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Abstract 

What should constitute suitably small values of alpha and beta in tests of hypotheses? 
This is not a question to answer unequivocally for all situations. When establishing a test 
procedure to investigate statistically the credibility of a stated hypothesis, several factors 
must be considered one of which is the size of the sample. However, the most significant 
of all these factors is unquestionably to optimize Type I and II errors. Statisticians have 
by rule of thumb selected, such as α=0.05, none for β depending on the alternative 
hypothesis at hand. Although, common logic usually played a major role such as in the 
case of testing null hypothesis of the patient being sick needs a fairly significant size of 
type I error lest we lose the patient if we reject that she is sick while she truly is sick and 
probably dying. But all these previous up-to-date arguments are not somewhat connected 
with cost or utility of producer's and consumer's risks in the sense of quality control or 
life sciences or in the cyber-risk domain or other manufacturing industries while testing a 
hypothesis of a good product vs. bad. This research innovatively outlines Game-theoretic 
approaches, such as that of von Neumann to this archaic problem to justify some optimal 
choices for α and β when cost, utility and associated market factors are incorporated. 

Keywords: Game-theoretic, type I and type-II errors, producer‟s and consumer‟s risks, 
hypothesis testing, cost, utility 

1. Introduction to Type-I and Type-II Errors and Game Theory

This research examines the contribution of the Game-theoretic computing to optimizing 
the Type-I and Type-II error probabilities, namely α and β, when cost or utility factors 
exist involved in a hypothesis testing scenario. Other than the usual rule-of-thumb or 
best-guess or judgment-call-based choice of α, such as 1-out-of 20 or 1-out-of-50 or even 
1-out-of-100, there have been attempts to compute α by deriving the first and second 
derivatives of the standard normal distribution curve whereby determining the second 
derivative to reach maximum at z=±1.732.05 which corresponds to a p-value of 0.083. 
An alternative approach has been to find a point where the concavity in the normal 
distribution curve is maximal to the first derivative. That is, the maximal curvature k(z) 
occurs when z= ±1.749.83 that will correspond to a p-value of 0.08. These calculus 
algebraic approaches have been recently studied by Grant and Kelley [1, 2].  

The issue with these approaches is that they are detached form the market realities such 
as cost (loss) or utility (gain) associated with varying error values (α and β), or non-error 
values (1-α and 1-β) and their cross products, such as [α*β], [α*(1-β) ], [(1- α)*β )] and  
[(1- α) *(1-β )] that manifest themselves in the form of producer‟s and consumer‟s risks. 
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Not only judgment-call based selections are subjective, those are not attached to any joint 
treatment of producer‟s and consumer‟s risks that actually concur or simultaneously live 
in the dynamics of all things happening in real-life. Why? Simple because, millions of 
products are subject to producer‟s risk (underappreciated or declared bad by the  
consumers while essentially „H0:good product‟ costing the producer a financial loss) or 
consumer‟s  risk (over appreciated or declared good by the consumer while essentially 
„HA: bad product‟ still costing the company through gossiping or hearsay-caused ripple 
effects of the bad publicity circulating until the truth be heard) or both  errors occurring 
through so-called partial risks where one type of error is involved.  Also none may have 
incurred with no financial loss for the producers and consumers with a complete market 
satisfaction due to the cross-product of „Power (1-α)‟ and „Confidence (1-β)‟ of the tests. 

Game Theory is a branch of mathematics, devoted to the logic of decision making in 
social or political interactions, concerns the behavior of decision makers whose decisions 
affect each other. Note each decision maker has only partial control over the outcome.  
Game theory is a generalization of decision theory where two or more decision makers 
compete by selecting each of the several strategies; while Decision Theory is essentially a 
one person game theory. In general, any game involves the following [3].  

1) Players: An individual or a group of individuals can be considered a player such as
individuals, teams, companies, political candidates and contract bidders: CO: Consumers
(users) vs. PR: Producers (marketers).
2) Actions: The set of moves to choose from each player: Accept or Reject the product;
Release or Do Not Release the product.
3) Outcomes: An outcome in a game is the act of each player choosing a move from its
action set so that numerical payoffs reflecting these preferences can be assigned to all
players for all outcomes: Expected Cost
4) Preferences: Each player prefers some outcome to others based on payoffs or utilities
associated with these outcomes. The combination of rivaling strategies defines the
game‟s worth to the competing players: PR may re-manufacture, adjust price, extend
warranty, increase advertising or offer quantity discounts. CO may turn to other markets
for a better value.

