−

𝑂2+𝑂6
2

)
2

𝑂2+𝑂6
2

+
(𝑂4−

𝑂3+𝑂5
2

)
2

𝑂3+𝑂5
2

+
(𝑂4− 

𝑂2+𝑂3+𝑂5+𝑂6
4

)
2

𝑂2+𝑂3+𝑂5+𝑂6
4

+
(𝑂4− 

𝑂1+𝑂2+𝑂6+𝑂7
4

)
2

𝑂1+𝑂2+𝑂6+𝑂7
4

+

 
(𝑂4− 

𝑂1+𝑂3+𝑂5+𝑂7
4

)
2

𝑂1+𝑂3+𝑂5+𝑂7
4

+
(𝑂4− 

𝑂1+𝑂2+𝑂3+𝑂5+𝑂6+𝑂7
6

)
2

𝑂1+𝑂2+𝑂3+𝑂5+𝑂6+𝑂7
6

] <  ᵡ7
2, 

we will accept the hypothesis 
𝐻𝐴10: 𝑇ℎ𝑒 𝑡𝑤𝑜 𝑠𝑖𝑑𝑒𝑑 𝑑𝑎𝑡𝑎 𝑓𝑜𝑙𝑙𝑜𝑤𝑠 𝑎𝑟𝑖𝑡ℎ𝑚𝑒𝑡𝑖𝑐𝑎𝑙𝑙𝑦 𝑠𝑦𝑚𝑚𝑒𝑡𝑟𝑖𝑐 𝑑𝑖𝑠𝑡𝑟𝑖𝑏𝑢𝑡𝑖𝑜𝑛. 

 
Similar types of hypothesis can be checked for geometrically and harmonically 
symmetric distributions. For any twin of the triplet of the aforesaid sixteen triplet 
hypotheses  

ᵡ𝑛
2

ᵡ𝑛
2  ~𝐹𝑛,𝑛 

If 𝐹 <  𝐹𝑛,𝑛 , we will accept the hypothesis concerned to the denominator of the 𝐹 
statistic; otherwise accept that of the numerator of the 𝐹 statistic. The aforesaid tests can 
be generalized for Deciles, Percentiles or any quantiles with chi-square test statistic with 
one or more than one degree of freedom.  
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3 Graphical Representations for Assessing the type of Symmetricity 
 

We may use three types of Box Plots named Arithmetic Box Plot, Geometric Box Plot 
and Harmonic Box Plot.  
 
3.1 Box Plot for Quartiles 
Now for Arithmetic Symmetric Distribution the Arithmetic Box Plot will be of the 
following type  

  
           𝑄1          𝑄2          𝑄3 
to check    𝑄3 − 𝑄2 =  𝑄2 − 𝑄1. 
In case of, Geometrically Symmetric Distribution the Geometric Box Plot will be of the 
following type 
 

to verify 
𝑄3

𝑄2
=  

𝑄2

𝑄1
. 

 
For Harmonically Symmetric Distribution the Harmonic Box Plot will be of the 
following type  

  
           1

𝑄3
           1

𝑄2
           1

𝑄1
 

iff 
1

𝑄2
−

1

𝑄3
=  

1

𝑄1
−  

1

𝑄2
. 

 
 

4. Outlier Detection 
 
4.1 Outlier Detection for Quartiles  
In case of arithmetically symmetric or normal distribution we term one observation will 
be an outlier if it falls out of the following fences: 

Lower Fence =  𝑄1 − 1.5(𝑄3 −  𝑄1), Upper Fence =  𝑄3 + 1.5(𝑄3 − 𝑄1). 
For geometrically symmetric or normal distribution we term one observation will be 
treated as outlier if it falls out of the following fences: 

Lower Fence =  2(
𝑄3

𝑄1
), Upper Fence = 1

2
(

𝑄3

𝑄1
) 

Due to harmonically symmetric or normal distribution one observation will be an outlier 
if it cannot maintain the following limits: 

Lower Fence = 1

𝑄3
− 1.5(

1

𝑄1
−  

1

𝑄3
), Upper Fence = 1

𝑄1
+ 1.5(

1

𝑄1
−  

1

𝑄3
). 

 
 

𝑄3  
  
  
  
𝑄2    
    
    
 𝑄1  𝑄2 
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4.2 Outlier Detection for Octiles  
In case of arithmetically symmetric or normal distribution we term one observation will 
be an outlier if it falls out of the following fences: 

Lower Fence =  𝑂1 −
5

6
(𝑂7 − 𝑂1), Upper Fence =  𝑂7 +

5

6
(𝑂7 −  𝑂1). 

 
For geometrically symmetric or normal distribution we term one observation will be 
treated as outlier if it falls out of the following fences: 

Lower Fence =  2(
𝑂3

𝑂1
), Upper Fence = 1

2
(

𝑂3

𝑂1
) 

 
Due to harmonically symmetric or normal distribution one observation will be an outlier 
if it cannot maintain the following limits: 

Lower Fence = 1

𝑂7
−

8

6
(

1

𝑂1
− 

1

𝑂7
), Upper Fence = 1

𝑂1
+

8

6
(

1

𝑂1
−  

1

𝑂7
). 

