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INTRODUCTION 

Risk profiles for breast cancer generally differ according to various characteristics of the 

tumor. For example, pregnancy is generally inversely associated with estrogen receptor 

positive (ER+) breast cancer and equivocal (or possibly deleterious) for ER- breast 

cancer
2-4

. The most common approach to address tumor heterogeneity uses methodology 

for competing risks; markers are cross-classified and each combination of markers is 

considered individually
5
. However, as an increasing number of tumor markers are 

identified (e.g. tumor size, morphology or multiplicity) and as these characteristics are 

often correlated, it becomes difficult to assess the marker-specific effect of a particular 

risk factor without considering other tumor characteristics. To address these issues, 

Rosner et. al introduced the concept of an adjusted hazard ratio. Here, hazard ratios from 

sub-type specific risk factor models are computed and interpreted as the marker-specific 

effect of a particular risk factor while “controlling” for the other tumor characteristics 
1
.  

 

Another added layer of complexity introduced by considering many tumor characteristics 

simultaneously is the inevitable increase in missing marker information - that is – a case 

will have information on only a subset of the markers being considered.  In this context, 

often the analysis is restricted to disease cases with complete data on each of the markers 

in question, though other traditional approaches for missing data (i.e. including a missing 

indicator, using inverse probability weighting or implementing a multiple imputation 

algorithm) could also be considered.  It’s unclear as to which missing data approach is 

most appropriate, especially in the context of correlated markers.   

 

As such, a combination approach that both properly addresses missing markers as well as 

integrates correlation among them would provide the most accurate estimate of a risk 

factor’s effect on marker-specific disease.  

 

In what follows, we apply Rosner et. al’s methodology to calculate adjusted hazard ratios 

accounting for missing markers using each of the following approaches: the complete 

case,  missing indicator, inverse probability weighting and multiple imputation.  Each 

method is applied in an analysis conducted in the Nurses’ Health Study (NHS) of 

associations of traditional breast cancer risk factors with subtype-specific disease 

considering 5 different markers. We also compare and assess performance of each 

approach in extensive simulation studies with respect to bias, standard error and coverage 

probabilities.   

 

METHODS  

Study population and risk factor assessment 
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The Nurses’ Health Study began in 1976 and includes 121,701 female nurses who were 
aged 30 to 54 responded to a mail questionnaire inquiring about lifestyle and disease 

characteristics
6
. Follow-up for the NHS continues through biennial questionnaires where 

cohort participants continue to report lifestyle characteristics such as information on risk 

factors for breast cancer including reproductive factors (menopausal status, age at 

menarche, parity), hormone use (including type and duration of use), anthropometric 

variables (body weight and height), benign breast disease (BBD) and family history of 

breast cancer.  Alcohol intake at age 18 was ascertained in 1988. Current alcohol intake 

was assessed in 1980 and assessed every 4 years thereafter. 

 

Ascertainment of Breast Cancer 

On each biennial questionnaire, women were asked to report whether breast cancer had 

occurred and the date of occurrence.  For those women reporting breast cancer 

occurrence, we requested permission (including next of kin for decedents) to contact the 

treating physician and for release of relevant medical records. To ascertain estrogen 

receptor (ER), progesterone receptor (PR) and HER2 status, we reviewed pathology 

reports. Overall, 4380 cases of invasive breast cancer cases occurring from 1980 to 2010 

with pathology reports were included; 1395 breast cancer cases with missing ER and/or 