The concept of Game theory has been brought to Hypothesis Testing in the past but at a 
theoretical level involving the establishment of finite sample bounds on the general theme 
of statistical inference [4].  Game theory was used to establish the minimal type II error 
(Beta) whereby the associated randomized test was characterized as part of Nash 
equilibrium. However these attempts did not lead to an algorithmic simple usage by the 
layman routinely dealing with hypothesis testing at an elementary level.  As pointed out 
by Savage in 1954, game theory can be used to solve problems in statistics [6]. The 
underlying idea is to solve worst case problems by invoking the minimax theorem for 
zero-sum games developed by von Neumann  in 1928 [7] and further improved with 
Oscar Morgenstern at Princeton in 1944 [8]. However game-theory methods have not yet 
been used in hypothesis testing in layman‟s terms so as to be able to teach the concept in 
an elementary statistics classroom ambience. Why not? Mainly because the applications 
to every day routine hypothesis tests with pertinent costs associated with Type I (α) and II 
errors (β) and additionally utilities with respect to non-errors (such as, confidence=1-α, 
and power = 1- β) and their products could not be adequately formulated so that those 
formalisms could be used by routine hypothesis testers to judge their quality control 
levels imbedded in a budget oriented business plan with costs or utilities associated in 
cyberware or else in the realm of quality control science.  
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Whereas in this applied research paper, the principal author deals with the Neumann 
game-theoretic equilibrium approach, contrary to Nash equilibrium which did not 
generate any favorable results [3].  In a hypothesis testing scenario, we associate a variety 
of costs (money lost when error) or a utility (revenue for the non-error case) and observe 
what the optimal α and β turn out to be employing the principles of game-theory, rather 
than sticking to a rule of thumb such as α=0.5 or recently α≈0.8 etc. by calculus algebra 
devoid of cost factors [1, 2]. This approach is more market-friendly than the previous 
techniques which have no cost basis at all based on a subjective rule-of-thumb. 

2. Methodology

There is a process to determine whether to reject a null hypothesis or not, based on a 
sample data. This process is called hypothesis testing and it consists of four steps [9].  

i. State the hypotheses. This involves stating the null and alternative hypotheses. The
H0 and H1 must be mutually exclusive. That is, if one is true, the other must be
false.

ii. Formulate an analysis plan. The analysis plan describes how to use sample data to
accept or reject the null hypothesis.

a. Significance level: Often we can choose significance levels equal to 0.01, 0.05, or
0.10, but any value between 0 and 1 can hypothetically, if not practically, be used.

b. Test method: Normally, the test method involves a test statistic and a sampling
distribution. Given a test statistic and its sampling distribution, we can assess
probabilities associated with the test statistic. If the testing statistical probability is
less than the significance level, the null hypothesis is rejected.

iii. Analyze sample data. Using sample data do the calculations.

A. Test Statistic (Z0): When the null hypothesis involves a mean or proportion, use either
of the following equations to compute the test statistic (Z0). Let X ~ N (µ, σ2) and state
the hypothesis as follows below.

H0: µ = µ0 ,  H1: µ ≠ µ0  (1) 

Z0 = √  ( ̅  ) (2) 

where n is the sample size and  ̅ is the sample mean, and σ is the standard deviation.

B. P-value (p): The p-value is the probability of observing a sample statistic as extreme
as the test statistic while assuming the null hypothesis true.

Interpret the results: If the sample findings are unlikely given the null hypothesis, we 
reject the null hypothesis. This involves comparing the P (probability)-value to the 
significance level, and rejecting the null hypothesis when the P-value is less than the 
given significance level. 

3. Decision Tables, Risks and Errors

Two types of errors can result from a hypothesis test. 
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Type I error: A Type I error occurs when the analyst rejects a null hypothesis when it is 
actually true. The probability of committing a Type I error is called the significance level. 
This probability denoted by α. This is also known in industrial quality control science as 
the producer’s risk. Note, if  " ׀ “ denotes “given that”,  the producer’s risk is: 

α = P {Type I error} = P {reject H0 ׀ H0 is true} (3) 

Type II error: A Type II error occurs when the analyst fails to reject a null hypothesis that 
is false. The probability of committing a Type II error is denoted by β. This is also known 
in industrial quality-control science as the consumer’s risk. 