 
 

5. Statistical Methods and Methodologies for detecting the type of Normality 
 
5.1 Quantiles based assessment 
For a set of data 𝑥1,𝑥2  ,…, 𝑥𝑛 as a random sample of size 𝑛 from a population, we order 
the data 𝑥(1),𝑥(2) ,…, 𝑥(𝑛) and find the quantiles 𝑞(1), 𝑞(2), … , 𝑞(𝑘).  If the successive 
differences 𝑞(2)− 𝑞(1) , 𝑞(3)− 𝑞(2),,…, 𝑞(𝑘)− 𝑞(𝑘−1) are constant, then the data are said to 
be arithmetically symmetric. As for example, for octiles we have the following arithmetic 
relations   
𝑂2 =

𝑂1+𝑂3

2
⇒ 𝑂2 − 𝑂1 =  𝑂3 −  𝑂2 … (𝑖) , 𝑂3 =

𝑂2+𝑂4

2
⇒ 𝑂3 − 𝑂2 =  𝑂4 −  𝑂3 … (𝑖𝑖) , 

𝑂4 =
𝑂3+𝑂5

2
⇒ 𝑂4 − 𝑂3 =  𝑂5 −  𝑂4 … (𝑖𝑖𝑖) , 𝑂5 =

𝑂4+𝑂6

2
⇒ 𝑂5 − 𝑂4 =  𝑂6 − 𝑂5 … (𝑖𝑣) , 

𝑂6 =
𝑂5+𝑂7

2
⇒ 𝑂6 − 𝑂5 =  𝑂7 −  𝑂6 … (𝑣) 

From (𝑖) − (𝑣) we get the constant arithmetic successive octiles difference relation for 
arithmetic octiles as 

𝑂2 − 𝑂1 =  𝑂3 −  𝑂2 = 𝑂4 − 𝑂3 =  𝑂5 −  𝑂4 = 𝑂6 − 𝑂5 =  𝑂7 −  𝑂6. 
The data are said to be geometrically symmetric if the successive ratios 𝑞(2)

𝑞(1) 

, 𝑞(3)

𝑞(2) 

,…, 
𝑞(𝑛)

𝑞(𝑛−1) 

 are constant since the following geometric relations are carried by the octiles. 

𝑂2 = √𝑂1𝑂3 ⇒
𝑂2

𝑂1
=

𝑂3

𝑂2
… (𝑣𝑖) , 𝑂3 = √𝑂2𝑂4 ⇒

𝑂3

𝑂2
=

𝑂4

𝑂3
… (𝑣𝑖𝑖) , 𝑂4 = √𝑂3𝑂5 ⇒

𝑂4

𝑂3
=

𝑂5

𝑂4
… (𝑣𝑖𝑖𝑖), 𝑂5 = √𝑂4𝑂6 ⇒

𝑂5

𝑂4
=

𝑂6

𝑂5
… (𝑖𝑥), 𝑂6 = √𝑂5𝑂7 ⇒

𝑂6

𝑂5
=

𝑂7

𝑂6
… (𝑥) 

From (𝑣𝑖) − (𝑖𝑥)  we get the constant geometric successive octiles ratio relation for 
geometric octiles as 

𝑂2

𝑂1
=

𝑂3

𝑂2
=

𝑂4

𝑂3
=

𝑂5

𝑂4
=

𝑂6

𝑂5
=

𝑂7

𝑂6
 . 

  
The successive differences of the ratios  1

𝑞(1)
 - 1

𝑞(2)
, 1

𝑞(2)
 - 1

𝑞(3)
,…, 1

𝑞(𝑛−1)
 - 1

𝑞(𝑛)
 are constant. 

For octiles , the following harmonic relations are evident 
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𝑂2 =
2

1

𝑄1
+

1

𝑄3

⇒
1

𝑄1
−  

1

𝑄2
=

1

𝑄2
−

1

𝑄3
… (𝑥𝑖),  𝑂3 =

2

𝑂2
−1+𝑂4

−1 ⇒
1

𝑄2
−  

1

𝑄3
=

1

𝑄3
−

1

𝑄4
… (𝑥𝑖𝑖), 

𝑂4 =
2

𝑂3
−1+𝑂5

−1 ⇒
1

𝑄3
− 

1

𝑄4
=

1

𝑄4
−

1

𝑄5
… (𝑥𝑖𝑖𝑖), 𝑂5 =

2

𝑂4
−1+𝑂6

−1 ⇒
1

𝑄4
− 

1

𝑄5
=

1

𝑄5
−

1

𝑄6
… (𝑥𝑖𝑣), 𝑂6 =

2
1

𝑄5
+

1

𝑄7

⇒
1

𝑄5
−  

1

𝑄6
=

1

𝑄6
−

1

𝑄7
… (𝑥𝑣) 

From (𝑥𝑖) − (𝑥𝑣) we get the constant harmonic successive inverse octiles difference 
relation for harmonic octiles as 

1

𝑄1
− 

1

𝑄2
=

1

𝑄2
−  

1

𝑄3
=

1

𝑄3
−  

1

𝑄4
=

1

𝑄4
− 

1

𝑄5
=

1

𝑄5
− 

1

𝑄6
=

1

𝑄6
−

1

𝑄7
. 

 
 

6. Comparison among the arithmetically, geometrically and harmonically 
symmetric or normal distributions 

 
For arithmetically symmetric or normal distribution, the first four moments are 
µ = 𝐸(𝑥) = ∑ 𝑥𝑝(𝑥), 𝜎2 = ∑(𝑥 − µ)2𝑝(𝑥) 

 
For geometrically symmetric or normal distribution, the first two moments are 

µ̂ = 𝐺(𝑥) =  (𝑥1𝑥2 … 𝑥𝑛)
1

𝑛, 𝜎 =  (
𝑥2

𝑥1

𝑥3

𝑥2
…

𝑥𝑛

𝑥𝑛−1
)

1

𝑛−1
= (

𝑥𝑛

𝑥1
)

1

𝑛−1
 

For the grouped data, 
µ̂ = 𝐺(𝑥) =  𝑥1

𝑃(𝑥1)𝑥2
𝑃(𝑥2) … 𝑥𝑛

𝑃(𝑥𝑛),  

�̂�  =  (
𝑥2

𝑃(𝑥2)

𝑥1
𝑃(𝑥1)

𝑥3
𝑃(𝑥3)

𝑥2
𝑃(𝑥2)

…
𝑥𝑛

𝑃(𝑥𝑛)

𝑥𝑛−1
𝑃(𝑥𝑛−1)

)