PR status were censored at the time of diagnosis. We also excluded women with type of 

menopause other than natural or bilateral oophorectomy, prevalent cancer (other than 

non-melanoma skin cancer) in 1980, or missing data for weight at age 18, age at first 

birth, parity, age at menarche, age at menopause or hormone use leaving 77,232 women 

who were eligible for the analysis. For tumors diagnosed prior to 2002, HER2 status was 

determined by immunohistochemical staining performed on paraffin sections of tumor 

tissue microarray (TMA) according to a standard protocol as it was not routine clinical 

practice to assess HER2 status during these years.  A more detailed description of TMA 

construction and ER, PR and HER2 immunohistochemical staining have been previously 

reported 
4
.  Following 2000, HER2 status was obtained from pathology and medical 

reports [as primarily determined by IHC or a subgroup also tested using fluorescent in 

situ hybridization (FISH)]. We censored women with ER-/PR+ breast cancer as a subset 

of 71 women with ER/PR also determined by TMA, only 4 (6%) were confirmed as ER-

/PR+. Pathology reports were also used to define tumor grade (as well or moderately 

differentiated vs. poorly differentiated) and size (defined as large ≥2cm vs. small <2cm).  

 

Statistical Analysis 

(a) General Competing Risks Framework 

We initially performed analyses considering only ER and PR status to demonstrate the 

use of the adjusted hazard ratio (as each of these markers is completely observed). We 

then expanded our analysis to consider 5 tumor characteristics (some with incompletely 

observed data): ER status, PR status, HER2 status, tumor grade (well or moderately 

differentiated vs. poorly differentiated) and size (large ≥2cm vs. small <2cm) and 

included the following breast cancer risk factors: reproductive factors (duration of 

premenopause, duration following natural menopause, duration following bilateral 

oophorectomy, gynecologic age at first birth = agefirst birth-agemenarche, birth index = ∑ ሺ�∗ − �௜ሻܾ௜௧௦�௜=ଵ , where ܾ௜௧ = ͳ if parity ≥ � at age t, = Ͳ else, �௜ =age at i
th
 birth, t* = 

min(age, age at menopause), anthropometric and lifestyle characteristics (both before and 

after menopause - body mass index, height, alcohol intake, and use/type of hormones), 

and disease history (family history of breast cancer, benign breast disease). For a 

nulliparous woman, her gynecologic age at first birth and birth index are set to 0. In the 

following equations, k denotes tumor marker, l denotes subtype (i.e. those defined by the 

k tumor markers), and j denotes risk factor. Using the approach outlined by Lunn and 
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McNeil, levels of each tumor marker are cross-classified and considered individually. 

The hazard for a woman with tumor subtype � relative to no breast cancer is given by the 

following Cox-proportional hazards model: 

 ℎ௟ሺ�|࢞ሻ = ℎ଴௟ሺ�ሻex�ሺ࢞࢒ࢼሻ, � = ͳ, … , �        (1) 

 

Hazard ratios can be estimated using data duplication approaches detailed by Lunn and 

McNeil by creating separate records for each tumor type. A test of whether the regression 

coefficient for the j
th
 risk factor varies among subtypes is given by ܪ଴: ଵ௝ߚ = ⋯ =  ௜௝ are different is performed using a likelihood ratio test. Using thisߚ ଵ: at least someܪ .௅௝ vsߚ

approach, some risk factors can have the same regression coefficients for different tumor 

types, but others can have different regression coefficients. We can assess heterogeneity 

by testing using likelihood ratio tests or alternatively, we can test the effect of the j
th
 risk 

factor on tumor subtype l. 

 

(b) Description of Calculation of Adjusted Hazard Ratios 

Alternatively, we can write the original competing risks model for the l
th
 subtype as 

 ℎሺ�|࢞, ሻ࢒࢝ = ℎ଴࢒ሺ�ሻex�(∑ ௝ݔ௝ߚ +௃௝=ଵ  ∑ ∑ γ௝௞௄௞=ଵ ௝௃௝=ଵݔ௞ݓ )     (2)  

 

where xj is the j
th
 risk factor and wk=score of the k

th
 tumor marker for the l

th
 subtype and ex�(ߚ௝ + ∑ γ௝௞௄௞=ଵ ௞) is the hazard ratio for a 1 unit increase in the jݓ

th
 risk factor for 

tumor type=wl. Using ߛ௝௞ as a measure of heterogeneity of the effect of the j
th
 risk factor 

by the k
th
 tumor marker, we can calculate the adjusted hazard ratio as  

(௞ݓ|௝ݔ)ௗ௝�ܴܪ  = ݌ݔ݁ ቆߚ௝ + ௞ݓ௝௞ߛ + ∑  [∑ ௞భ��(�௞భݓ௝௞భߛ = ௞భ)௄௞భ=ଵ௞భ≠௞ݓ ]�−࢑ ቇ   (3) 

 

where the adjusted hazard ratios can be interpreted as the effect of the j
th
 risk factor at 

level wk of the the k
th
 tumor marker while controlling for the other markers.  