β = P {Type II error} = P {fail to reject H0 ׀ H0 is false}    (4) 

The probability of not committing a Type II error is called the Power of the test (1- β). 

(1-β) = P {reject H0 ׀ H0 is false}  (5) 

Also the power function is represented as [1- β(ɵ)], where ɵ denotes the true parameter 
value. The β(ɵ), the complement of power function, is known as the operating 
characteristic (OC) function, popularly used in quality control science and engineering. 

Observe Tables 1 and 2 for types of errors and their cross-products. 

  Table 1: Types of Errors Associated with Hypotheses Tests 

Table 2: Utilities related to the Cross-Products of Types of Errors 

Cost (opposite of Utility) Matrix is a function of α, β and Cij related to the cross product 
of Type I and II errors. Note, if cost bears negative value, then it denotes utility. Note: 

αβ  + α(1-β) + (1-α)β   +  (1-α)(1-β) = 1.0 ; 0< α, β <1    (6) 

   True Situation 

 Decision                                                   Hypothesis is true                          Hypothesis is false 

_________________________________________________________________________________ 

 Accept the hypothesis            No error (confidence = 1-α)           Type II error (β) 

 Reject the hypothesis          Type I error (α =significance)        No error (power = 1- β) 
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Π (α, β, Cij) = αβ (C11) + α (1-β) (C12) + (1-α) β (C21) + (1-α) (1-β) (C22); 0< α, β <1  (7) 

Let P11 = αβ, P12= α(1-β), P21= (1-α)β, P22= (1-α)(1-β) where C11, C12, C21, C22 are per unit 
costs for accruing one percent (or 0.01 for probability measure) respectively  due to 
products of error (or non-error) in Table 2, which implies:  

α= P11 + P12  (8)        

β = P11 + P21  (9)    

4. Composite Riskiness, Partial-riskiness and Non-riskiness

Suppose a cyberware (hard or soft) product before release is tested for defectives. 

Example 1:  Let µ0 ≤11 (failures) where the software is approved; µ1≥12, the software is 
disapproved. If we reject H0, i.e. µ > 11, with n=2 (batch size), σ=0.8 the error accrued is: 

P [reject H0 | H0 is true] = α 

Type I error probability (α) occurs while rejecting a good product denotes producer’s risk. 

However, if in reality, we release the software product assuming that our null hypothesis 
was true in failing to reject a bad product while H1 or HA is true, then we commit Type-II 
error, as follows: 

P [Failure to Reject or Accept H0 | while H1 is true] =β 

Then, we can compute: β (Type II error probability) while failing to reject a bad product, a 
process which denotes consumer’s risk. Now, if we conduct an analysis such that we 
calculate a range of β = OC (µ) for H0: µ = µ0 vs. H1: µ > µ0 as follows, i.e. for a given α= 
0.10, we obtain Table 3 as follows where OC: Operating Characteristics (See Figures 1-3): 

 Table 3: Power and Type-II error for the Differences, θ =µ1-µ0  
θ =µ1-µ0 0 0.5 1 1.5 2 2.5 3 
β = OC(θ) 0.90 0.65 0.313 0.085 0.012 0.00085 0.00003 
Power=(1-β) 0.10 0.35 0.6871 0.915 0.988 0.99915 0.99997 

Then, we can interpret this phenomenon as in the following argument: Given H0: µ = µ0 

being tested with a given α (Type I error probability) versus a given alternative standard 
H1: µ = µ1 > µ0, we can estimate the overall (both producer‟s and consumer‟s combined) 
software risk as a combination of the following two metrics, α and β from the OC curve. 
Then, we define a quasi-Type III error probability, as illustrated in Table 2.  