1
𝑛−1

= (
𝑥𝑛

𝑃(𝑥𝑛)

𝑥1
𝑃(𝑥1)

)

1
𝑛−1

 

 
For Harmonically symmetric or normal distribution, the first two moments are 

µ̂ = 𝐻(𝑥) =  
𝑛

𝑥1
−1 + 𝑥2

−1 + ⋯ + 𝑥𝑛
−1

 

𝜎2̂

=  
𝑛

(𝑥1
−1 −

𝑛
𝑥1

−1 + 𝑥2
−1 + ⋯ + 𝑥𝑛

−1)
2

+ (𝑥2
−1 −

𝑛
𝑥1

−1 + 𝑥2
−1 + ⋯ + 𝑥𝑛

−1)
2

+ ⋯ + (𝑥𝑛
−1 −

𝑛
𝑥1

−1 + 𝑥2
−1 + ⋯ + 𝑥𝑛

−1)
2 

 
 

7. Existing examples of some traditional distributions along with the 
less local locations 

 
7.1 Geometric Distribution 
Geometric distributions is a discrete distribution that present the discrete waiting time 
preceding 1st success. The traditional expected waiting time is proportional to the 
probability of success which means that if the probability of success is greater the 
traditional mean waiting time is greater and vice versa. This is not logically correct since 
if probability of success is greater, naturally the waiting time to get 1st success will be 
relative less than the waiting time preceding 1st success for the probability of success with 
less value. The probability mass function of the Geometric distribution is as below: 

𝑃(𝑥) =  (1 − 𝑝)𝑥−1𝑝, 𝑥 = 1, 2, … 
𝐸(𝑥) =  

𝑝

1−𝑝
. 

If we consider the probability mass function as the general term of the several frequency 
terms of a Geometric sequence of the following form: 
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𝑃(𝑥1) = 𝑝, 𝑃(𝑥2) = (1 − 𝑝)𝑝, 𝑃(𝑥3) =  (1 − 𝑝)2𝑝, 𝑃(𝑥4) =  (1 − 𝑝)3𝑝, … 
∴ 𝐺𝑀(𝑥)̂ = 𝑥1

𝑃(𝑥1)𝑥2
𝑃(𝑥2) … . 𝑥𝑛

𝑃(𝑥𝑛) = 1𝑝 × 2(1−𝑝)𝑝 × 3(1−𝑝)2𝑝 × … .× 𝑛(1−𝑝)(𝑛−1)𝑝 
= (1.2 … . 𝑛)𝑝 × (2.3 … 𝑛)(1−𝑝) × (3.4 … 𝑛)(1−𝑝) × … × 𝑛(1−𝑝) 

∴ 𝐺𝑀(𝑥)̂  = 2𝑝(2.3 … 𝑛)(1−𝑝) × 3𝑝(3.4 … 𝑛)(1−𝑝) × … × 𝑛𝑝𝑛(1−𝑝) 
Since, each of the n-terms of the right hand side of the aforesaid equation decreases as p 
increases. Therefore, if the probability of successes, p, increases in the Geometric 
distribution, the Geometric average decreases which is logical since if probability of 
successes increases, naturally the average waiting time will decrease. If n increases, 
Geometric distribution tend to symmetric one, so let us assume value of n with a small 
one.  
 
If 𝑝 = 0.2 and n = 3, then the sample Geometric Mean waiting time,  
 𝐺𝑀(𝑥)̂  = 1𝑝 × 2𝑝(1−𝑝) × 3𝑝(1−𝑝)2= 10.2 × 20.2(1−0.2) × 30.2(1−0.2)2=1.29,  
but the sample Arithmetic Mean waiting time, E(𝑥)= 𝑝

1−𝑝
= 0.2

1−0.2
 = 0.25.  

 
If 𝑝 = 0.8 and n= 3, then the sample Geometric Mean waiting time 
𝐺𝑀(𝑥)̂  = 1𝑝 × 2𝑝(1−𝑝) × 3𝑝(1−𝑝)2= 10.8 × 20.8(1−0.8) × 30.8(1−0.8)2=1.16 
and the population Arithmetic Mean waiting time = E(x) = 𝑝

1−𝑝
=  

0.8

1−0.8
= 4. 

 

So, 𝐺(𝑥;𝑝=0.2)̂

𝐺(𝑥;𝑝=0.8)̂ =  
1.29

1.16
= 1.11  whereas 𝐸(𝑥;𝑝=0.2)

𝐸(𝑥;𝑝=0.8)
=  

0.25

2
 = 0.0625 which means that in 

Geometric Distribution, considering Geometric Mean if probability of success increases, 
waiting time decreases whereas for Arithmetic Mean if probability of success increases, 
waiting time increases. Therefore, in Geometric distribution, Geometric Mean gives 
logically correct answer than Arithmetic Distribution since for higher value of probability 
of successes, the waiting time be relatively lower. Moreover, it is seen here that for p = 
0.2, the Arithmetic Mean is 0.25, where are average waiting time for getting a success 
can never be less than 1 since least number of trial or success is 1. 
 
7.2 Negative Binomial Distribution 
Negative Binomial distributions is a discrete distribution that present the discrete waiting 
time preceding rth success. The traditional expected waiting time is proportional to the 
probability of success which means that if the probability of success is greater the 
traditional mean waiting time is greater and vice versa. This is not logically correct since 
if probability of success is greater, naturally the waiting time to get rth success will be 
relative less than the waiting time preceding rth success for the probability of success with 
less value. The probability mass function of the Negative Binomial distribution is as  

𝑃(𝑥) =  (
𝑥 − 1 + 𝑟 − 1

𝑟 − 1
) (1 − 𝑝)𝑥−1𝑝𝑟, 𝑥 = 1, 2, … 

𝐸(𝑥) =  
𝑟𝑝

1−𝑝
. 

