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Abstract 

Attributable risk is a widely used measure for assessing risk of a factor in public health 

and biostatistics. It provides the proportion of disease reduction due to the elimination of 

the risk factor from the population of interest. It is to be noted that attributable risk is 

rarely used for test of association or independence. The chi-square test investigates if a 

certain factor is independent of any outcome. However, if the null hypothesis of 

independence or no association is rejected, this test cannot provide any insight on 

whether the factor is associated positively or negatively. This paper considers test of 

hypothesis of independence or no association using attributable risk and discusses 

sensitivity of power analysis, both theoretically and by Monte Carlo simulation.  
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1. Introduction 
 
Attributable risk (AR) is a widely used measure of risk of a factor in public health and 

epidemiological research. Introduced by Levin (1953), attributable risk is defined as the 

proportion of disease in the population that could be avoided if the effect associated with 

the risk factor were totally eliminated from the population of interest.  For a dichotomous 

risk factor with the exposure status 𝐸 = 𝑖, 𝑖 = 0,1 and disease status 𝐷 = 𝑗, 𝑗 = 0,1, AR 

can be expressed by the expression 𝐴𝑅 =
𝑃(𝐷=1)−𝑃(𝐷=1|𝐸=0)

𝑃(𝐷=1)
, where 𝑃(𝐷 = 1) is the 

overall disease rate in the entire population and 𝑃(𝐷 = 1|𝐸 = 0) is the disease rate in the 

unexposed population. Using the total law of probability, 𝑃(𝐷 = 1) = 𝑃(𝐷 = 1|𝐸 =
0)𝑃(𝐸 = 0) + 𝑃(𝐷 = 1|𝐸 = 1)𝑃(𝐸 = 1), it follows that 𝐴𝑅 =
[𝑃(𝐷=1|𝐸=1)−𝑃(𝐷=1|𝐸=0)]𝑃(𝐸=1)

𝑃(𝐷=1)
. Other useful equivalent expressions also appear in the 

literature: 𝐴𝑅 = 𝑃(𝐸 = 1|𝐷 = 1) (
𝑅𝑅−1

𝑅𝑅
), Benichou (1991); Coughlin et al. (1994), or 

𝐴𝑅 =
𝑃(𝐸=1)(𝑅𝑅−1)

𝑃(𝐸=1)(𝑅𝑅−1)+1
 ,Benichou (1991); Coughlin et al. (1994); Walter (1975, 1976); 

Fleiss (1979) where 𝑅𝑅 =
𝑃(𝐷=1|𝐸=1)

𝑃(𝐷=1|𝐸=0)
  is the relative risk of disease in the exposed group. 

Etiologic fraction (Miettinen, 1974), attributable fraction (Ouellet et al. 1979) and 

population attributable risk per cent (Cole and MacMahon, 1971) are some other 

terminologies available in literature to refer to attributable risk.  
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Walter (1975, 1976) provided distribution and rationale for using attributable risk in 

health research. Basu and Landis (1995) provided a model-based estimation of AR for a 

cross-sectional sampling along with the derivation of the asymptotic variance via Taylor 

series expansion. Benichou (1991) reviewed methods of adjustment for estimation of AR 

in case-control studies. Whittemore (1982) provided an asymptotic variance of the 

maximum likelihood estimate of the attributable risk for case-control data in the presence 

of confounding factors.  

 

Other papers discussed the methods for estimating AR while controlling for confounder 

factors for various study designs, Benichou (1991); Coughlin et al. (1994); Basu and 

Landis (1995); Bruzzi et al. (1985); Benichou and Gail (1990); Benichou (2001); 

Drescher and Schill (1991); Greenland and Drescher (1993); Eide and Gefeller (1995); 

Graubard and Fears (2005); Cox (2006); Shapla et al. (2009); Islam and Shapla (2013). 

 

Due to simplicity of application and interpretation, attributable risk for a dichotomous 

risk factor with a dichotomous outcome is very popular in biomedical and health sciences 

for measuring risk of the factor for the development of the outcome. In this paper, we will 

explore test of hypothesis of independence or no association of the risk factor and disease 

outcome for a cross-sectional study using attributable risk.  Real life examples and 

simulation studies will be utilized to justify the usefulness of the test of hypothesis of 

independence or no association using attributable risk and discuss sensitivity of power 

analysis.  

 

2. Methods 
 
Let us consider a risk factor with dichotomous exposure status  𝐸 = 𝑖, 𝑖 = 0,1 and a 

disease outcome with dichotomous status 𝐷 = 𝑗, 𝑗 = 0,1, where 0 (1) means absence 

(presence) of the exposure and disease outcome. An attributable risk of a disease outcome 

𝐷 due to the factor 𝐸 is defined by  

𝐴𝑅 =
𝑃(𝐷 = 1) − 𝑃(𝐷 = 1|𝐸 = 0)

𝑃(𝐷 = 1)
= 1 −

𝑃(𝐷 = 1|𝐸 = 0)

𝑃(𝐷 = 1)
 

where 𝑃(𝐷 = 1) is the overall disease rate in the entire population and 𝑃(𝐷 = 1|𝐸 = 0) 

is the disease rate in the unexposed population. We wish to test independence of exposure 

and disease outcome using an attributable risk for a cross-sectional study. 