Composite Riskiness = CR = α*β  (10) 

is the cross-product of Type I and II probabilities; we call it the Type III error probability.  
In Table 3, n=2, σ=0.8, α = 0.10, β = 0.3129 for H0: µ0 =11 vs. choosing H1: µ1 = 12, where 
CR= α * β = 0.1 * 0.3129 = 0.03129 can be defined as Composite Riskiness.  
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Therefore Non-Riskiness = (1-α)*(1- β) = 1-α-β+α*β = (1-0.1) (1-0.03129) = 0.872. This 
leaves Partial Riskiness (PR) to be either due to Type-I (producer‟s risk) or Type-II 
(consumer‟s risk) contributions = Significance * Power + Confidence * (1-Power) = {α (1- 
β) + (1- α) β} = 0.0967. Note, observing the contents of Table 1 and Table 2, we follow:  

   CR (Composite Riskiness) + NR (Non-Riskiness) + PR (Partial Riskiness) = 1.0       (11) 

where,  0.03129 + 0.87200+ 0.09670 = 0.99999 ≈ 1.00 

Therefore, the lower the product of Type I and Type II error probabilities, the lower the 
composite riskiness (CR) is. The more the difference between the (µ0 and µ1) null or 
standard versus the alternative that we are testing is, i.e. µ1 - µ0, the lower will be the β = 
Type II error probability and the higher will be the power (=1-β). See The OC in Figure 3. 

Figure 1: Probability of Type I error:α(rhs: striped)  and Type II error: β(lhs: crossed) 

Figure 2: Sampling Plan for Example 1 of Section 4 in Table 3 with α=0.1, n=2 and σ=0.8 
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Figure 3: OC Curve β(µ) for α=0.1 in Figure 2 for testing  H0: µ0 ≤11 vs  H1: µ1≥12  

Note, in Figure 3; observe Ho vs. H1 with the OC Curve: @H1=12.0 on x-axis → y-
axis=0.313. @H1=11.0 on x-axis, y-axis=1.0-0.1 = 0.9 = 1- α 

5. Cyberware Test of Hypothesis to Compute the Optimal α & β

Example 2: Given the following, 

Null hypothesis: H0: Cyberware is functional (good, operating), i.e. H0: µ= 5 

Alternative hypothesis: H1: Cyberware is dysfunctional (bad, ill-operating), i.e. H1: µ ≥ 5 

Input  sample costs: C11 = +$800 (cost lost), C21 = +$70 (cost lost), C12 = +$200 (cost 

lost), C22 = -$400 (utility gain) as  per unit cost coefficients in order, respectively for (i) 
Composite Riskiness (CR) =P11=α * β, (ii) Partial Riskiness (PR1) due to Type-I (α) error 
probability=P12=α(1-β), (iii) Partial Riskiness (PR2) due to Type-II error (β) probability = 
P21=(1-α)β and  (iv) Non-Riskiness=P22=(1-α)(1-β). Solve for the optimal Type-I (α = 
producer‟s risk) and Type-II (β = consumer‟s risk) error probabilities using a Neumann‟s 
game theoretic mixed-strategy algorithm.  

We will now apply Neumann‟s game-theoretic risk computing with more details [3, 10]. 

Min LOSS is the objective function subject to 14 constraints covering equations 12- 25: 

P11 C11 – LOSS < 0 (12), P12 C12 – LOSS < 0 (13), P21 C21 – LOSS < 0 (14),   P22 C22 – 

LOSS < 0 (15),  P22≥ P11 (16), P22≥P12 (17), P22≥P21 (18),  P11 <1 (19), P12<1 (20), P21 <1 

(21), P22<1 (22),  LOSS>LOSSmin (23), P11 + P12 +P21 + P22 =1 (24), Π (α, β, Cij) = P11 C11 

+ P21 C21 + P12 C12 + P22 C22 < 0 (25).

Whereby Equation (25) denoting total $ cost units accrued shows a positive utility gain or 
overall profit.  If the minimum or at-least utility gain assumed is –LOSS ≤-$5 or LOSS≥5 
(equations 12-15 and 23) per each cell in Table 2, we set up the LP (Linear 
Programming) problem given the above game-theoretic equations with constraints. The 
following spreadsheets show the data entry and outputs with LP program: 
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Table 4:  Input Spreadsheet for Example 2 of Section 5 

    Table 5: Input Spreadsheet for Example 2 of Section 5 

 Table 6: Input Spreadsheet for Example 2 of Section 5 using EXCEL 
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 Table 7: Cost Input Table for Example 2 of Section 5 

        Table 8: Output Spreadsheet for Example 2 of Section 4 using Java coding 

The following are the  Figure 4.A. graph points for Example 2 of Section 5 from Table 7 
(Loss, Expected Total Cost): Point (1, -388.79) , Point (3, -366.36), Point (5, 343.93), 
Point (7, -321.5), Point (9, -299.07), Point (10, 287.86), Point (20, -175.71),  Point (25, -
119.64), Point (30, -74.06), Point (35, -58.9),  Point (40, -43.75), Point (45, -28.59), Point 
(50, -13.44), Point (54, -1.31), Point (55, 0). Figure 4.B. shows [α,β] vs. Loss values ($). 

