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Abstract

Animal models of human disease are commonly utilized to gain preclinical insight into the potential efficacy and
action mode of novel drugs. The development and selection of an animal model that accurately mimics the human
disease profoundly reduces the research timeline and resources needed to make meaningful advances in the treatment
and prevention of the human disease under study. Here, we propose a statistical procedure to select the animal model
that most accurately mimics the human disease in terms of genome-wide gene expression. Our procedure is designed
for studies that have gene expression profiles for a cohort of human disease tissue specimens from different subjects
and gene expression profiles for cohorts of disease tissue specimens for each of several animal models. First, we define
and compute a metric of similarity between each human gene expression profile and animal gene expression profile
which result in multiple groups of similarities. Then a random block ANOVA model is used to compare the group
means of similarities between different animal models. Finally post-hot multiple comparison is applied to seek the
“best” animal model of the human disease. The advantages of the proposed method are observed in simulation studies
and a real example of pediatric Medulloblastoma.
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1. Introduction

Animal models play a pivotal role in translation biomedical research. The scientific value of an animal model
depends on how accurately it mimics the human disease. In principle, microarrays and gene-sequencing tech-
nology massive data are commonly used to compare gene expression among biological conditions within
the same species. For instance, the experiments may compare the transcriptomes of tumors and host nor-
mal tissue or between tumors arising in the same tissue in order to detect the differentially expressed genes.
However, translating this wealth of data into other experimental systems has proven difficult because of
limitations in comparing transcriptome data generated from different species. Some cross-species gene ex-
pression analysis are done in [Ji et al. (2004), Kristiansson et al. (2013) and Johnson et al.(2010)], however
statistical methods for cross-species gene expression analysis for this purpose are lacking.

To fill the aforementioned gap, Agreement of Differential Expression Analysis (AGDEX) package is
developed by Pounds et al. (2011). AGDEX is a method that detects geno-wide transcriptomic similarities
in gene expression between tissues from human and animal by comparing the gene expression of shared
ortholog genes. By using cosine and Difference of Proportions similarity metrics, AGDEX evaluates the
level of similarity between human tissue and animal models. Yet AGDEX can not detect which animal
model is the most accurate one that can mimic the human disease among a set of animal models, which is a
more crucial question. Take the pediatric medulloblastoma study [Kawauchi et al. (2012)] for example, there
are 4 subgroups of medulloblastoma and they differ in histo-pathology, gene expression profile, and clinical
behavior from other forms. Thus cardinal features of mouse medulloblastomas that can closely mimic those
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subgroups of human medulloblastomas need to be identified. For a specific subgroup of medulloblastoma,
which animal model is the most accurate one is another important question to ask as a following up question
of AGDEX. Here we propose a statistical procedure to identify the most accurate model among a set of
candidate animal models via calculating the pairwise similarities between human and animal tissues and
then compare the seminaries among different models.

2. Methodology

In practice number of human gene expression samples for a particular type of disease is limited and we call
these set of samples, a human model. Defining that, each human or animal model is a span of several gene
expression samples of a particular disease. So human model can be illustrated as
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Relation (1) shows the human model withh samples where each sample consists ofn number of genes.
We can provide several animal models of different types of diseases, each of which consisting of several
animal samples. Relation (2) shows theith animal model withm samples, each includingn genes.
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In this study we have assumed we have several number of animal models and only one human expression
profile and the purpose of this research is to find the most similar animal model to the human one.

2.1 ANOVA Models

Analysis of variance(ANOVA) is used to find the effects of categorical independent variables (factors) on
associated dependent variables. The very first step is to introduce ANOVA models to reach our goal. For this
study two ANOVA models are proposed. In the first ANOVA model, effect of similarity of animal models
to the human model is regarded as a fixed factor and in the second ANOVA model effect of random block
human samples is regarded as well.