 

Under a cross-sectional study, a random sample of 𝑛 individuals is cross-classified by the 

status of exposure and the disease outcome. Let 𝑛𝑖𝑗 be the random frequency of 

individuals falling into a cell at exposure level i (= 0, 1) and disease status )1 ,0 ( j  with 

an unknown probability 𝜋𝑖𝑗,  Of course, 0 < 𝜋𝑖𝑗 < 1, ∑ ∑ 𝜋𝑖𝑗𝑗𝑖 = 1 and 𝜋𝑖. = 𝜋𝑖0 + 𝜋𝑖1. 

Given the sample, it follows that ∑ ∑ 𝑛𝑖𝑗 = 𝑛𝑗𝑖 , 𝑛𝑖. = 𝑛𝑖0 + 𝑛𝑖1. The table below 

summarizes the distribution of subjects in a 2 × 2 table cross-classified by the status of 

exposure and disease with unknown probability of a subject falling in the cell provided in 

the parenthesis. 
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Table 1: Distribution of individuals by exposure and disease status 

Exposure Status 
Disease Status 

𝐷 = 0          𝐷 = 1 
Total 

𝐸 = 0 (absent) 
𝐸 = 1 (present) 

𝑛00(𝜋00)           𝑛01(𝜋01) 
𝑛10(𝜋10)           𝑛11 (𝜋11) 

𝑛0.(𝜋0.) 
𝑛1.(𝜋1.) 

Total 𝑛.0(𝜋.0)            𝑛.1(𝜋.1) 𝑛(1) 

 
Using the unknown cell probabilities 𝜋𝑖𝑗, we can re-write 𝐴𝑅 as 

𝐴𝑅 = 1 −
𝜋01/𝜋0.

𝜋.1
= 1 −

𝜋01

𝜋0.𝜋.1
 

or equivalently, as 

 

𝐴𝑅 =
𝜋00𝜋11 + 𝜋01𝜋10

𝜋00𝜋11 + 𝜋01𝜋10 − 𝜋01
 

 

Note that, under a cross-sectional study, the random vector  

𝒏 = (𝑛00, 𝑛01, 𝑛10, 𝑛11) 

of cell frequencies follows a multinomial distribution with parameters 𝑛 and  

𝝅 = (𝜋00, 𝜋01, 𝜋10, 𝜋11) 
for which the log-likelihood function is given by 

𝐿 = 𝑙𝑜𝑔𝐾 + 𝑛00𝑙𝑜𝑔(𝜋00) + 𝑛01𝑙𝑜𝑔(𝜋01) + 𝑛10𝑙𝑜𝑔(𝜋10) + 𝑛11𝑙𝑜𝑔(𝜋11) 

 

It follows that the maximum likelihood estimates (MLEs) of 𝜋𝑖𝑗 are given by 

𝑝𝑖𝑗 =
𝑛𝑖𝑗  

𝑛
; 𝑖 = 0,1; 𝑗 = 0,1 

Then, by the invariance property of the maximum likelihood method, an estimate of 𝐴𝑅 

is given by  

𝑎𝑟 = 1 −
𝑝01

𝑝0.𝑝.1
 

 

Or,  

𝑎𝑟 =
𝑝00𝑝11 + 𝑝01𝑝10

𝑝00𝑝11 + 𝑝01𝑝10 − 𝑝01
 

For the purpose of the test of hypothesis of independence or no association, we require 

distribution of 𝑎𝑟 and its asymptotic variance. Below we consider asymptotic variance of 

𝑎𝑟. 

 

2.1 Asymptotic Variance of 𝒂𝒓 
Let 𝒑 = (𝑝00, 𝑝01, 𝑝10, 𝑝11). Then, when n  is large, by the Central Limit Theorem 

(CLT), the random vector √𝑛(𝒑 − 𝝅) is asymptotically distributed as normal )( Σ0  ,N , 

where )0000( , , , 0 is a 41 vector,  πππΣ  )(diag  is a 44  covariance 

matrix of 𝒑 and )(diag π  is a 44 diagonal matrix with diagonal elements 𝜋𝑖𝑗.  

 

In order to find an asymptotic distribution of 𝑎𝑟, let us note that 𝑎𝑟 is a function 𝑔 of 𝒑: 

𝑎𝑟 = 𝑔(𝒑) =
𝑝00𝑝11 + 𝑝01𝑝10

𝑝00𝑝11 + 𝑝01𝑝10 − 𝑝01
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It is easy to see that 𝑔(𝒑) is an estimator of 𝑔(𝝅) = 𝐴𝑅 having a non-zero differential  
𝜕𝑔(𝒑)

𝜕𝑝𝑖𝑗
 at 𝒑 = 𝝅. Then, by the the Delta method, √𝑛(𝑔(𝒑) − 𝑔(𝝅)) is asymptotically 

distributed as normal with mean 0 and the variance 𝚺 𝜕′ , where  

 

𝜕 = (
𝜕𝑔(𝝅)

𝜕𝜋00
,
𝜕𝑔(𝝅)

𝜕𝜋01
,
𝜕𝑔(𝝅)

𝜕𝜋10
,
𝜕𝑔(𝝅)

𝜕𝜋11
) 

It follows that 
𝜕𝑔(𝝅)

𝜕𝜋00
=

𝜋01𝜋11

(𝜋01 + 𝜋00𝜋11 − 𝜋01𝜋10)2
 

 
𝜕𝑔(𝝅)

𝜕𝜋01
=

−𝜋00𝜋11

(𝜋01 + 𝜋00𝜋11 − 𝜋01𝜋10)2
 

 