Figure 4.A: Game-theoretic Expected Total Cost (utility) vs. Loss Factor for Example 2 
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Figure 4.B: Game-theoretic optimized „Alpha and Beta‟ vs. Loss Factor for Example 2 

Optimal Cost Associated Results: Utilizing equations (9-11) and (12-25), solutions to    
the unknown vector, [Pij]= [P11, P12, P21 , P22];  we get α = P11 + P12 = .006249 +
.071429= .077678 (7.77%) and β = P11 + P21 = .006249 + .024999 = .031248 (3.13%).
For n (sample size of batches) =100, σ (standard deviation) =9 and the optimized α = 
077678 (or 7.77%), and β =.031248 (or 3.13%) computed from the said scenario will 
demonstrate the following plan:    0.031248 = β = P (Z≤ZC | H1: µ = 7.952), and 0.077678 
=α= P (Z≥ZC | H0: µ= 5) which gives: (ZC | H1: µ ≥ 5) =1.42 and (ZC | H0: µ1= 8.29) = -
1.86. These will further result in (assuming standard deviation for both to be σ=9) the 
following common critical value C. That is, C= 5+1.42*9/√100=6.278 under H0 or C= 
7.952-1.86 9/√100=6.278 under H1.  Note, H1: µ =7.952 ≥ 5, is calculated by C-
Z(β)*σ/√n=6.278-(-1.86)9/10=7.952 for testing H0: µ=5 vs. H1: µ=7.952 ≥5 mean failures.  

Therefore the decision plan becomes as in Figure 5.A. followed by its OC Curve in 5.B. 
Reject Ho if  ̅ (sample mean) > C ≈ 6.278 when H1: µ = 5 to commit Type-I error (α) and
Fail to Reject Ho if  ̅ < C ≈ 6.278 when H1: µ = 7.952 to commit Type- II error (β) to
attain cost-optimal outcomes under the cost plan designed to be as tabulated in Figures 4. 
A, 4.B. and Table 7 subject to C11 =$800 (unit cost lost), C21= $70 (unit cost lost), C12= 
$200 (unit cost lost) and C22 =-400 (unit utility gain) under the Loss constraint (23). Thus 

ΣPijCij = 0.006245*800 + 0.07143* 70 + 0.0245*200 + 0.897321*(-400) = -$343.92 (26)

is the total  cost or utility gain that the planner will accrue given Loss (max) is limited to 
LOSS= $5 given, as Loss may vary from $1 to $55 as until ExpectedTotal Cost =0.  

Figure 5.A: Optimal sampling plan of  α and β by Table 7 for Example 2 for n=100, σ=9 
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Figure 5.B: Example 2‟s OC Curve by Tables 4 to 8, Figures 4.A., 4.B. with n=100, σ=9 

Summary Note: In Figure 5.B.; Observe Ho: µ = 5 vs. H1 µ = 7.952 with OC: @H1=7.952 
(LQL) on x-axis →y-axis=.0313. @H1=5.0 (AQL) on x-axis → y-axis=1-.0777=.9223 [12]. 

6. Another Example on the Variation of Cost or Utility on the same Hypothesis Test

Following the same hypothesis testing setting as in Example 2 of Section 5, we continue 
to show one more business scenario by varying the cost factors, Cij, to observe the [α, β] 
optimization  by viewing, i) Expected Total Cost and ii) [α, β] vs. Loss plots as in Figures 
6.A. and 6.B. according to the business plan suggested for the following Example 3:

 Example 3: The same as in Section 5 except C11= $800, C21= $70, C12= $200, C22= -$100. 

Table 9: Alternative Cost Input Table for Example 3 of Section 6. 

The following are the Figure 6.A. graph points for Example 3 of Section 6 from Table 9 
(Loss, Expected Total Cost):  Point (1, -94.95), Point (3, - 84.83), Point (5, -74.73), Point 
(7, -64.63), Point (10, -49.46), Point (15, -24.2), Point (20, 0.0). 