{

First ANOVA model : Yim = η + αm + εim

Second ANOVA model : Yim = η + αm + hi + εim

} {

1 < m < number of animal models

1 < i < number of human samples

(3)
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whereη is the grand mean,αm is the effect ofmth factor which is the similarity ofmth animal model to
the human model,hi is the effect ofith human random block samples andεij is the associated error.hi can
be regarded as a block factor since the human data can be obtained from different geographical population
or different races and genders. To define the ANOVA models we have to define similarity metrics between
pairwise animal models and the human model, so the proceeding sections are devoted to define theYim, ith

treatment in themth factor. The factors are correlation vectors between human and animal models. Null
hypothesis orH0 is if there is no significant effect of animal models, i.e.α1 = α2 = ... = αm, whereαi is
the effect ofith animal model and alternative hypothesis orHα is if there is a significant difference between
animal factors.

2.2 Metrics of similarity

To define the ANOVA models, we have to determine a metric showing how similar the animal models
to the human is. As discussed above each of these models is a matrix, so in the following section three
different metrics are presented showing the similarity between the columns of the matrices or the projection
of columns of human model on the span of animal model matrices.

2.2.1 Semi-Correlation(S-Cor)

One way to show the correlation between two matrices is to find the correlation between the columns of the
two matrices. Experience shows that this method may result in non-normally distributed data. So to remedy
this deficiency a new metric is defined baesd on correlation coefficient betweenith human sample and the
samples ofmth animal model. Defining this,Yim in relation (3) can be defined as

Yim =
∑ (

hi − h̄i

)

× (am,j − ām,j)T (4)

Where in equation (4) am,j is thejth sample ofmth animal model,hi is theith human sample,̄∗ refers
to mean of variable∗ and∗T denotes the transpose of∗. Likewise we can define other metrics.

2.2.2 Cosine(Cos)

Second metric, like the first metric, defines a similarity between human and and animal samples, which are
columns of human model and each animal model. This metric is also used by Pounds et al. (2011) and
characterizes theCosine between two vectors.

Yim =

∑
(

hi × aT
m,j

)

√
∑

(hi)
2 ×

√
∑

(am,j)2
(5)

Definition of parameters in equation (5) is like the counterparts in equation (4).

2.2.3 Projection(Pro)

This method is founded on the concept of projection of the vectors on a matrix span. One can claim that if a
vector is closer to the span of a matrix, larger norm of projection of the vector to span of matrix is expected.
The projection vector is a linear least squares data-fitting solution that can be written as

A × x ≈ b (6)
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whereb is the vector,A is the matrix andx is the least square solution, AlsoA × x is the projection
vector. In our particular application,A is analogous to an animal model andb represents a human sample.

Span(A)

Ax

r =b-Ax

b

Figure 1: Geometric depiction of projection

In figure 1, r defines the residual, because the vectorb, may not reside in span of matrixA. Since the
matrix A is not a square matrix, we have to employ least square solutions. To preserve the Euclidean norm
of matrix during the solution, we have used the orthogonal transformation to solve the equation (6).

Given anm × n matrix A, with n ≤ m, we seek am × m orthogonal matrix Q such that

A = Q

[

R

0

]

(7)

where R isn×n and upper triangular matrix. Such aQR factorization transforms the linear least squares
problemAx ≈ b into a triangular least squares problem having the same solution, because
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(8)

Where‖∗‖
2

represents the Euclidean norm of∗. The solution to this problem is

x = R−1QT b (9)

And finally the independent variableYim is the norm of projection ofith human sample on themth

animal model span. which is

Yim = ‖A × x‖
2

(10)

2.3 Post hoc analysis

Defining the ANOVA models in relation(3), we first check if the group means of similarities between differ-
ent animal models and the human model are different. Typically bigger mean values show more similarity
of the animal model to the human counterpart.

Another way of finding the most similar model is using results of ANOVA table and check the ANOVA
assumptions. And finally use of multiple comparisons procedure test(Tukey’s test or Hsu’s Best) to identify
the best animal model.
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3. Examples and Results

So far two ANOVA models and three metrics of similarities to build the ANOVA models are introduced. To
check the capabilities of the proposed schemes two different examples are illustrated. In the first example,
a set of manufactured data is generated and described process in the previous section is applied on. For the
second example, ANOVA procedure is implemented on pediatric brain tumor data.

