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Abstract
The intraclass correlation coefficient for correlated binary responses arising in many applications

of biological investigations is often of interest in measuring the precision of the treatment effect
in clinical trials. Although inference procedures concerning the intraclass correlation have been
well developed for single-sample problems, little attention has been paid to extend this inference
procedures for multiple-sample problems. In this paper, we construct several confidence interval
procedures for a common intraclass correlation of several treatment groups. Our simulation results
indicate that the generalized pivot based confidence interval approach performs better compared to
other asymptotic approaches considered here. An application to a solar protection study is used to
illustrate the proposed methods.
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1. Introduction

Binary outcome data in many biomedical, toxicological, clinical medicine, and epidemi-
ological research often exhibit extra-binomial variability due to the correlated responses
within the sampling units (or clusters). This intraclass correlation has been widely used
to measure the efficiency of hospital staff in health care delivery research, the familial
aggregation of disease in genetic epidemiological studies, and the level of interobserver
agreement in reliability studies. Inference procedures concerning the intraclass correlation
have been well developed for single-sample problems. Several techniques for the point
estimation of the intraclass correlation have been developed based on beta-binomial, quasi-
likelihood, quadratic estimating equations, generalized estimating equations, unbiased es-
timating equation, analysis of variance, method of moments, direct probabilistic method,
etc.; see Paul and Islam (1998), Ridout et al. (1999), Paul (2001), Paul et al. (2003), Lee
(2004), and Saha and Paul (2005). For the construction of the confidence interval, several
procedures have also been developed. For example, Lui et al. [18] derived the CI estimates
for the intraclass correlation on the basis of the ratio of between-cluster and within-cluster
mean squares in equal cluster sampling. Zou and Donner [8] studied the CI of the intra-
class correlation parameter based on the ANOVA estimator, the Pearson pairwise estimator
with constant weights, and the kappa-type estimator (see details of these three estimators
in Paul et al. [16]) by obtaining closed-form asymptotic variance formulas for these three
point estimators of this parameter. Saha (2012) generalized the results of the four point
estimators recommended by Paul et al. (2003) and Lee (2004) to construct asymptotic con-
fidence intervals using closed-form asymptotic and sandwich variance expressions. He also
introduced the Fishers-transformation approach on the intraclass correlation coefficient, the
profile likelihood approach based on the beta-binomial model, and the hybrid profile vari-
ance approach based on the quadratic estimating equation for constructing the confidence
intervals of the intraclass correlation for binary outcome data.
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In many applied research, inference procedure for a common intraclass correlation in
the analysis of several treatment groups is often of interest that one needs to develop and
compare. For example, in a common teteratogenesis laboratory experiment, pregnant ani-
mals are assigned to a control or one of several dose groups to study the reproductive and
development toxicity of a substance. Kupper & Hasemen (1978) discussed that the litter
effect is an inherent characteristic of reproductive and development data and this can be
measured by the intraclass correlation parameter. This raises question as to whether the
litter effect differs among the several dose groups. In this paper, we focus on developing
confidence interval procedures to address this question.

2. Confidence intervals for a common ICC

2.1 The CI based on ML

Let yij (j = 1, . . . ,mi; i = 1,. . . , k) be a random sample of the number of affected indi-
viduals among thenij individuals drawn from theith beta-binomial population, with the
expected number of affected individuals E(Yij) = nijπi and varianceniπi(1 − πi){1 +
(ni − 1)φi}, whereπi is the expected proportion of affected individuals in theith popu-
lation andφi is the intraclass correlation coefficient in theith population. The probability
mass function of theith beta-binomial population, denoted byBB(πi, φi), is

P (yij|πi, φi) =

(
nij

yij

) ∏yij−1
r=0 [(1 − φi)πi + rφi]

∏nij−yij−1
r=0 [(1− πi)(1− φi) + rφi]

∏nij−1
r=0 [(1− φi) + rφi]

for yij = 0, 1, 2, . . ., nij; 0 ≤ πi ≤ 1 and max( −1
nij−1) < φi < 1. Although the main

analysis of this study is making inferences about the proportionsπi, i = 1, . . . , k, it depends
on the assumption of the equality of the intraclass correlationsφi, i = 1, . . . , k among
several treatment groups. Here we wish to testH0 : φ1 = . . . = φk = φ, whereφ is
unspecified, againstH1 : at least twoφi’s are unequal. The log-likelihood of thek beta-
binomial samples underH0 is given by

l(π1, . . . , πk, φ) =
k∑

i=1

mi∑

j=1



yij−1∑

r=0

ln{(1 − φ)πi + rφ}+

nij−yij−1∑

r=0

ln{(1− πi)(1− φ) + rφ}

−

nij−1∑

r=0

ln{(1 − φ) + rφ}


 . (1)