𝜕𝑔(𝝅)

𝜕𝜋10
=

−𝜋01
2

(𝜋01 + 𝜋00𝜋11 − 𝜋01𝜋10)2
 

 
𝜕𝑔(𝝅)

𝜕𝜋11
=

𝜋00𝜋01

(𝜋01 + 𝜋00𝜋11 − 𝜋01𝜋10)2
 

Thus 𝑉(𝑎𝑟) is found to be 

𝑉(𝑎𝑟)

=
(1 − 𝐴𝑅)4{𝜋00𝜋11(𝜋00𝜋11 + 𝜋00𝜋01 + 𝜋01𝜋11) − 𝜋01(𝜋00𝜋11 − 𝜋01𝜋10)2 + 𝜋10𝜋01

3 }

𝑛𝜋01
3  

See Walter (1976), Shapla et al. (2009) for detail derivation.  

 

2.2 Test of Hypothesis of Independence 
We wish to test the null hypothesis of independence or no association against the 

alternative hypothesis of their dependence or association. Symbolically, we might express 

hypotheses for the test as follows: 

 

𝐻0: Exposure and disease outcome are independent 

𝐻𝑎: Exposure and disease outcome are not independent 

 

We wish to test this hypothesis using the test statistic involving attribution risk. 

Some results stated as propositions and theorems will be of great use in the process of 

hypothesis testing. 

 

Note that 
𝐴𝑅 =

𝜋00𝜋11 − 𝜋01𝜋10

𝜋00𝜋11 − 𝜋01𝜋10 + 𝜋01
                                                  (1) 

Or, equivalently: 

 

𝐴𝑅 = 1 −
𝜋01

𝜋0.𝜋.1
                                                                             (2)    

 
Proposition 1:  𝐴𝑅 = 0 if and only if  

𝜋11

𝜋1.
=

𝜋01

𝜋0.
. 

Proof: If 𝐴𝑅 = 0, then from (1) we have 

                                       𝜋00𝜋11 − 𝜋01𝜋10 = 0  
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                                     ⇒  𝜋00𝜋11 = 𝜋01𝜋10  

                                     ⇒  
𝜋11

𝜋10
=

𝜋01

𝜋00
  

                                     ⇒  
𝜋11

𝜋11+𝜋10
=

𝜋01

𝜋01+𝜋00
 

                                     ⇒  
𝜋11

𝜋1.
=

𝜋01

𝜋0.
  

For the proof of the reverse direction, let 
𝜋11

𝜋1.
=

𝜋01

𝜋0.
.  

Then 

                                      𝜋11𝜋0. − 𝜋01𝜋1. = 0  

⇒  𝜋11(𝜋01 + 𝜋00) − 𝜋01(𝜋11 + 𝜋10) = 0 

                                     ⇒  𝜋11𝜋01 + 𝜋11𝜋00 − 𝜋01𝜋11 − 𝜋01𝜋10 = 0  

                                     ⇒  𝜋11𝜋00 − 𝜋01𝜋10 = 0  

Then, 𝐴𝑅 =
𝜋00𝜋11−𝜋01𝜋10

𝜋00𝜋11−𝜋01𝜋10+𝜋01
= 0 

 

Proposition 1 states that the test of no association of the risk factor and the disease 
outcome in a 2 × 2 cross sectional study is equivalent to test that the rates of disease in 
exposed and unexposed groups are the same.  
 

Proposition 2:  𝐴𝑅 = 0 if and only if disease outcome and the exposure factor are 

independent. 

Proof: By the definition of conditional probability, 

𝑃(𝐷 = 1|𝐸 = 0) =
𝜋01

𝜋0.
 

𝑃(𝐷 = 1|𝐸 = 1) =
𝜋11

𝜋1.
 

By the definition of independence, 

𝑃(𝐷 = 1|𝐸 = 0) = 𝑃(𝐷 = 1) = 𝜋.1 
𝑃(𝐷 = 1|𝐸 = 1) = 𝑃(𝐷 = 1) = 𝜋.1 

Thus 
𝜋01

𝜋0.
=

𝜋11

𝜋1.
 

Then, by proposition 1, 𝐴𝑅 = 0. 
 

 

Again, if 𝐴𝑅 = 0 then by proposition 1, 
𝜋11

𝜋1.
=

𝜋01

𝜋0.
, which is a condition for independence 

as shown above. 

 
Proposition 2 states that the test of no association of the risk factor and the disease 
outcome in a 2 × 2 cross sectional study is equivalent to the test of independence of 
factor and disease outcome.  
Proposition 3: 𝐴𝑅 > 0 if and only if  𝜋11

𝜋1.
>

𝜋01

𝜋0.
. 

Proof: If 𝐴𝑅 > 0, then from (1) it follows that 
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                                        𝜋00𝜋11 − 𝜋01𝜋10 > 0  

                                      ⇒  𝜋00𝜋11 > 𝜋01𝜋10  

                                   ⇒  
𝜋11

𝜋01
>

𝜋10

𝜋00
  

                                      ⇒  
𝜋11

𝜋01
>

𝜋11+𝜋10

𝜋01+𝜋00
  

                                      ⇒  
𝜋11

𝜋01
>

𝜋1.

𝜋0.
  

                                      ⇒  
𝜋11

𝜋1.
>

𝜋01

𝜋0.
  