3.1 Simulated data

To mimic the real data, some normally distributed data is generated for one human model, withh samples
andn number of genes, and fork animal models each withm samples andn number of genes. The first
animal model would be the summation of a function of human model and an error term to simulate the most
similar animal model to human one. ANOVA models should be applied to check the null hypothesis. We
should check the ANOVA assumptions as well.

3.1.1 Generated human and animal models

As discussed before, a set of random numbers is generated for the both human and animal data. For the
human modelh number of samples each with1000 gene data is generated with gene expression values
between0 to 1. K number of samples withm number of samples with the same number of genes are also
similarly generated. First animal model is designed as

A1 =
ρ

√

1 − ρ2
× H + E (11)

Where A1 is the first animal model,H is the human model,ρ is a scaling factor between0 to 1,
(0 < ρ < 1) andE is a user defined error term, here defined random numbers between0 to 1. Arbitrary
number of human and animal samples and animal models can be generated with same number of genes, but
for the illustration purpose, number of examples is restricted to three and specified in table1.

Table 1: Parameter settings

Examples ρ Human samples Animal samples Animal models number of genes
Example1 0.0, 0.1, 0.2, ..., 0.9 5 5 3 1000
Example2 0.6 5, 10, 15, 20 5 3 1000
Example3 0.6 20 5, 10, 15, 20 3 1000

3.1.2 ANOVA Assumption check list

For all of these examples, minimum p-values for testing the assumptions of ANOVA, Shapiro test and
Bartlet test are 0.1, resulting in satisfaction of ANOVA assumptions, i.e. normality of data and homogeneity
of variance. Figure2 on the next pageshow the fitted value and Q-Q plot of results for the first example of
second method.
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Figure 2: Graphical illustration of ANOVA assumptions

3.1.3 Results

Accumulative means of the proposed examples are tabulated in tables2, 3 on the next pageand 4 on the following page.
These tables are generated for the first proposed ANOVA model that only includes the animal effects. These
tables show that means of similarity in the first model are significantly higher than the means of other mod-
els.

Table 2: Accumulative mean in groups in Setting 1

Setting Model1 Model2 Model3
ρ h m S − Cor Cos Pro S − Cor Cos Pro S − Cor Cos Pro

0 5 5 197.71 0.19 8.21 105.03 0.11 7.05 107.93 0.11 6.75
0.1 5 5 228.32 0.23 31.91 105.03 0.11 7.05 107.93 0.11 6.75
0.2 5 5 259.87 0.25 32.14 105.03 0.11 7.05 107.93 0.11 6.75
0.3 5 5 293.48 0.27 32.35 105.03 0.11 7.05 107.93 0.11 6.75
0.4 5 5 330.61 0.287 32.52 105.03 0.11 7.05 107.93 0.11 6.75
0.5 5 5 373.52 0.30 32.66 105.03 0.11 7.05 107.93 0.11 6.75
0.6 5 5 426.10 0.312 32.79 105.03 0.11 7.05 107.93 0.11 6.75
0.7 5 5 496.19 0.321 32.91 105.03 0.11 7.05 107.93 0.11 6.75
0.8 5 5 603.73 0.325 33.03 105.03 0.11 7.05 107.93 0.11 6.75
0.9 5 5 826.44 0.322 33.14 105.03 0.11 7.05 107.93 0.11 6.75
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Table 3: Accumulative mean in groups in Setting 2

Setting Model1 Model2 Model3
ρ h m S − Cor Cos Pro S − Cor Cos Pro S − Cor Cos Pro

0.6 5 5 426.10 0.312 32.79 105.03 0.11 7.05 107.93 0.11 6.75
0.6 10 5 267.88 0.196 18.82 109.49 0.109 6.89 111.97 0.109 7.25
0.6 15 5 209.76 0.153 13.95 106.30 0.105 6.98 94.33 0.093 6.34
0.6 20 5 182.66 0.133 11.45 94.69 0.093 6.35 95.11 0.097 6.52