The ML estimateŝπi and φ̂ of πi andφ underH0 can be obtained by maximizing the
log-likelihood l(π1, . . . , πk, φ) or by solving iteratively the ML estimating equations:

mi∑

j=1




yij∑

r=1

1− φ

πi(1− φ) + (r − 1)φ
−

nij−yij∑

r=1

1− φ

(1− πi)(1− φ) + (r − 1)φ


 = 0, for i = 1, . . . , k,

and

k∑

i=1

mi∑

j=1




yij∑

r=1

(r − 1)− πi
πi(1− φ) + (r − 1)φ

+

nij−yij∑

r=1

(r − 1)− (1− πi)

(1− πi)(1− φ) + (r − 1)φ
−

nij∑

r=1

r − 2

1− φ+ (r − 1)φ


 = 0.

Based on the inverse of the Fisher information matrix, an asymptotic variance ofφ̂ can be
obtained as Var(φ̂) = Γ(k+1)(k+1), whereΓ(k+1)(k+1) is the(k + 1)th diagonal element of
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Table 1: Coverage probability estimates based on confidence intervals by the methods with
nominal level,1− α = 95%.

(m1,m2) (π1, π2) φ AOV FC PP GP ML

(19, 27) (0.1, 0.3) 0.1 0.996 0.977 0.975 0.926 0.907
0.2 0.991 0.969 0.975 0.932 0.821
0.3 0.988 0.973 0.975 0.905 0.797
0.4 0.983 0.968 0.976 0.897 0.781
0.5 0.981 0.965 0.967 0.867 0.755

(0.2, 0.4) 0.1 0.994 0.977 0.982 0.933 0.928
0.2 0.978 0.958 0.952 0.939 0.832
0.3 0.978 0.966 0.965 0.933 0.828
0.4 0.971 0.958 0.967 0.912 0.788
0.5 0.976 0.970 0.967 0.910 0.767

(0.3, 0.6) 0.1 0.990 0.962 0.964 0.941 0.918
0.2 0.973 0.950 0.949 0.935 0.835
0.3 0.969 0.957 0.951 0.920 0.821
0.4 0.976 0.958 0.961 0.925 0.805
0.5 0.973 0.972 0.968 0.911 0.806

(73, 87) (0.1, 0.3) 0.1 0.995 0.990 0.995 0.924 0.850
0.2 0.996 0.994 0.996 0.938 0.807
0.3 0.996 0.996 0.996 0.910 0.790
0.4 0.996 0.994 0.995 0.920 0.760
0.5 0.992 0.990 0.989 0.889 0.774

(0.2, 0.4) 0.1 0.995 0.990 0.992 0.944 0.892
0.2 0.994 0.990 0.992 0.944 0.825
0.3 0.997 0.995 0.992 0.934 0.801
0.4 0.988 0.985 0.987 0.940 0.800
0.5 0.987 0.988 0.988 0.914 0.790

(0.3, 0.6) 0.1 0.989 0.986 0.982 0.949 0.893
0.2 0.997 0.991 0.995 0.946 0.843
0.3 0.993 0.992 0.991 0.948 0.804
0.4 0.986 0.985 0.984 0.938 0.812
0.5 0.987 0.984 0.986 0.920 0.802
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the inverse of the Fisher information matrixΓ given by

Γ =




Γ11 Γ12 . . . Γ1k Γ1(k+1)

Γ21 Γ22 . . . Γ2k Γ2(k+1)

. . . . . . . . . . . . . . .
Γk1 Γk2 . . . Γkk Γk(k+1)

Γ(k+1)1 Γ(k+1)2 . . . Γ(k+1)k Γ(k+1)(k+1)



=




a1 0 . . . 0 b1
0 a2 . . . 0 b2
. . . . . . . . . . . . . . .
0 0 . . . ak bk
b1 b2 . . . bk c