For the proof of the reverse direction, let 
𝜋11

𝜋01
>

𝜋1.

𝜋0.
. Then, 

                                       𝜋11𝜋0. − 𝜋01𝜋1. > 0  

                                      ⇒  𝜋11(𝜋01 + 𝜋00) − 𝜋01(𝜋11 + 𝜋10) > 0  

                                      ⇒  𝜋11𝜋01 + 𝜋11𝜋00 − 𝜋01𝜋11 − 𝜋01𝜋10 > 0  

                                      ⇒  𝜋11𝜋00 − 𝜋01𝜋10 > 0  

Then, 𝐴𝑅 =
𝜋00𝜋11−𝜋01𝜋10

𝜋00𝜋11−𝜋01𝜋10+𝜋01
> 0 

 

Proposition 3 states that positive association of the risk factor and the disease outcome in 
a 2 × 2 cross sectional study is equivalent to the fact that the rate of disease in exposed 
group is greater than the rate of disease in the unexposed group.  
 
 

Proposition 4: 𝜋11

𝜋1.
≥

𝜋01

𝜋0.
 if and only if 𝜋11 ≥ 𝜋1.𝜋.1. 

Proof: Let 𝜋11

𝜋1.
≥

𝜋01

𝜋0.
. Then, 

𝜋11

𝜋1.
≥

𝜋11+𝜋01

𝜋1.+𝜋0.
=

𝜋.1

1
, which implies that 𝜋11 ≥ 𝜋1.𝜋.1. 

For the proof of the reverse direction, let 𝜋11 ≥ 𝜋1.𝜋.1. Then, 
𝜋11

𝜋1.
≥ 𝜋.1 

Also, 𝜋01 = 𝜋.1 − 𝜋11 ≤ 𝜋.1 − 𝜋1.𝜋.1 = 𝜋.1(1 − 𝜋1.) = 𝜋.1𝜋0. 

Then,  
𝜋01

𝜋0.
≤ 𝜋.1 

which implies that 
𝜋01

𝜋0.
≤ 𝜋.1 ≤

𝜋11

𝜋1.
. Then, 

𝜋11

𝜋1.
≥

𝜋01

𝜋0.
. 

 

The facts in propositions 1-4 can be combined together for testing independence or no 

association regarding the risk factor and the disease.   

 

Therefore, to test 𝐻0: Exposure and disease outcome are independent versus 𝐻𝑎: 
Exposure and disease outcome are not independent, we simply can test 

 

𝐻0: 𝐴𝑅 = 0 𝑣𝑒𝑟𝑠𝑢𝑠 𝐻𝑎: 𝐴𝑅 ≠ 0 

Given the fact that 𝑎𝑟 is distributed asymptotically as 𝑁(𝐴𝑅, 𝑉(𝑎𝑟)), we can implement 

the test using a 𝑍 test statistic given by 
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𝑍 =
𝑎𝑟−𝐴𝑅

√𝑉(𝑎𝑟)
~𝑍(0,1) asymptotically under 𝐻0. 

 
2.3 Example 
This example appears in Fleiss (2003). A total of 2784 subjects in a community has been 

cross-classified by the presence or absence of the respiratory disease and the locomotor 

disease. Locomotor disease is the disease of bones and organs of movement. The 

following table summarizes the distribution of the subjects with respect to respiratory 

disease and locomotor disease status. 

 

Table 2: Cross-classification of 2784 subjects by the status of the respiratory disease and 

locomotor disease 

Respiratory 
disease 

   Locomotor disease 
𝐷 = 0     𝐷 = 1          

 
Total 

Proportion with 

Locomotor disease 

𝐸 = 0 
𝐸 = 1 

2376           184          
207             17          

  2560 
224 

0.07 
0.08 

Total 2583          201         2784 0.15 

 

Since the rates of locomotor disease in people with and without respiratory disease (0.08 

and 0.07, respectively) are virtually the same, we would like to test whether there is an 

association between respiratory disease and locomotor disease. Therefore, we are 

interested to test :0H  independence between the risk factor and the disease outcome, 

which is equivalent to test the hypothesis 𝐻0: 𝐴𝑅 = 0 𝑣𝑒𝑟𝑠𝑢𝑠 𝐻𝑎: 𝐴𝑅 ≠ 0. Under null 

hypothesis, the observed value of the test statistic,  

  

𝑍 =
𝑎𝑟 − 𝐴𝑅

√𝑉(𝑎𝑟)
 

is found to be 0.218. Therefore, at 5% significance level the data does not provide 

sufficient evidence to conclude that there is an effect of respiratory disease in developing 

locomotor disease. Thus, the two characteristics, respiratory disease and the locomotor 

disease are independent of each other.  

In a similar way, the above test can be used to test for any hypothesized value of 𝐴𝑅. 