 

(c) Methods for Handling Missing Subtype Information  

For our analysis, we considered only those subtypes with at least 5 cases. In what 

follows, we provide a brief description of each of the methods to address missing marker 

information considered in this paper.  

 

1. Complete Case Method 

For the complete case analysis, we considered only 1551 of the 4380 cases of breast 

cancer with information available on all 5 tumor markers.  Women with breast cancer and 

missing subtype information are censored at diagnosis.  

 

2. Missing Indicator Method 

For the missing indicator method, missing is considered an additional level of each tumor 

marker with missing information. Then in the linear transformation used to calculate the 

adjusted hazard ratio, additional binary variables are added to indicate missingness for a 

specific marker. For example, a woman’s HER-2 status can take one of the following 

values: positive, negative or missing, which would be coded using 2 indicator variables in 

the calculation of the adjusted hazard ratio. Under missing at random, for a specific 

marker, the adjusted hazard ratio with missing indicators is interpreted as a weighted 

average over the observed markers.  
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Inverse Probability Weighting (IPW) 

The complete case dataset is reweighted to account for missing markers. To create the 

weights, we fit the following logistic model and obtain the predicted probabilities of a 

tumor being a complete case (C; i.e having all 5 tumor markers present)  

�Pr ሺ]���݋�  = ͳሻ] = �଴ + �ଵሺ�ܴ+ሻ + �ଶሺ�ܴ+ሻ + �ଷሺܿܽ�݁݊݀ܽ� ܽ݁ݕ�ሻ + �ସ(ܽ�݁ௗ௜��௡௢௦௜௦)  (4) 

 

The complete case analysis is then rerun weighted by the weight calculated as ݓ = ଵ௣, 

where p is calculated as the probability Prሺ� = ͳሻ from the above model.  

 

Multiple Imputation 

We implemented a chained imputation approach where we first imputed missing HER-2 

status, then imputed missing tumor grade and finally imputed missing tumor size. Briefly, 

to impute HER-2 status, we calculated the predicted probabilities of HER-2positive for 

women with missing HER-2 status from the results of the following logistic regression 

model.  
+ʹܴ�ܪPrሺ]���݋�  = ͳሻ] = �଴ + �ଵሺ�ܴ+ሻ + �ଶሺ�ܴ+ሻ + �ଷሺܿܽ�݁݊݀ܽ� ܽ݁ݕ�ሻ + �ସ(ܽ�݁ௗ௜��௡௢௦௜௦) (5) 

 

Using these probabilities, we generated a binary HER-2 status using a Bernoulli trial. 

We then performed a similar procedure to impute missing tumor grade using the 

following logistic model and predicted probabilities for those with missing tumor grade 

௢௢௥�݁݀ܽ�ܩPrሺ]���݋�  = ͳሻ] = ଴ߛ + ଵሺ�ܴ+ሻߛ + ሻ+ʹܴ�ܪଷሺߛ+ଶሺ�ܴ+ሻߛ +  ହ(ܽ�݁ௗ௜��௡௢௦௜௦)         (6)ߛ+ ሻ�ܽ݁ݕ �ܽ݀݊݁�ସሺܿܽߛ

 

Then, to estimate missing tumor size, we fit a final similar model to impute missing 

tumor size. We used the predicted probabilities for those with missing tumor size using 

estimates from the following logistic regression model: 