   Figure 6.A: Game-theoretic optimized Expected Total Cost vs. Loss for Example 3 
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Figure 6.B: Game-theoretic optimized „Alpha and Beta‟ vs. Loss Factor for Example 3 

The game-theoretic optimized results of the Pij for the selected Loss: $7.0: 

P11 = 0.008749999; P12 = 0.10000001; P21 = 0.034999996; P22 = 0.85625005 

Optimal Cost Associated Results for Loss: $7: Utilizing equations (9), (10) and (11), and 
solutions of Equations (2-25) to the unknown vector, [Pij]= [P11, P12, P21 , P22];  α = P11 +
P12 = 0.010875  (or  10.875%)  and β = P11 + P21 = 0.043749996 (or 4.375%).

       The overall testing plan by the given cyberware hypothesis will demo the following plan:    
0.0438 = β = P (Z≤ZC | H1: µ = 7.93), and 0.10875 =α= P (Z≥ZC | H0: µZ= 5) which gives:
(ZC | H1: µ = 5) =1.23 and (ZC | H0: µ1= 7.637) = -1.70. These will further result for n=100 
in (assuming standard deviation for both distributions to be σ=9) the following common 
critical value, C= 5+1.23* 9/√100=6.107 under H0 or C= 7.637-1.7* 9/√100 =6.107 
under H1.  

Therefore a decision plan becomes: Reject Ho if  ̅ (sample mean) > C ≈ 6.107 when H0: µ
= 5 to commit Type- I error (α), and Fail to Reject Ho if  ̅ (sample mean) < C ≈ 6.107 
when H1: µ = 7.637 to commit Type- II error (β) so as to attain cost-optimal outcomes 
under the cost plan designed.  Note, H1: µ =7.637 ≥ 5, is calculated by C-
Z(β)*σ/√n=6.107-(-1.7) 9/10=7.637 for testing H0: µ=5 vs. H1: µ=7.637 ≥5 mean failures. 

Therefore the decision plan becomes as in Figure 7.A. followed by its OC Curve in 7.B. 
Reject Ho if  ̅ (sample mean) > C ≈ 6.107 when H1: µ = 5 to commit Type-I error (α) and
Fail to Reject Ho if  ̅ < C ≈ 6.107 when H1: µ = 7.637 to commit Type- II error (β) to
attain cost-optimal outcomes under the cost plan designed.  This was reflected in Figures 
7.A., 7.B.  from Table 9 subject to C11=$800 (unit cost lost), C21=$70 (unit cost lost), C12 
= $200 (unit cost lost) and C22 =-100 (unit utility gain) under the Loss constraint (23). So,

ΣPijCij = 0.00875*800 + 0.1* 70 + 0.035*200 + 0.85625*(-100) = -$64.63   (27) 

is the total  utility gain that the planner will accrue given Loss (max) is limited to LOSS= 
$7 given, as Loss may vary from $1 to $20 as in Figure 6.A. until the Expected Total 
Cost =0.  

JSM2015 - Section on Risk Analysis

2987



Figure 7.A: Optimal sampling plan with α and β by Table 9 for Example 3 for n=100, σ=9 

Figure 7.B: Example 3‟s OC Curve by Table 9 and Figure 6.A., 6.B. with n=100, σ=9 

Summary Note: In Figure 7.B., observe H0: µ = 5 vs. H1 µ=7.637 with OC: @H1=7.637 
(LQL) on x-axis→y-axis=0.0438. @H0=5.0 (AQL) on x-axis→y-axis=1-.1088=.8912[12]. 