 

3. Power Analysis for Variation of 𝐴𝑅 in the set of 2 × 2 tables 
 

Let us consider the set of all 2 × 2 tables given by 

𝑆 = {(𝜋11, 𝜋01, 𝜋10) ∶ 𝜋11, 𝜋01, 𝜋10 > 0; 𝜋11 + 𝜋01 + 𝜋10 < 1} 

Note that 𝑆 can be written as the union of two subsets S+ and
S , where  

𝑆+ = {(𝜋11, 𝜋01, 𝜋10) ∶ 𝜋11, 𝜋01, 𝜋10 > 0; 𝜋11 + 𝜋01 + 𝜋10 < 1;
𝜋11

𝜋1.
≥

𝜋01

𝜋0.
} 

is the set of all 2 × 2 tables of positive association and  

𝑆− = {(𝜋11, 𝜋01, 𝜋10) ∶ 𝜋11, 𝜋01, 𝜋10 > 0; 𝜋11 + 𝜋01 + 𝜋10 < 1;
𝜋11

𝜋1.
<

𝜋01

𝜋0.
} 

is the set of all 22  tables of negative association. In other words, on S+, 𝐴𝑅 ≥ 0 and on 
S , 𝐴𝑅 < 0. 

 

Fixing the row sum 𝜋1. (and also 𝜋0., thereby), let  
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𝑆𝜋1.
= {(𝜋11, 𝜋01, 𝜋10) ∶ 𝜋11, 𝜋01, 𝜋10 > 0; 𝜋11 + 𝜋01 + 𝜋10 < 1; 𝜋1.is fixed} 

A 22  table in 𝑆𝜋1.
is completely determined when 𝜋11 and 𝜋01 are determined. The set 

𝑆𝜋1.
can be written as the union of two subsets 𝑆𝜋1.

+ and 𝑆𝜋1.
− where  

𝑆𝜋1.
+ = {(𝜋11, 𝜋01, 𝜋10) ∶ 𝜋11, 𝜋01, 𝜋10 > 0; 𝜋11 + 𝜋01 + 𝜋10 < 1, 𝜋1.is fixed,

𝜋11

𝜋1.
≥

𝜋01

𝜋0.
} 

and  

𝑆𝜋1.
− = {(𝜋11, 𝜋01, 𝜋10) ∶ 𝜋11, 𝜋01, 𝜋10 > 0; 𝜋11 + 𝜋01 + 𝜋10 < 1, 𝜋1.is fixed,

𝜋11

𝜋1.
<

𝜋01

𝜋0.
}. 

 
Lemma 1: In the set 𝑆𝜋1.

, 𝜋1. can be fixed in the range 𝜋11 < 𝜋1. < 1 − 𝜋01. 

Proof: Note that 

𝜋11 < 𝜋1. 
Also, 

𝜋11 + 𝜋01 + 𝜋10 < 1 

                                                    ⇒ 𝜋1. + 𝜋01 < 1  

                                                    ⇒ 𝜋1. < 1 − 𝜋01  
Thus, 

𝜋11 < 𝜋1. < 1 − 𝜋01 

 
3.1 Useful Results for Variation of 𝐴𝑅 in the Sets of 2 × 2 Table 

In this section, we state some results as theorems for the variations of AR in the set 𝑆𝜋1.
 

 
Theorem 1 
In the set 𝑆𝜋1.

, if we fix 𝜋01, then 𝐴𝑅 = 1 −
𝜋01

𝜋0.𝜋.1
 is increasing in 𝜋11. 

Proof: In the set 𝑆𝜋1.
, if we fix 𝜋01, then we can write 

𝐴𝑅 = 1 −
𝜋01

𝜋0.𝜋.1
= 1 −

𝜋01

𝜋0.(𝜋01+𝜋11)
, which is only a function of 𝜋11, since 𝜋0. is fixed in 

𝑆𝜋1.
. 

 

Taking the derivative of 𝐴𝑅 with respect to 𝜋11, we get 
𝜕𝐴𝑅

𝜕𝜋11
= −

𝜋01

𝜋0.
[−

1

(𝜋01+𝜋11)2] =
𝜋01

𝜋0.(𝜋01+𝜋11)2 > 0  

 

Thus, 𝐴𝑅 is increasing in 𝜋11 in the set 𝑆𝜋1.
. 

 
Theorem 2 
For any given point (𝜋01, 𝜋11) in 𝑆, AR is decreasing in 𝜋1. in the range 𝜋11 < 𝜋1. < 1 −

𝜋01. 

Proof: For a fixed point (𝜋01, 𝜋11) of 𝑆𝜋1.
, we can write  

𝐴𝑅 = 1 −
𝜋01

𝜋0.(𝜋01+𝜋11)
= 1 −

𝜋01

(1−𝜋1.)(𝜋01+𝜋11)
, which is only a function of 𝜋1.. 

 

Taking the derivative of 𝐴𝑅 with respect to 𝜋1., we get 
𝜕𝐴𝑅

𝜕𝜋1.
= −

𝜋01

(𝜋01+𝜋11)
[−

1

(1−𝜋1.)
2 (−1)] = −

𝜋01

(𝜋01+𝜋11)(1−𝜋1.)
2 < 0 . 

 

Therefore, 𝐴𝑅 with a fixed point (𝜋01, 𝜋11) is decreasing for  𝜋11 < 𝜋1. < 1 − 𝜋01. 
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In view of these two theorems, we expect that the test of positive association has a larger 

power at a point with larger value of AR than at a point with a smaller value of AR.  

 
3.2 Simulation of Power of the Test using 𝒂𝒓 
In this section, a Monte Carlo study has been carried out to assess the power of the test  

𝐻0: 𝐴𝑅 = 0 𝑣𝑒𝑟𝑠𝑢𝑠 𝐻𝑎: 𝐴𝑅 ≠ 0 

based on 𝑎𝑟 by fixing the row sum marginals, the entry 𝜋01, and gradually increasing the 

value of 𝜋11 for varying large sample cases. 