−1

,

where

ai = (1− φ)2
mi∑

j=1

(
A

(2,0)
1j +A

(2,0)
2j

)
, for i = 1, . . . , k,

bi = (1− φ)
mi∑

j=1

(
A

(2,1)
1j −A

(2,1)
2j

)
+

mi∑

j=1

(
A

(1,0)
1j −A

(1,0)
2j

)
, for i = 1, . . . , k,

c =
k∑

i=1

mi∑

j=1

(
A

(2,2)
1j +A

(2,2)
2j −A

(2,2)
3j

)
,

with, for j = 1, ...,mi; p = q = 0, 1, 2,

A
(p,q)
1j =

nij∑

r=1

(r − π − 1)q

[(1 − φ)πi + (r − 1)φ]p
Pr(Yij ≥ r),

A
(p,q)
2j =

nij∑

r=1

(r + π − 2)q

[(1 − φ)(1 − πi) + (r − 1)φ]p
Pr(Yij ≤ nij − r),

A
(p,q)
3j =

nij∑

r=1

(r − 2)q

[1 + (r − 1)φ]p
.

Then, the approximate 100(1 -α)% confidence interval forφ is given by

ML : φ̂− zα/2

√
V̂ar(φ̂) ≤ φ ≤ φ̂+ zα/2

√
V̂ar(φ̂),

wherezα/2 is the upperα2 th quantile of the standard normal distribution and̂Var(φ̂) is the

estimated variance of̂φ obtained from Var(φ̂) after replacing the parametersπi andφ by
their ML estimateŝπi andφ̂, respectively.

2.2 The CI based on GP

By applying the analogy of formulae for continuous data directly, the ANOVA estimator of
the intraclass correlation of binary data is also obtained (see, Ridout et al., 1999), which is,
for theith sample, given by

φ̂a
i =

MSWi − MSWi

MSWi + (n0
i − 1)MSWi

,

where

MSWi =
1

mi − 1




mi∑

j=1

Y 2
ij

nij
−

(
∑mi

j=1 Yij)
2

Ni


 ,

MSWi =
1

Ni −mi




mi∑

j=1

Yij −
mi∑

j=1

Y 2
ij

nij


 ,

n0
i =

1

mi − 1

[
Ni −

∑mi

j=1 n
2
ij

Ni

]
and Ni =

mi∑

j=1

nij.
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Table 2: Expected interval lengths based on confidence intervals by the methods with
nominal level,1− α = 95%.

(m1,m2) (π1, π2) φ AOV FC PP GP ML

(19, 27) (0.1, 0.3) 0.1 0.270 0.238 0.247 0.244 0.149
0.2 0.387 0.347 0.366 0.259 0.176
0.3 0.455 0.411 0.439 0.280 0.194
0.4 0.488 0.443 0.480 0.287 0.203
0.5 0.482 0.439 0.476 0.275 0.198

(0.2, 0.4) 0.1 0.229 0.206 0.212 0.212 0.142
0.2 0.327 0.301 0.319 0.248 0.168
0.3 0.373 0.348 0.374 0.269 0.185
0.4 0.391 0.368 0.398 0.274 0.193
0.5 0.391 0.372 0.404 0.265 0.189

(0.3, 0.6) 0.1 0.221 0.199 0.203 0.210 0.141
0.2 0.306 0.282 0.298 0.239 0.165
0.3 0.347 0.324 0.350 0.258 0.181
0.4 0.364 0.346 0.375 0.263 0.189
0.5 0.366 0.351 0.382 0.255 0.186

(73, 87) (0.1, 0.3) 0.1 0.167 0.157 0.164 0.095 0.060
0.2 0.218 0.205 0.217 0.122 0.077
0.3 0.243 0.229 0.242 0.139 0.089
0.4 0.254 0.238 0.252 0.146 0.096
0.5 0.251 0.235 0.249 0.144 0.097

(0.2, 0.4) 0.1 0.132 0.127 0.133 0.090 0.058
0.2 0.171 0.164 0.174 0.115 0.073
0.3 0.192 0.185 0.195 0.131 0.084
0.4 0.202 0.194 0.206 0.137 0.091
0.5 0.202 0.195 0.206 0.135 0.092

(0.3, 0.6) 0.1 0.121 0.116 0.122 0.084 0.058
0.2 0.156 0.151 0.159 0.108 0.072
0.3 0.176 0.170 0.180 0.123 0.082
0.4 0.185 0.180 0.190 0.129 0.088
0.5 0.196 0.181 0.191 0.128 0.089
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Based on the assumption of exchangeability, an intuitive andsimple estimator ofπi for
the ith sample is given bŷπa

i =
∑mi

j=1 Yij/Ni. Using the exchangeable model and the
variance-covariance matrix of a bivariate normal distribution, Zou and Donner (2004) ob-
tained closed-form asymptotic variance formula for the ANOVA estimator of intraclass
correlation from a single population, which is, for theith sample, given by