If we consider the probability mass function as the general term of the several frequency 
terms of a Geometric sequence of the following form: 

𝑃(𝑥1) = 𝑝𝑟, 𝑃(𝑥2) = 𝑟(1 − 𝑝)𝑝𝑟, 𝑃(𝑥3) =  
𝑟(𝑟+1)

2
(1 − 𝑝)2𝑝𝑟, 𝑃(𝑥4) =

 
𝑟(𝑟+1)(𝑟+2)

6
(1 − 𝑝)3𝑝𝑟, … 

∴ 𝐺𝑀(𝑥)̂ = 𝑥1
𝑃(𝑥1)𝑥2

𝑃(𝑥2) … . 𝑥𝑛
𝑃(𝑥𝑛) = 1𝑝𝑟

× 2𝑟(1−𝑝)𝑝𝑟
× 3

𝑟(𝑟+1)

2
(1−𝑝)2𝑝𝑟

× … .×

𝑛
𝑟(𝑟+1)(𝑟+2)…(𝑟+𝑛−2)

𝑛−1
(1−𝑝)𝑛−1𝑝𝑟
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= (1.2 … . 𝑛)𝑝𝑟
× (2.3 … 𝑛)𝑟(1−𝑝) × (3.4 … 𝑛)(𝑟+1)(1−𝑝) × … × 𝑛(𝑟+𝑛−2)(1−𝑝) 

∴ 𝐺𝑀(𝑥)̂  = 2𝑝𝑟
(2.3 … 𝑛)𝑟(1−𝑝) × 3𝑝𝑟

(3.4 … 𝑛)(𝑟+1)(1−𝑝) × … × 𝑛𝑝𝑟
𝑛(𝑟+𝑛−2)(1−𝑝) 

 
Since, each of the n-terms of the right hand side of the aforesaid equation decreases as p 
increases. Therefore, if the probability of successes, p, increases in the Negative Binomial 
distribution, the Geometric average decreases which is logical since if probability of 
successes increases, naturally the average waiting time will decrease. If n or r increases, 
Negative Binomial distribution tend to symmetric one, so let us assume value of both n 
and with small ones. If 𝑝 = 0.2 and n = 5, r = 2 then the sample Negative Binomial Mean 
waiting time,  

 𝐺𝑀(𝑥)̂ = 1𝑝𝑟
× 2𝑟(1−𝑝)𝑝𝑟

× 3
𝑟(𝑟+1)

2
(1−𝑝)2𝑝𝑟

× 4
𝑟(𝑟+1)(𝑟+2)

6
(1−𝑝)3𝑝𝑟

×

5
𝑟(𝑟+1)(𝑟+2)(𝑟+3)

24
(1−𝑝)4𝑝𝑟

 

= 1(0.2)2
× 22(1−0.2)0.22

× 3
2(2+1)

2
(1−0.2)20.22

× 4
2(2+1)(2+2)

6
(1−0.2)30.22

×

5
2(2+1)(2+2)(2+3)

24
(1−0.2)40.22

=1.45,  
but the sample Arithmetic Mean waiting time, E(𝑥)= 𝑟𝑝

1−𝑝
= 2∗0.2

1−0.2
 = 0.50.  

 
If 𝑝 = 0.8 and n= 5, r = 2 then the sample Negative Binomial Mean waiting time 

𝐺𝑀(𝑥)̂  = 1𝑝𝑟
× 2𝑟(1−𝑝)𝑝𝑟

× 3
𝑟(𝑟+1)

2
(1−𝑝)2𝑝𝑟

× 4
𝑟(𝑟+1)(𝑟+2)

6
(1−𝑝)3𝑝𝑟

×

5
𝑟(𝑟+1)(𝑟+2)(𝑟+3)

24
(1−𝑝)4𝑝𝑟

 

= 1(0.8)2
× 22(1−0.8)0.82

× 3
2(2+1)

2
(1−0.8)20.82

× 4
2(2+1)(2+2)

6
(1−0.8)30.82

×

5
2(2+1)(2+2)(2+3)

24
(1−0.8)40.82

  
=1.35, 
and the population Arithmetic Mean waiting time = E(x) = 𝑟𝑝

1−𝑝
=  

2∗0.8

1−0.8
= 8.  So, 

𝐺(𝑥;𝑝=0.2)̂

𝐺(𝑥;𝑝=0.8)̂ =  
1.45

1.35
= 1.07  whereas 𝐸(𝑥;𝑝=0.2)

𝐸(𝑥;𝑝=0.8)
=  

0.50

8
 = 0.0625 which means that in 

Negative Binomial Distribution, considering Geometric Mean if probability of success 
increases, waiting time decreases whereas for Arithmetic Mean if probability of success 
increases, waiting time increases. Therefore, in Negative Binomial distribution, 
Geometric Mean gives logically correct answer than Arithmetic Distribution since for 
higher value of probability of successes, the waiting time be relatively lower. Moreover, 
it is seen here that for r = 2 and p = 0.2, the Arithmetic Mean is 0.50, where are average 
waiting time for getting a success can never be less than 1 since least number of trial or 
success is 1. If r accelerated increases compared to n, the effect of probability of success 
drastically decreases and the ratio of two geometric means behave opposite behavior just 
like that of two arithmetic means. This is due to the reason is that, if r increases , the 
geometric distribution tend to normal distribution that require arithmetic mean to be more 
appropriate for each of the two means.  
 
7.3 Exponential Distribution 
For the simplest form of the exponential distribution with the probability density function 
as 𝑓(𝑥) = 𝑒−𝑥, 𝑥 > 0, 𝐸(𝑥) = ∫ 𝑥𝑒−𝑥𝑑𝑥 =

∞

0
1 which means that the arithmetic mean or 

average waiting time is 1 time unit whereas ∫ 𝑒−𝑥𝑑𝑥 =
𝑒−1

𝑒
= 0.632

1

0
. So, for the 

exponential distribution with the aforesaid pdf, we are assuming that 𝐸(𝑥) = 1 as the 
center under which there are 63 % observations. The distribution’s Geometric mean is 
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𝐺(𝑥) = 𝑒∫ 𝑒−𝑥 ln(𝑥)𝑑𝑥
∞

0 =0.56 which means that the geometric mean or average waiting 
time is 0.56 unit time whereas ∫ 𝑒−𝑥𝑑𝑥 = 0.43.