 

We consider three different combinations for the row sum marginals described below. 

 
Case 1: The proportion of exposed group is 𝜋1. = 10%, unexposed group is 𝜋0. = 90%. 

This kind of situation may arise in real life when a small proportion of people are 

exposed to a particular risk factor; for example, exposed to a chemical, coal dust, etc. in 

the community. 

 
Case 2: The proportion of exposed group is 𝜋1. = 90%, unexposed group is 𝜋0. = 10%. 

For example, in most of the third world countries, a big portion of the population is 

usually exposed to contaminated water, polluted air, unhealthy environment, etc. 

 
Case 3: The proportions of exposed and unexposed groups are equal, that is, 

𝜋0. = 𝜋1. = 50%. This situation may arise in real life when there is a possibility of the 

outbreak of a particular disease, for example, flu, and the community has been urged to 

take the preventive medication.  

 

The Monte Carlo simulation has been performed following the scheme given below. 

1. Fix significance level 𝛼, and the Monte Carlo sample size M. 

2. For each of the cases 1-3, form a 2 × 2 table satisfying
𝜋11

𝜋1.
>

𝜋01

𝜋0.
. 

3. Generate a random sample from the given multinomial distribution for different values 

of n   and find the value of the test statistic 𝑍 =
𝑎𝑟−𝐴𝑅

√𝑉(𝑎𝑟)
 under the alternative hypothesis. 

4. Compare the observed value of the test statistic with the critical value z and reject the 

null hypothesis if the observed value is greater than or equal to the critical value. 

5. Repeat steps 3-4 M times and count the number of rejections. The proportion of 

rejection over all the simulations gives the estimated power. 

6. Keeping the same row sum marginals and fixing the entry 𝜋01, we consider a new  

2 × 2 table such that 𝜋́11 > 𝜋11 and  
𝜋́11

𝜋1.
≥

𝜋01

𝜋0.
. We repeat steps 3-5 M times to find the 

power with the new configuration given by (𝜋00, 𝜋01, 𝜋́10, 𝜋́11). 

 

The simulation results for M=10000 have been summarized in Tables 3, 4, and 5 for 

cases 1, 2 and 3, respectively for different values of n. From the simulation results, it is 

evident that the power of the test statistic is increasing with the increase in the value of 

AR  for all three cases considered in the study, which is consistent with the theoretical 

development above.  
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Table 3: Estimated power using 𝑎𝑟 for the case 𝜋1.= 0.1, 𝜋0.= 0.9 
 

Matrix of 

probabilities 

 

𝑎𝑟 
Estimated power 

n 30        50           70           90         120          150         200 

0.540    0.360 

0.055    0.045 

0.0123 0.0960    0.0999    0.1086    0.1164    0.1171    0.1208     0.1338 

0.540    0.360 

0.050    0.050 

0.0244 0.1170    0.1349    0.1429    0.1525    0.1642    0.1857     0.2096 

0.540    0.360 

0.045    0.055 

0.0361 0.1479    0.1538    0.1872    0.2177    0.2369    0.2682     0.3289 

0.540    0.360 

0.040    0.060 

0.0476 0.1554    0.1937    0.2433    0.2815    0.3404    0.3996    0.4761 

0.540    0.360 

0.035    0.065 

0.0588 0.1970    0.2537    0.3078    0.3656    0.4463    0.5223    0.6276 

0.540    0.360 

0.030    0.070 

0.0698 0.2323    0.3042    0.3800    0.4582    0.5585    0.6404    0.7648 

0.540    0.360 

0.025    0.075 

0.0805 0.2670    0.3614    0.4648    0.5570    0.6648    0.7612    0.8655 

0.540    0.360 

0.020    0.080 

0.0909 0.2964    0.4207    0.5425    0.6420    0.7652    0.8512    0.9254 

0.540    0.360 

0.015    0.085 

0.1011 0.3511    0.4917    0.6335    0.7363    0.8500    0.9147    0.9718 

0.540    0.360 

0.010    0.090 

0.1111 0.3931    0.5539    0.7049    0.8122    0.9051    0.9572    0.9901 

 

 
Table 4: Estimated power using 𝑎𝑟 for the case  𝜋1.= 0.9, 𝜋0.= 0.1 

 
Matrix of 

probabilities 

 
𝑎𝑟 

Estimated power 
n 30        50           70           90         120          150         200 

0.060  0.040 

0.495    0.405 

0.1011 0.0257    0.0639    0.1286    0.1373    0.1377    0.1394    0.1386 

0.060   0.040 

0.450    0.450 

0.1837 0.0127    0.0993    0.1637    0.1849    0.1917    0.2044    0.2423 

0.060   0.040 

0.405    0.495 

0.2523 0.0115    0.1596    0.2151    0.2394    0.2766    0.3041    0.3705 

0.060   0.040 

0.360    0.540 

0.3103 0.0496    0.2395    0.2800    0.3413    0.3936    0.4573    0.5449 

0.060   0.040 

0.315    0.585 

0.3600 0.0990    0.2981    0.3721    0.4288    0.5218    0.5933    0.7006 

0.060   0.040 

0.270    0.630 

0.4030 0.1828    0.3712    0.4621    0.5295    0.6441    0.7153    0.8299 

0.060   0.040 

0.225    0.675 

0.4406 0.2570    0.4511    0.5469    0.6446    0.7460    0.8251    0.9108 

0.060   0.040 

0.180    0.720 

0.4737 0.3232    0.5317    0.6499    0.7396    0.8383    0.9011    0.9577 

0.060   0.040 

0.135   0.765 

0.5031 0.4385    0.6033    0.7425    0.8166    0.9053    0.9513    0.9842 

0.060   0.040 

0.090    0.810 

0.5294 0.4826    0.6929    0.8031    0.8820    0.9487    0.9763    0.9932 
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Table 5: Estimated power using 𝑎𝑟 for the case 𝜋1.= 0.5, 𝜋0.= 0.5 