Var(φ̂a
i ) =

[(mi − 1)n0
iNi(Ni −mi)]

2

τ4i


2mi +

(
1

πi(1− πi)
− 6

) mi∑

j=1

1

nij
+Ψ1iφi +Ψ2iφ

2
i +Ψ3iφ

3
i


 ,

where

τi = φi(Ni −mi)[Ni − 1− n0
i (mi − 1)] +Ni(mi − 1)(n0

i − 1),

Ψ1i =

{
1

πi(1− πi)
− 6

} mi∑

j=1

1

nij
− 2Ni + 7mi −

8m2
i

Ni
−

2mi(1−mi/Ni)

πi(1− πi)
+

{
1

πi(1− πi)
− 3

} mi∑

j=1

n2
ij,

Ψ2i =
N2

i −m2
i

Niπi(1− πi)
− 2Ni −mi +

4m2
i

Ni
+

{
7−

8mi

Ni
−

2(1 −mi/Ni)

πi(1− πi)

} mi∑

j=1

n2
ij,

Ψ3i =

{
1

πi(1− πi)
− 4

}(
Ni −mi

Ni

)2



mi∑

j=1

n2
ij −Ni


 .

Note that there are two typos in the formula given in Zou and Donner (2004). However, we
provided here the corrected variance formula forφ̂a

i after getting feedback from Dr. Zou.
Similar to Mian and Shoukri (1997), we obtain a pooled estimate of the common intraclass
correlationφ as

φ̂a =

∑k
i=1Wφ̂a

i
φ̂a
i

∑k
i=1Wφ̂a

i

with Wφ̂a
i
=

1

Var(φ̂a
i )|πi=π̂a

i
,φi=φ̂a

i

.

Tian (2005) obtained a potential generalized pivot for the intraclass correlation to con-
tinuous data, which was used to construct confidence interval limits for the common intra-
class correlation. It can be seen that the formula for the ANOVA estimator of the intraclass
correlation for continuous data is directly applied to binary data. Similar to this, we also
apply here the generalized pivot for the intraclass correlation for continuous data to binary
data and obtain the weighted average of the generalized pivotsGPi (i = 1, . . . , k) as

GP =

∑k
i=1 W

i
φ̂a
GPi

∑k
i=1 W

i
φ̂a

with W i
φ̂a =

1

Var(φ̂a
i )|πi=π̂a

i
,φi=φ̂a

,

where

GPi =
ssai/ui − sswi/vi

ssai/ui − (1− n∗
i )sswi/vi

,

sswi = (Ni −mi)MSWi,

ssai = n∗
i




mi∑

j=1

Y 2
ij

n2
ij

−
(
∑mi

j=1 Yij/nij)
2

mi


 ,

n∗
i =

mi∑mi

j=1 n
−1
ij

,

andui andvi follow asymptotically chi-squared distributions with degrees of freedommi−
1 andNi −mi, respectively. In order to obtain the confidence limits, we generateui and
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vi (i = 1, . . . , k) from the respective chi-squared distributions, and computeGPi (i =
1, . . . , k) and thenGP using the above formulas. We repeat this to computeGP for B
times, sayG̃P b (b = 1, . . . , B) is the set of values forGP . From this set, we compute
theα/2th and(1 − α/2)th quantiles, saỹGPα/2 andG̃P 1−α/2. Then, the 100(1 − α)%

confidence interval based on GP is given by(G̃P α/2, G̃P 1−α/2).

2.3 The Asymptotic confidence intervals

Instead of obtaining the confidence interval based on analysis of variance (AOV) using
generalized pivots, one may obtain the confidence interval ofφ directly using the asymp-
totic distribution ofφ̂a. Under the assumption of a common intraclass correlationφ, φ̂a is
asymptotically normally distributed with meanφ and variance1/

∑k
i=i Wφ̂a

i
, whereWφ̂a

i

is defined in Section 2.2. Following Tian (2005), we obtain the100(1 − α)% asymptotic
confidence interval forφ based on AOV as

AOV : φ̂a − Zα/2

√√√√1/
k∑

i=i

Wφ̂a
i
≤ φ ≤ φ̂a + Zα/2

√√√√1/
k∑

i=i

Wφ̂a
i
.