0.56

0
 So, geometric mean 𝐺(𝑥) =0.56 as 

the center leaves 43 % observations to its left side. Since, ∫ 𝑒−𝑥𝑑𝑥 =
0.695

0
0.50 so the 

median of the referred exponential distribution is 0.695. The additive or arithmetic or 
horizontal or linear drift from median toward the arithmetic mean  𝐸(𝑥) is 1.0 - 0.695 
=0.305 and that to the geometric mean 𝐺(𝑥) is 0.695 – 0.56 = 0.135. The  multiplicative 
or geometric or vertical or scale drift from median to the arithmetic mean point is 1

0.695
=

1.44 whereas that of geometric mean to the median point is 0.695

0.56
= 1.24. So, for the 

aforesaid distribution with the following inequality 𝐺𝑀 = 0.56 < 𝑀𝑒𝑑𝑖𝑎𝑛 = 0.695 <
𝐴𝑀 = 1.0, we come to know that median is 1.44 times of geometric mean whereas 
arithmetic means is 1.24 times of median. There are several reasons to warrant geometric 
mean = 0.56 to be more appropriate as the center of the exponential distribution 
compared to the arithmetic mean = 1.0. At first, a better center should be median or be as 
close as to the median of a distribution especially for an asymmetric one. Here the 
exponential distribution has asymmetric form and exponential or geometric pattern. So, 
geometric mean is more appropriate to present the center of the distribution. Secondly, 
geometric mean has 43 % observation to the left hand side of the distribution whereas 
arithmetic mean has 37 % observation to the right hand side of the distribution. So, 
geometric mean is more close (with distance = 50% - 43% = 7%) to the 50th percentile of 
the distribution compared to the arithmetic mean (with distance 63% - 50% = 50% - 37% 
= 13%). Thirdly, within first (0.695-0 =) tiny interval of (0, 0.695) of length 0.695 of the 
horizontal axis of the distribution, 50% observations lie whereas within the rest of the 
interval [0.695, ∞) of infinite length of the real line axis of the same, 50% observations 
belong. Since the first interval not only includes the modal value (mode is close to 0) but 
also the 50 % of the data within very short interval, the center of the distribution should 
belong to this first interval rather than the second interval. Geometric mean = 0.56 belong 
to the first interval but arithmetic mean = 1 does not belong to the first interval. So, it is 
geometric mean, not arithmetic mean, which is more credit worthy to present the locality 
of the exponential distribution. Fourthly, for the first interval, the height if density is the 
highest compared to that for the second interval with relatively consistent flat tail. A 
center of a distribution belong to that interval of the x axis for which the distribution has 
higher height of the density. For the various specifications of the parameter of the 
exponential distributions the arithmetic mean waiting times are 𝐸(𝑥) = ∫ 𝑥𝑒−𝑥𝑑𝑥 =

∞

0
1, 

𝐸(𝑥) = ∫ 𝑥2𝑒−2𝑥𝑑𝑥 =
∞

0
 
1

2
= 0.50  and 𝐸(𝑥) = ∫ 𝑥4𝑒−4𝑥𝑑𝑥 =

∞

0
 
1

4
= 0.25  and the 

geometric mean waiting times are 𝐺(𝑥) = 𝑒∫ 𝑒−𝑥 ln(𝑥)𝑑𝑥
∞

0 = 0.56, 𝐺(𝑥) =

𝑒∫ 2𝑒−2𝑥 ln(𝑥)𝑑𝑥
∞

0 = 0.28 and 𝐺(𝑥) = 𝑒∫ 4𝑒−4𝑥 ln(𝑥)𝑑𝑥
∞

0 = 0.14 along with the probability 
density functions  𝑓(𝑥) = 𝑒−𝑥, 𝑥 > 0 , 𝑓(𝑥) = 2𝑒−2𝑥, 𝑥 > 0  and 𝑓(𝑥) = 4𝑒−4𝑥, 𝑥 > 0 
respectively. So, 𝐸(𝑥, 𝜆 = 1) = 2𝐸(𝑥, 𝜆 = 2) = 4𝐸(𝑥, 𝜆 = 4)  and 𝐺(𝑥, 𝜆 = 1) =
2𝐺(𝑥, 𝜆 = 2) = 4𝐺(𝑥, 𝜆 = 4).  
 
7.4 Gamma Distribution 
For the simplest form of the gamma distribution (the form other than exponential 
distribution) with the probability density function as 𝑓(𝑥) = 𝑥𝑒−𝑥, 𝑥 > 0 , 𝐸(𝑥) =

∫ 𝑥2𝑒−𝑥𝑑𝑥 =
∞

0
2 which means that the arithmetic mean or average waiting time is 2 time 

unit whereas ∫ 𝑥𝑒−𝑥𝑑𝑥 = 0.59
2

0
. So, for the exponential distribution with the aforesaid 

pdf, we are assuming that 𝐸(𝑥) = 2  as the center under which there are 59 % 
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observations. The distribution’s Geometric mean is 𝐺(𝑥) = 𝑒∫ 𝑥𝑒−𝑥 ln(𝑥)𝑑𝑥
∞

0 = 1.53 
which means that the geometric mean or average waiting time is 1.53 unit time whereas 
∫ 𝑥𝑒−𝑥𝑑𝑥 = 0.45.