 
Matrix of 

probabilities 

 
𝑎𝑟 

Estimated power 
n 30        50           70           90         120          150         200 

0.300   0.200 

0.275   0.225 

0.0588 0.1407    0.1392    0.1389    0.1439    0.1583    0.1622    0.1887 

0.300   0.200 

0.250    0.250 

0.1111 0.1793    0.1935    0.2256    0.2514    0.2989    0.3331    0.4075 

0.300   0.200 

0.225   0.275 

0.1579 0.2350    0.2805    0.3469    0.4065    0.4969    0.5718    0.6776 

0.300    0.200 

0.200    0.300 

0.2000 0.2957    0.4030    0.5008    0.5925    0.6986    0.7853    0.8791 

0.300   0.200 

0.175    0.325 

0.2381 0.3738    0.5293    0.6554    0.7602    0.8597    0.9145    0.9699 

0.300   0.200 

0.150    0.350 

0.2727 0.4786    0.6704    0.7854    0.8809    0.9449    0.9779    0.9945 

0.300   0.200 

0.125   0.375 

0.3043 0.5842    0.7694    0.8914    0.9453    0.9839    0.9953    0.9994 

0.300   0.200 

0.100    0.400 

0.3333 0.6711    0.8633    0.9527    0.9837    0.9970    0.9998    1.0000 

0.300   0.200 

0.075    0.425 

0.3600 0.7855    0.9336    0.9857    0.9967    0.9996    1.0000    1.0000 

0.300   0.200 

0.050    0.450 

0.3846 0.8458    0.9727    0.9968    0.9995    1.0000    1.0000    1.0000 

 
3.3 Estimating Size of the Test 

In this section, we will study the size of the test statistics to test :0H  independence 

versus :aH  positive association based on 𝑎𝑟. In order to do so, we consider two matrices 

formed by the probabilities of two given multinomial distributions for which both the 

values of AR  are equal to zero. For each of the matrices, the simulation study has been 

performed in the following way. 

1. Generate a random sample from the given multinomial distribution and find the value 

of the test statistic given by 𝑍 =
𝑎𝑟−𝐴𝑅

√𝑉(𝑎𝑟)
.  

2. Compare the value of the statistic with the critical value 𝑧𝛼 and reject the null  

     hypothesis if 𝑍 ≥ 𝑧𝛼. 

3. Repeat steps 1-2 for M times. The proportion of rejection over all the simulations  

    gives the estimated size for each test statistic.  
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Table 6: Estimated level (𝛼 = 0.05) for test  𝑍 

 

Probability 

Matrix 
𝑛 

𝑍 =
𝑎𝑟 − 𝐴𝑅

√𝑉(𝑎𝑟)
 

 

 

0.540  0.360 

0.060  0.040 

30 

50 

70 

90 

120 

150 

200 

0.0483 

0.0495 

0.0546 

0.0534 

0.0530 

0.0526 

0.0553 

 

 

0.060  0.040 

0.540  0.360 

30 

50 

70 

90 

120 

150 

200 

0.0312 

0.0429 

0.0418 

0.0560 

0.0656 

0.0595 

0.0554 

 

 
4. Result Discussions 

 
In order to study the power of the test 𝐻0: 𝐴𝑅 = 0 𝑣𝑒𝑟𝑠𝑢𝑠 𝐻𝑎: 𝐴𝑅 ≠ 0, we perform a 

Monte Carlo simulation in the set 𝑆𝜋1.
 while fixing the entry 𝜋01 and gradually increasing 

𝜋11. We consider three different combinations of the rates of exposure and unexposure, 

namely, Case 1: (𝜋1.= 0.1, 𝜋0.= 0.9), Case 2: (𝜋1.= 0.9, 𝜋0.= 0.1), and Case 3: (𝜋1.= 0.5, 

𝜋0.= 0.5). The values of 𝑛 to be considered in the simulation are 30, 50, 70, 90, 120, 150, 

and 200. The estimated powers are displayed in Tables 3-5 for a Monte Carlo simulation 

of size M=10000. From the results, it is evident that the power of the test increases as 

AR  increases for a given sample size 𝑛. It also reveals that for a given 2 × 2 table, the 

power increases as the sample size increases. As values of 𝐴𝑅 increases, the power gets 

closer to one for relatively larger 𝑛.  

 

In order to study the size of the test 𝐻0: 𝐴𝑅 = 0 𝑣𝑒𝑟𝑠𝑢𝑠 𝐻𝑎: 𝐴𝑅 ≠ 0, we form two 2 × 2 

tables from two given multinomial distributions with 𝐴𝑅 values equal to zero. The 

estimated sizes from different values of 𝑛 are presented in Table 6 in section 3.3. It 

appears that the estimated sizes are close to the nominal level of 0.05 as sample size 

increases for both contingency tables considered.  