7. Discussions and Conclusion

The conventional wisdom speaks about the operating characteristics (OC) curve as 
follows, such as in Figure 3 of Example 1 based on Section 4‟s Table 3, for testing H0: µ0 
≤11 given “α(alpha)” where the software is approved vs. H1: µ1=12 when the software is 
disapproved with a certain β(beta) [11].  The OC curve for β(µ) is derived by finding β 
vs. µ1≥ 11 in a step-by-step approach where α=0.10. As one can observe in Table 3 and in 
the OC curve plot that β(µ=11)=0.313 where  α= 0.10 with sample size n=2 and σ=0.8.  
However, that is all about it as it does not get any better than this so-far-so-good status-
quo [12]. As common knowledge dictates; α↑ increases with β↓ decreasing and vice versa 
for given sample size, n.  Another way to reduce β (=Type–II error probability) is to 
increase sample size n↑ for a specified non-varying α  and δ = µ1-µ0.  That is, we may 
elevate the power of the test (i.e. Power=1-β) by increasing the sample size. However, all 
these concepts being fine, one cannot enter the market dynamics in terms of dollar- or 
euro- or yen-based costs or utility, without any notion of optimizing (in this case, 
minimizing producer‟s and consumer‟s risks) provided the market controlled costs of 
incurring σ and β risks in their combined error format as defined in Sections 3 and 4 with 
examples in 5 and 6. 
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In this novel approach to calculating cost-optimized Type-I and II error probabilities, the 
principal author follows an innovative Game-theoretic avenue where the probabilistic and 
cost-related constraints as well the five input parameters (Cij and LOSS) have to be 
selected by the analyst to reflect the market conditions for a profitable business model. 
Whereas, in Example 2 with [Cij = 800, 70, 200, -400] from Table 7 and LOSS = $5 
resulting in α = 7.77% and β= 3.13%, we incur a negative cost of -343.92 which signifies 
a profitable utility (gain) for the business plans in 4.A and 4.B supported by figures and 
sampling plan of 5.A. and the OC curve of 5.B.  

In Example 3 with [Cij = 800, 70, 200, -100] from Table 9 and LOSS = $7 optimized to α 
= 10.8% and β= 4.4%, we incur a negative cost of -64.63 which signifies a profitable 
utility (gain) for the business plan of Figures 6.A and 6.B. followed and supported by the 
sampling plan of Figure 7.A. and the OC curve 7.B. In Example 3; n(batch)=100, σ= 9.  

It is noteworthy to mention that in Example 3 for H0: µ= 5 defects vs. H1: µ > 5 defects, 
the acceptance values can be found from the OC curve in Figure 7.B. which gives the 
probability of accepting a lot (or batch) as a function of defectives (d) per 100-batch or 
proportion (d/n). Let AQL (Acceptable Quality Level) = 5 defects per 100 for α=10.88% 
and LTFD (Lower Tolerance Fraction Defective)=7.64 defects per 100 for β=4.38%. A 
consumer often establishes a sampling plan for a continued supply of (raw) components 
with reference to AQL, which represents the poorest level of quality for the supplier‟s 
process that the consumer would consider to be acceptable as a process average. The 
consumer may also be interested in the other end of the OC curve - namely in the LTFD 
(also known as RQL or LQL: Rejectable or Limiting Quality Level), which is the poorest 
level of quality that the consumer is willing to accept with a low probability of 
acceptance in an individual lot [12]. In this example, „7.64 defects‟ from n=100-batch is 
the LTFD or RQL or LQL referring to the consumer‟s risk (β=4.38%) and „5 defects‟ is 
the AQL referring to the producer‟s risk (α=10.88%). 

It is this research article‟s task to open a new avenue for discussion leading to an evolved 
game-theoretic but market-realistic optimal solution of Type-I and Type-II error 
probabilities (also known as producer‟s and consumer‟s risks) in contrary to selecting 
them per judgment calls devoid of cost or utility constraints in a business-plan-state-of-
mind. It falls upon the authors to further state that the most challenging task in this game-
theoretic proposition is to generate the most-fitting rightful and authentic market-centric 
input data for the firmware, cyberware or any other commodity market about which the 
tests of hypotheses are being conducted. This will necessitate another series of 
econometric data collection studies so as to generate the most compatible input data sets 
for the problem proposed in this research so as to give life and meaning to the cost factors 
explained. The designed OC Curve can be a business standard hypothetically for a new 
enterprise‟s acceptance; such as Xiaomi [13], the Chinese iPhone company in quest for a 
market opening in USA soon. See Figure 8. See the Appendix based on Fig. 7.A., 7.B., as 
a business plan to follow, similar to the MIL-STD-105D with all the cost factors [11]. 
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Appendix 

Figure 8: Manufacturer and Consumer Story for the Game-theoretic α and β algorithm. 
Note the hypothetical Example 3 in Section 6 where H0: µ= 5(defects) vs. H1: µ > 5 with 
n(batch size)=100, σ=9. Game-theoretic business plan: AQL=5 and RQL=7.64 defects. 
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