1.53

0
 Therefore, geometric mean 𝐺(𝑥) =1.53 as the center leaves 45 % 

observations to its left side. Since, ∫ 𝑒−𝑥𝑑𝑥 =
0.695

0
0.50 so the median of the referred 

exponential distribution is 1.68. The additive or arithmetic or horizontal or linear drift 
from median toward the arithmetic mean  𝐸(𝑥) is 2.0 - 1.68 =0.32 and that to the 
geometric mean 𝐺(𝑥) is 1.68 – 1.53 = 0.15. The  multiplicative or geometric or vertical 
or scale drift from median to the arithmetic mean point is 2

1.68
= 1.2 whereas that of 

geometric mean to the median point is 1.68

1.53
= 1.1. So, for the aforesaid distribution with 

the following inequality 𝐺𝑀 = 1.53 < 𝑀𝑒𝑑𝑖𝑎𝑛 = 1.68 < 𝐴𝑀 = 2.00, we come to know 
that median is 1.10 times of geometric mean whereas arithmetic means is 1.20 times of 
median. There are several reasons to warrant geometric mean = 1.53 to be more 
appropriate as the center of the exponential distribution compared to the arithmetic mean 
= 2.0. At first, the gamma distribution has asymmetric form and exponential or geometric 
pattern. So, geometric mean is more appropriate to present the center of the distribution. 
Secondly, geometric mean has 45 % observation to the left hand side of the distribution 
whereas arithmetic mean has 41 % observation to the right hand side of the distribution. 
So, geometric mean is more close (with distance = 50% - 45% = 5%) to the 50th 
percentile of the distribution compared to the arithmetic mean (with distance 59% - 50% 
= 50% - 41% = 9%). Thirdly, within first tiny interval of (0, 1.68) of length (1.68 – 0=) 
1.68 of the horizontal axis of the distribution, 50% observations lie whereas within the 
rest of the interval [1.68, ∞) of infinite length of the real line axis of the same, 50% 
observations belong. Since the first interval not only includes the modal value (mode is 
close to 0 and 1) but also the 50 % of the data within very short interval, the center of the 
distribution should belong to this first interval rather than the second interval. Geometric 
mean = 1.53 belong to the first interval but arithmetic mean = 2 does not belong to the 
first interval. So, it is geometric mean, not arithmetic mean, which is more credit worthy 
to present the locality of the gamma distribution. Fourthly, for the first interval, the height 
if density is the highest compared to that for the second interval with relatively consistent 
flat tail. A center of a distribution belong to that interval of the x axis for which the 
distribution has higher height of the density. For the various specifications of the 
parameter of the gamma distributions the arithmetic mean waiting times are  𝐸(𝑥) =

∫ 𝑥2𝑒−𝑥𝑑𝑥 =
∞

0
2 , 𝐸(𝑥) = ∫ 𝑥

𝑥𝑒−2𝑥22

1!
𝑑𝑥 =

∞

0
1  and 𝐸(𝑥) = ∫ 𝑥

𝑥𝑒−4𝑥42

1!
𝑑𝑥 =

∞

0
0.50  and 

the geometric mean waiting times are 𝐺(𝑥) = 𝑒∫ 𝑥𝑒−𝑥 ln(𝑥)𝑑𝑥
∞

0 = 1 .53, 𝐺(𝑥) =

𝑒∫
𝑥𝑒−2𝑥22

1!
ln(𝑥)𝑑𝑥

∞

0 = 0.76  and 𝐺(𝑥) = 𝑒∫
𝑥𝑒−4𝑥42

1!
ln(𝑥)𝑑𝑥

∞

0 = 0.38 along with the 
probability density functions  𝑓(𝑥) = 𝑥𝑒−𝑥, 𝑥 > 0 , 𝑓(𝑥) =

𝑥𝑒−2𝑥22

1!
, 𝑥 > 0  and 𝑓(𝑥) =

𝑥𝑒−2𝑥22

1!
, 𝑥 > 0  respectively. So, 𝐸(𝑥, 𝑛 = 2, 𝜆 = 1) = 2𝐸(𝑥, 𝑛 = 2, 𝜆 = 2) =

4𝐸(𝑥, 𝑛 = 2, 𝜆 = 4) = 2  and 𝐺(𝑥, 𝑛 = 2, 𝜆 = 1) = 2𝐺(𝑥, 𝑛 = 2, 𝜆 = 2) = 4𝐺(𝑥, 𝑛 =

2, 𝜆 = 4) = 1.53 . So, 𝐸(𝑥,𝑛=2,𝜆=1)

𝐺(𝑥,𝑛=2,𝜆=1)
=  

2

1.53
 ≈  

4

3
 .  The arithmetic mean waiting times 

are  𝐸(𝑥) = ∫ 𝑥
𝑥2𝑒−𝑥

2!
𝑑𝑥 =

∞

0
3 , 𝐸(𝑥) = ∫ 𝑥

𝑥2𝑒−2𝑥23

2!
𝑑𝑥 =

∞

0
1.5  and 𝐸(𝑥) =

∫ 𝑥
𝑥2𝑒−4𝑥43

2!
𝑑𝑥 =

∞

0
0.75  and the geometric mean waiting times are 𝐺(𝑥) =

𝑒∫
𝑥2𝑒−𝑥

2!
ln(𝑥)𝑑𝑥

∞

0 = 2 .52, 𝐺(𝑥) = 𝑒∫
𝑥2𝑒−2𝑥23

2!
ln(𝑥)𝑑𝑥

∞

0 = 1.23  and 𝐺(𝑥) =

𝑒∫
𝑥2𝑒−4𝑥43

2!
ln(𝑥)𝑑𝑥

∞

0 = 0.63 along with the probability density functions  𝑓(𝑥) =
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𝑥2𝑒−𝑥