Table 4: Accumulative mean in groups in Setting 3

Setting Model1 Model2 Model3
ρ h m S − Cor Cos Pro S − Cor Cos Pro S − Cor Cos Pro

0.6 20 5 182.66 0.133 11.45 94.69 0.093 6.35 95.11 0.097 6.52
0.6 20 10 181.87 0.136 19.09 96.65 0.097 8.18 102.07 .103 8.33
0.6 20 15 179.99 0.136 26.32 100.78 0.101 9.18 101.24 .103 9.13
0.6 20 20 180.58 0.138 32.92 100.21 0.102 9.76 105.82 0.105 10.33

ANOVA table shows the rejection of null hypothesis. Table5 shows the results of the first ANOVA
model for the last sample in example 3 for the Cosine metric.

Table 5: ANOVA table results for the first sample of third setting with cosine metric

Df Sum Sq Mean Sq F value Pr(>F)
model 2 0.319 0.15962 11.74 8.92e-06
Residuals 1197 16.273 0.01359

And finally results of Turkey test for the same sample in table6 shows that the first factormodel1 is
different from the other factorsmodel2 andmodel3, from which we can conclude the first animal model is
the most similar model to human one.

Table 6: Results of Turkey test for the first sample of third setting with cosine metric

diff lwr upr p adj
model2 − model1 -0.035644321 -0.05499123 -0.01629741 0.0000494
model3 − model1 -0.033450432 -0.05279734 -0.01410352 0.0001562
model3 − model2 0.002193888 -0.01715302 0.02154080 0.9617196

Analysis show the random block human samples are not a significant factor and it suffices the use of
only first ANOVA model.

3.2 Real data

These data is gathered from pediatric brain medulloblastoma tumor and can be found in NCBI by access
number GSE33199 and GSE33200. medulloblastoma Human data consists of 106 samples with 54675
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probe sets(genes). Mouse data consists of 4 models or subgroups that they differ in histo-pathology, 19
total samples and each sample contains 45102 probe sets. Animal data are categorized in four subgroups of
normal: 5 samples, stem: 5 samples, prog: 5 and ptch 4 samples, 19 samples total.

A mapping procedure is induced to find the counter-probe set of human data in the mouse data. From
the proposed similarity metrics the first two metrics finds the correct cancer type (ptch), the reason that the
"Projection" metric gives the wrong result is because of small number of animal samples and high level of
the singularity in the animal matrix spans. The results of pair-wise t-test of the Semi-Correlation and Cosine
metrics are tabulated in tables7 and 8, respectively.

Table 7: Pair-wise t-test of real data with semi-correlation metric
norm prog ptch

prog 0.012 - -
ptch 1.2e-12 1.9e-06 -
stem 0.035 0.686 2.7e-07

Table 8: Pair-wise t-test of real data with cosine metric
norm prog ptch

prog 0.87122 - -
ptch 7.6e-05 0.00014 -
stem 0.73419 0.85915 0.00028

4. Conclusion

One way to find the human disease is to statistically match the genomic data between human and animal
gene expression models. Each animal and human model consists of several samples. In this research two
ANOVA models with three different metrics of similarities are presented to find the the best animal model
that mimics the human disease genomic model. The first ANOVA model only checks the significance of
similarity between human and animal models and the second ANOVA model is similar to the first model but
considers the human samples as a random block variable as well.

The first similarity metric is based on the correlations between each animal and human samples. Con-
cept of cosine between two vectors is regarded as the second similarity metric and finally the third proposed
metric is based on the projection of human sample vectors on animal models span. Some simulation exam-
ples are illustrated to show the efficacy of the proposed methods and finally real genomic data is used to
check the potentiality of the schemes.

Results show that first two metrics, semi-correlation and cosine of similarities are the better choices to
find the similarities, because the third metric highly depends on the level of singularity of the animal models
span, which in the real data example are very high. Also outcome of ANOVA models for these examples
and set of data reveals the insignificance of human samples as random block variables that suffices the use of
first ANOVA model. The proposed method is a framework for identifying the most accurate animal model
of human disease which can be applied to other similar studies.
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