 

The results presented in Tables 3-6 reveal that the test of no association based on AR 

performs well in estimating the power and size of the test.  

 

5. Conclusions 
 

The 𝐴𝑅 plays an important role in public health and epidemiology to locate the important 

risk factors of a disease outcome. While a substantial amount of research has been done 

in developing the point and asymptotic variance estimations of 𝐴𝑅 in case-control, cohort 

and cross-sectional study designs, the use of 𝐴𝑅 for the test of hypothesis in reference to 

the association between disease and exposure factors lacks in literature.  
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In this paper, we wish to employ 𝐴𝑅 to test the hypotheses  𝐻0: Exposure and disease 

outcome are independent versus 𝐻𝑎: Exposure and disease outcome are not independent. 

It appears in literature that the AR for a 2 × 2 cross sectional study is very popular in 

biomedical and health science research due to the simplicity of its application and 

interpretation. Therefore, we restrict our attention for a 2 × 2 cross sectional study. 

However, the process can be generalized to higher dimensional table as well.  

 

As a part of the study, we presented four propositions in section 2.2 along with the proof.  

Proposition 1 states that no association of the risk factor and the disease outcome in a 2 ×
2 cross sectional study is equivalent to the fact that the rates of disease in exposed and 

unexposed groups are the same. Proposition 2 states that the test of no association of the 

risk factor and the disease outcome in a 2 × 2 cross sectional study is equivalent to the 

test of independence of factor and disease outcome. Proposition 3 states that positive 

association of the risk factor and the disease outcome in a 2 × 2 cross sectional study is 

equivalent to the fact that the rate of disease in exposed group is greater than the rate in 

the unexposed group. Proposition 4 states that the rate of disease in the exposed group is 

greater than or equal to the rate of disease in the unexposed group if and only if the rate 

of diseased, exposed group is greater than or equal to the product of the overall exposure 

rate and the overall disease rate. The application of results of four propositions leads us to 

the test of hypothesis of independence or no association between the risk factor and 

disease outcome equivalently by testing  

𝐻0: 𝐴𝑅 = 0 𝑣𝑒𝑟𝑠𝑢𝑠 𝐻𝑎: 𝐴𝑅 ≠ 0. 
We consider an example in section 2.3 to study if there is an association between the 

respiratory disease and locomotor disease using 𝐴𝑅. A total of 2784 subjects was cross-

classified according to the disease and exposure status. On the basis of the asymptotic 

distribution of 𝐴𝑅, we form the test statistic that follows approximately a standard normal 

distribution. Based on the data, the observed value of the test statistic is found to be 𝑧 =
0.218. Comparing the observed value with a two-tailed critical value under a standard 

normal curve, we fail to reject the null hypothesis at 5% level of significance and hence 

conclude that the data does not provide sufficient evidence to indicate that there is an 

effect of respiratory disease in developing locomotor disease.  

 

In section 3, we develop some useful results to analyze the power of the test 𝐻0: 𝐴𝑅 =
0 𝑣𝑒𝑟𝑠𝑢𝑠 𝐻𝑎: 𝐴𝑅 ≠ 0 for varying values of 𝐴𝑅 in the sets of 2 × 2 table. To this end, we 

denote the sets of all 2 × 2 tables by 𝑆 and define the set 𝑆𝜋1.
by fixing the row sum 𝜋1. 

and hence 𝜋0. The result in Theorem 1 states that 𝐴𝑅 is increasing in 𝜋11 in the set 

𝑆𝜋1.
while fixing the value of 𝜋01. Theorem 2 claims that for any given point (𝜋01, 𝜋11) in 

𝑆, 𝐴𝑅 is decreasing in 𝜋1. in the range 𝜋11 < 𝜋1. < 1 − 𝜋01. Therefore, it is expected that 

the test of no association versus positive association has a larger power at a 2 × 2 table 

with a larger value of 𝐴𝑅 than at a 2 × 2 table with a smaller value of 𝐴𝑅. In order to 

verify this, we carry out a Monte Carlo simulation in section 3.2 in the set 𝑆𝜋1.
 while 

fixing the entry 𝜋01 and gradually increasing 𝜋11 for varying values of exposure rate 𝜋1., 

and the sample size, 𝑛 considered to be large. The estimated powers are displayed in 

Tables 3-5 for a Monte Carlo simulation of size M=10000. From the results, it is evident 

that the power of the test increases as 𝐴𝑅 increases for a given sample size 𝑛. It also 

reveals that for a given 2 × 2 table, the power increases as sample size increases. As 

values of 𝐴𝑅 increases, the power gets closer to one for relatively larger 𝑛 considered in 

the simulation.  
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In order to study the size of the test 𝐻0: 𝐴𝑅 = 0 𝑣𝑒𝑟𝑠𝑢𝑠 𝐻𝑎: 𝐴𝑅 ≠ 0, we form two 2 × 2 

tables for which 𝐴𝑅 values are equal to zero. The estimated sizes from different values of 

𝑛 are presented in Table 6 in section 3.3. From the results of the study, it reveals that the 

estimated sizes are close to the nominal level of 0.05 as sample size increases for both 

contingency tables considered here. Overall, the performance of the study implies that the  

test of no association based on 𝐴𝑅 is satisfactory in terms of estimating power and size of 

the test, and hence the test of no association or independence of a factor with disease 

outcome should be undertaken with confidence using test statistic that would involve 𝐴𝑅. 
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