2!
, 𝑥 > 0 , 𝑓(𝑥) =

𝑥2𝑒−2𝑥23

2!
, 𝑥 > 0  and 𝑓(𝑥) =

𝑥2𝑒−4𝑥43

2!
, 𝑥 > 0  respectively. So, 

𝐸(𝑥, 𝑛 = 3, 𝜆 = 1) = 2𝐸(𝑥, 𝑛 = 3, 𝜆 = 2) = 4𝐸(𝑥, 𝑛 = 3, 𝜆 = 4) = 3  and 𝐺(𝑥, 𝑛 =

3, 𝜆 = 1) = 2𝐺(𝑥, 𝑛 = 3, 𝜆 = 2) = 4𝐺(𝑥, 𝑛 = 3, 𝜆 = 4)=2.52. So, 𝐸(𝑥,𝑛=3,𝜆=1)

𝐺(𝑥,𝑛=3,𝜆=1)
= 3

2.52
 ≈

 
6

5
 .  The arithmetic mean waiting times are  𝐸(𝑥) = ∫ 𝑥

𝑥19𝑒−𝑥

19!
𝑑𝑥 =

∞

0
20 , 𝐸(𝑥) =

∫ 𝑥
𝑥19𝑒−2𝑥220

19!
𝑑𝑥 =

∞

0
10  and 𝐸(𝑥) = ∫ 𝑥

𝑥19𝑒−4𝑥420

19!
𝑑𝑥 =

∞

0
5  and the geometric mean 

waiting times are 𝐺(𝑥) = 𝑒∫
𝑥9𝑒−𝑥

9!
ln(𝑥)𝑑𝑥

∞

0 = 9.50 , 𝐺(𝑥) = 𝑒∫
𝑥9𝑒−2𝑥210

9!
ln(𝑥)𝑑𝑥

∞

0 = 4.75 

and 𝐺(𝑥) = 𝑒∫
𝑥9𝑒−4𝑥410

9!
ln(𝑥)𝑑𝑥

∞

0 =  2.38  along with the probability density functions 
 𝑓(𝑥) =

𝑥2𝑒−𝑥

2!
, 𝑥 > 0 , 𝑓(𝑥) =

𝑥2𝑒−2𝑥23

2!
, 𝑥 > 0  and 𝑓(𝑥) =

𝑥2𝑒−4𝑥43

2!
, 𝑥 > 0  respectively. 

So, 𝐸(𝑥, 𝑛 = 10, 𝜆 = 1) = 2𝐸(𝑥, 𝑛 = 10, 𝜆 = 2) = 4𝐸(𝑥, 𝑛 = 10, 𝜆 = 4) = 10  and 
𝐺(𝑥, 𝑛 = 10, 𝜆 = 1) = 2𝐺(𝑥, 𝑛 = 10, 𝜆 = 2) = 4𝐺(𝑥, 𝑛 = 10, 𝜆 = 4)  = 9.50. So, 
𝐸(𝑥,𝑛=10,   𝜆=1)

𝐺(𝑥,𝑛=10,   𝜆=1)
= 10

9.50
 ≈  

20

19
 . Therefore, as shape parameter (n) increases the ratio of the 

arithmetic mean and the geometric mean tends to 1. This is true since if the shape 
parameter increases, the Gamma distribution tends to normal distribution. Moreover, 

𝐸(𝑥) = ∫ 𝑥
𝑥9𝑒−25𝑥2510

9!
𝑑𝑥 =

∞

0
0.40 , 𝐺(𝑥) = 𝑒∫

𝑥9𝑒−30𝑥3010

9!
ln(𝑥)𝑑𝑥

∞

0 =  0.40.  So, 𝐸(𝑥, 𝑛 =

10, 𝜆 = 25) = 𝐺(𝑥, 𝑛 = 10, 𝜆 = 25) =  0.40.  If the value of scale parameter ( 𝜆 ) 
increases, the exponential behavior of Gamma distribution reduces or tends to arithmetic 
behavior. This property is consistent to the property of the Gamma distribution since 
Gamma distribution approaches to Normal distribution as scale parameter is sufficiently 
large.    
 
7.5 Chi-square Distribution 
All the new properties developed in this paper for the Gamma distribution are also true 
for the Chi-square distribution since chi-square is a special type of Gamma distribution. 
 
7.6 Weibull distribution 
For the form of the exponential distribution with the probability density function as 

𝑓(𝑥) =
𝑎

𝑏
(

𝑥

𝑏
)

𝑎−1
𝑒

−(
𝑥

𝑏
)

𝑎

, 𝑥 ≥ 0 , 𝐸(𝑥, a =  b =  2) = ∫ 𝑥
2

2
(

𝑥

2
)

2−1
𝑒

−(
𝑥

2
)

2

𝑑𝑥 =
∞

0
1 , 

𝐸(𝑥, a =  b =  10) = 9.51 , 𝐸(𝑥, a =  b =  100) =  62.42 , 𝐸(𝑥, a = 2, b = 10) =
 39.89 , 𝐸(𝑥, a =  2, b =  100) = 32.12 , 𝐸(𝑥, a = 10, b = 2) = 1.98 , 𝐸(𝑥, a =
 10, b =  100) = 56.05 , 𝐸(𝑥, a =  100, b =  2) = 1.99 , 𝐸(𝑥, a =  100, b =  10) =
6.24. If a and b contemporarily increases to same extent, E(x) increases. But if a<b, E(x) 
increases and the rate of increase of E(x) decreases as b increases. But for a>b, E(x) 
decreases, whereas the rate of decrease of E(x) remain same as a increases for smaller b 
but E(x) increases when a increases with greater b. 𝐺(𝑥, a =  b =  2) =

∫ (𝑙𝑛𝑥)
2

2
(

𝑥

2
)

2−1
𝑒

−(
𝑥

2
)