For a single population case, Zou and Donner (2004) obtained confidence limits for the
intraclass correlation using closed-form asymptotic formulas for the Fleiss-Cuzick (FC)
and Pearson pairwise (PP) estimators. In our case, we apply these formulae to obtain the
confidence interval for the common intraclass correlationφ. In a similar fashion we also
obtain asymptotic confidence intervals forφ based on FC as

FC : φ̂f−Zα/2

√√√√1/
k∑

i=i

W
φ̂f
i

≤ φ ≤ φ̂f+Zα/2

√√√√1/
k∑

i=i

W
φ̂f
i

, W
φ̂f
i

= [Var(φ̂f
i )|πi=π̂a

i
,φi=φ̂f

i

]−1,

where

φ̂f =

∑k

i=1
W

φ̂
f

i

φ̂f
i

∑k

i=1
W

φ̂
f

i

with φ̂f
i = 1−

∑mi

j=1
Yij(nij − Yij)/nij

(Ni −Mi)π̂a
i (1− π̂a

i )
,

Var(φ̂f
i ) = (1− φi)

[{
1

πi(1− πi)
− 6

} ∑
j 1/nij

(Ni −mi)2
+Υ1i +Υ2iφi +Υ3iφ

2

i

]

with

Υ1i =

{
2Ni + 4mi −

mi

πi(1− πi)

}
mi

Ni(N − i−mi)2
,

Υ2i =

∑
j n

2
ij

N2
i πi(1− πi)

−
(3Ni − 2mi)(Ni − 2mi)

∑
j n

2
ij

N2
i (Ni −mi)2

−
2Ni −mi

(Ni −mi)2
,

Υ3i =

{
4−

1

πi(1− πi)

} ∑
j n

2
ij −Ni

N2
i

.

Based on the PP method, the confidence intervals forφ are obtained using the estimated
and profile variances of the PP estimator, which are given by

PP: φ̂p−Zα/2

√√√√1/
k∑

i=i

Wφ̂p
i
≤ φ ≤ φ̂p+Zα/2

√√√√1/
k∑

i=i

Wφ̂p
i
, Wφ̂p

i
= [Var(φ̂p

i )|πi=π̂a
i
,φi=φ̂p

i
]−1,
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Figure 1: The coverage probability estimates of 95% nominal confidence intervals for the
common intraclass correlationφ based on the five methods: AOV, FC, PP, GP, and ML.
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where

φ̂p =

∑k

i=1
W

φ̂
p

i

φ̂p
i

∑k

i=1
W

φ̂
p

i

with φ̂p
i =

1

µ̂i(1− µ̂i)

[∑
j Yij(Yij − 1)∑
j nij(nij − 1)

− µ̂2

i

]
,

Var(φ̂f
i ) =

1− φi

[
∑

j nij(nij − 1)]2


2
∑

j

nij(nij − 1) + φiΛ1i + φ2

iΛ2i


 .

with

µ̂i =

∑
j Yij(nij − 1)

∑
j nij(nij − 1)

,

Λ1i =

{
1

πi(1− πi)
− 3

}∑

j

n2
ij(nij − 1)2,

Λ2i =

{
4−

1

πi(1− πi)

}∑

j

nij(nij − 1)3.

3. Simulations

This section reports on a simulation study conducted to investigate the small and moderate
sample behavior of the five interval procedures ML, GP, AOV, FC, and PP in terms of ob-
served coverage probability and average interval length using the pre-assigned confidence
level of 95%. For simplicity, we consider k=2 groups and the number of clusters for k=2
groups are chosen as (i)m1=19 andm2=27 and (ii)m1=73 andm2=87. In this study, we
consider the cluster sizes for case (i) from the low dose treatment group (m1=19) and the
control group (m2=27) of the data in Table 1 of Paul (1982) and for case (ii), the cluster
sizes are the same as those of the Dose 0 group (m1=73) and Dose 30 group (m2=87) for
the data in Table 4. The true values of the proportion parameters(π1, π2) and the intr-
aclass correlation parameters(φ1, φ2) we considered for this simulation were(π1, π2) =
(0.1, 0.3), (0.2, 0.4), (0.3, 0.6) andφ1 = φ2 = 0.1,0.2, 0.3, 0.4, 0.5. All results are obtained
using FORTRAN 90 code. We generate data from the beta-binomial distribution using the
IMSL random number generators RNBET and RNBIN. We compute the observed coverage
probability for the intraclass correlation by the relative frequency out of 1000 intervals that
contained the true value. The average interval length is the mean of the lengths computed
on the basis of 1000 intervals. The results are reported in Tables 1-2 and Figure 1 from
which we make the following observations:

• The CP results between small and moderate number of clustered sizes for all five
methods are in remarkable agreement irrespective of the proportion parameter com-
binations. Specifically, the CPs for all five methods are virtually the same across all
combinations ofπ andφ.