2

𝑑𝑥 =
∞

0
0.40, 𝐺(𝑥, a =  b =  10) = 2.24, 𝐺(𝑥, a =  b =  100) =

 4.60 , 𝐺(𝑥, a = 2, b = 10) =  2.01 , 𝐺(𝑥, a =  2, b =  100) = 4.32 , 𝐺(𝑥, a = 10, b =
2) = 0.64 , 𝐺(𝑥, a =  10, b =  100) = 4.55 , 𝐺(𝑥, a =  100, b =  2) = 0.69 , 𝐺(𝑥, a =
 100, b =  10) = 2.30 . If a and b contemporarily increases to same extent, G(x) 
increases. But if a<b, E(x) increases and the rate of increase of E(x) increases as b 
increases. But for a>b, E(x) decreases, whereas the rate of decrease of E(x) remain same 
as a increases for smaller b but E(x) increases when a increases with greater b. 
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𝐸(𝑥,a = b = 2)

𝐺(𝑥,a = b = 2)
=  

1

0.40
=  2.50 =

100

40
,

𝐸(𝑥,a = b = 10)

𝐺(𝑥,a = b = 10)
 =  

9.51

2.24
= 4.25 =

100

24
,  𝐸(𝑥,a = b = 100)

𝐺(𝑥,a = b = 100)
 =

 
62.42

4.60
= 13.57 =

100

7
,  𝐸(𝑥,a = 2,b = 10)

𝐺(𝑥,a = 2,b = 10)
 =  

39.89

2.01
= 19.85 =

100

5
,  𝐸(𝑥,a = 2,b = 100)

𝐺(𝑥,a =2,b = 100)
=  

32.12

4.32
=

7.44 =
100

13
, 𝐸(𝑥,a =10,b = 2)

𝐺(𝑥,a =10,b = 2)
=  

1.98

0.64
= 3.09 =

100

32
 , 𝐸(𝑥,a =10,b = 100)

𝐺(𝑥,a =10,b = 100)
=  

56.05

4.55
= 12.32 =

100

8
, 

𝐸(𝑥,a =100,b = 2)

𝐺(𝑥,a =100,b = 2)
=  

1.99

0.69
= 2.88 =

100

35
 , 𝐸(𝑥,a =100,b = 10)

𝐺(𝑥,a =100,b = 10)
=  

6.24

2.30
= 2.71 =

100

37
. When a and 

b both increases equally, the ratio of arithmetic mean and geometric mean acceleratory 
increases more and more. If a < b, then for smaller value of a, the ratio decreases if b 
increases. If a > b, then for bigger value of a, the ratio remains almost same if b 
increases. If a is in between smaller and bigger value, then for medium value of a, the 
ratio increases if b increases. For smaller a, the ratio is bigger. If a increases small value 
to larger ones, the ratio become dropping down since for larger a the exponential 
behavior changes to normal one.  
 
7.7 Beta distribution 
For the form of the exponential distribution with the probability density function as  

𝑓(𝑥) =
𝑥𝑚−1(1−𝑥)𝑛−1

𝛽(𝑚,𝑛)
, 0 ≤ 𝑥 ≤ 1, 

𝐸(𝑥, m =  n ) =
𝑚

𝑚+𝑛
= 0.50 , 𝐸(𝑥, m =  1, n = 2 ) =

1

1+2
= 0.33 , 𝐸(𝑥, m = 2, n =

3 ) =
2

2+3
= 0.40 , 𝐸(𝑥, 𝑚 = 2, n = 10) =

2

2+10
= 0.17 , 𝐸(𝑥, 𝑚 = 10, n = 2) =

10

10+2
=

0.83 , 𝐸(𝑥, 𝑚 =  20, n =  2) =
20

20+2
= 0.91 , 𝐸(𝑥, 𝑚 =  20, n =  5) =

20

20+5
= 0.80 , 

𝐸(𝑥, 𝑚 =  2, n =  20) =
2

2+20
= 0.09 , 𝐸(𝑥, 𝑚 =  5, n =  20) =

5

5+20
= 0.20 , 𝐺(𝑥,

m =  n =  2) = ∫ (𝑙𝑛𝑥)
𝑥2−1(1−𝑥)2−1

𝛽(2,2)
𝑑𝑥 =

∞

0
0.43 , 𝐺(𝑥, 𝑚 =  n =  10) = 0.49 , 

𝐺(𝑥, 𝑚 =  n =  13) = 0.35, 𝐺(𝑥, m = 1, n = 2) =  0.22, 𝐺(𝑥, m = 2, n = 3) = 0.34,  
𝐺(𝑥, m = 2, n = 10) =  0.13 , 𝐺(𝑥, 𝑚 = 10, n = 2) = 0.83 , 𝐺(𝑥, 𝑚 =  20, n =  2) =
0.91, 𝐺(𝑥, 𝑚 =  20, n =  5) = 0.77, 𝐺(𝑥, 𝑚 =  2, n =  20) = 0.07, 𝐺(𝑥, 𝑚 =  5, n =
 20) = 0.18. If m and n contemporarily increases to same extent, E(x) remains same ie, 
E(x) is invariant to the same extent of both parameter. But a center should be sensitive to 
the change of various realizations of its parameters. But G(x) is sensitive to the change of 
both parameters to same extent. However, if m and m both remain small, the ratio of 
arithmetic mean and geometric mean remain greater. But this ratio tend to 1 when any of 
the shape parameters tend to large. It happens since for any of the large parameter Beta 
distribution tends to Normal and Beta distribution is asymmetric or exponential when the 
parameters are small.    

 
Conclusion 

 
Since a statistical data analyst does not know the population before carrying out a study, 
assuming arithmetic normality assumptions is frequently misleading the statistician to 
obtain the true results. Statisticians should not only base on the three types of means for 
three types of progressions, but also should know what is core increment and exponent of 
sequence of the entire data along with its general term which is the driving force of 
deciding various features of the said distribution.   

 

References 
Hogg, Mckean and Craig. Introduction to Mathematical Statistics. 2013. Seventh Edition.   
           Pearson publisher. 

JSM2015 - Section on Statistical Education

3136