• The ML method shows severe under-coverage across the board, and it becomes very
severe under-coverage for larger values ofφ for all combinations of the proportion
parameters.

• The AOV, FC, and PP methods show severe over-coverage across the board; however,
the CPs for these methods are slightly improved for larger values ofφ particularly
for the small number of clusters.

• The GP method produces better coverage compared to the other four methods, espe-
cially for small values ofφ and for larger proportion parameter combinations when
the number of clustered sizes is large.
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• For all five methods, the ELs increase as the true intraclass correlationφ increases;
the ELs decrease as the number of clustered sizes increases; and also the ELs de-
crease as the value of the proportion parameters(π1, φ2) increases.

• The AOV, FC, and PP methods tend to have similar ELs which are larger than the
ELs of the ML and GP methods.

• The ML method has among the lowest ELs which in many situations is at the expense
of severe under-coverage, whereas good coverage properties of the GP method tends
to have larger ELs compared to the ML method, but smaller ELs compared to the
AOV, FC, and PP methods.

4. Example: Solar Protection Study

This study was an educational intervention program on behavior change with regard to solar
protection. In this study, there were 29 classes (clusters) in each group with sizes (number
of children in each class) ranging from 1 to 6 in the intervention group and from 1 to 4 in
the control groups. Below are summary statistics of this study.

Table 3: Summary statistics for the data set in a solar protection study

Study Arm # of subjects # of clusters mean cluster size successprob

Control 68 29 2.345 0.618

Intervention 64 29 2.07 0.422

The distributions of cluster-level proportions for controland treatment groups are shown
below:

Dist of cluster−level prop for control group

Cluster−level proportion

Fre
que

ncy

0.0 0.2 0.4 0.6 0.8 1.0

0
4

8
12

Dist of cluster−level prop for treatment group
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Figure 2: The distributions of cluster-level proportions for control and treatment groups in
a solar production study.
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The estimated success probability and the estimated intraclass correlation for both study
arms and the estimated common intraclass correlation are provided below:

Table 4: The point estimates of the parameters obtained based on the four different methods
for the data set in a solar protection study.

Methods π1 π2 φ1 φ2 φ

ML1 0.621 0.462 0.324 0.249 0.286

AOV1 0.618 0.422 0.337 0.266 0.301

FC1 0.618 0.422 0.321 0.248 0.287

PP1 0.618 0.422 0.382 0.265 0.331

Then, the 95% confidence intervals for a common intraclass correlationφ obtained using
the ML, GP, AOV, FC, and PP methods are given below:

Table 5: The 95% confidence intervals for a common intraclass correlationφ obtained
using the ML, GP, AOV, FC, and PP methods.

Length Comparison
Method Lower Limit Upper Limit Length ind/ML
ML 0.124 0.449 0.325 1.000
GP 0.030 0.502 0.472 1.451
AOV 0.108 0.493 0.385 1.184
FC 0.057 0.516 0.459 1.410
PP 0.078 0.583 0.505 1.554

5. Conclusion

In this article, we applied the generalized pivot as the analogy of formulas for continu-
ous data to binary data to construct a new CI for a common intraclass correlation using
the weighted average of the generalized pivots. The proposed CI works satisfactory in
term of coverage probabilities when a common intraclass correlation is smaller than 0.4,
in particular for the moderate number of clusters. For a larger common intraclass correla-
tion, this proposed CI could be somewhat anti-conservative. We also developed four other
asymptotic confidence intervals, which were compared with the proposed method. The
asymptotic CIs based on AOV, PP, and FC showed very conservative behaviors, whereas
the asymptotic CI based on ML showed severe anti-conservative behavior. Beside the ML
method, the GP based CI showed a shorter expected length compared to the other three
asymptotic CIs.
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