௟�௥�௘݁ݖ�ܵ)Pr]���݋�  = ͳ)] ଴ߜ= + ଵሺ�ܴ+ሻߜ + ሻ+ʹܴ�ܪଷሺߜ+ଶሺ�ܴ+ሻߜ + (+௘௟௟�݁݀ܽ�ܩ)ଷߜ + ሻ�ܽ݁ݕ �ܽ݀݊݁�ସሺܿܽߜ +  ହ(ܽ�݁ௗ௜��௡௢௦௜௦)ߜ

     (7) 

 

We then used the complete dataset generated from the above imputation procedure to 

calculate the adjusted hazard ratios. We performed the imputation and analysis for 10 

different datasets and combined results using Rubin’s rules where the reported log(HR) is 

the average of the log(HR) calculated from the 10 imputed datasets. The variance of the 

log(HR) is calculated as the sum of the within and between imputation variance.  

 

Simulation Study 

We attempted to simulate conditions similar to the actual conditions observed in the NHS 

where parameters for each distribution are estimated using data from the actual study. A 

full list of the specified parameters used to generate the simulated data is provided in an 

Appendix available upon request from authors. To start, we generated a cohort of 10,000 

hypothetical postmenopausal women. For each woman, we generated her age using a 

normal distribution and randomly generated menopausal type (xp) as bilateral 

oophorectomy or natural menopause) using a Bernoulli trial. Conditional on menopausal 

type, we generated parous status (Z) and if parous (Z=1), we generated her number of 

births using a Poisson distribution. For each menopausal type (and parous status), we 
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generated her age at menarche (xm1), age at menopause (xm2) and age at first birth (for 

parous women) using a multivariate normal distribution. These were used to calculate her 

gynecologic age at first birth (xG) and birth index (xBI). For xBI, a woman’s age at each 
birth was generated by drawing a sample equal to her number of children from a random 

uniform distribution on her interval [agemenarche, agemenopause]. For nulliparous women (e.g. 

Z=0), both xBI and xG are set to 0. Lastly, we generated a woman’s BMI (xBMI) 

conditional on her menopausal type using a normal distribution.  We denote the set of 

these 6 covariates (xm1, xm2, xp, xG, xBI, xBMI) as the vector ࢞. This simulation procedure was 

performed to generate 10,000 simulated datasets. 

 

Similar to the actual data analysis presented, we simulated 5 binary tumor characteristics 

and generated a woman’s survival time from a proportional hazards model using the 

method described in Bender et al,
7
  

 ℎሺ�|࢞, ,ଵݓ ,ଶݓ ,ଷݓ ,ସݓ ହሻݓ = ℎ଴�భ,�మ,�య,�ర,�ఱሺ�ሻex� ቀ∑ ௝ݔ଴௝ߛ +଺௝=ଵ  ∑ ∑ γ௝௞ହ௞=ଵ ௝଺௝=ଵݔ௞ݓ ቁ   (8)  

 

We specified parameters for the “common parameter” vector ࢽ�; these parameters reflect 

the effect of a risk factor on the specific subtype when each marker is set to its referent 

value (i.e. a tumor of the subtype:  ER negative, PR negative, HER2 negative, small and 

well-differentiated). We also set values for each γ௝௞, and the full matrix of parameters is 

provided in Appendix Table 1. We then generated missing disease characteristics for 3 

markers conditional on 2 fully observed markers (akin to having restricting to women 

with available ER and PR information but potentially missing HER2, size or grade 

information) such that 20% (or 50%) of breast cancer cases were missing information on 

at least 1 marker. We generated which combination of the 3 markers were missing using 

a multinomial distribution using patterns of missing (e.g. missing patterns we observed 

for HER2, grade and size) observed in the NHS (the full specification of the multinomial 

distribution used is provided in the in Appendix Table 2). We then applied each of the 4 

methods to address missing data: the complete case, missing indicator, IPW and multiple 

imputation and calculated adjusted hazard ratios and their corresponding standard errors. 

This procedure was repeated for 10,000 simulated datasets for each level of missingness 

(20% and 50%). We calculated the average bias, the %change in standard error and the 

average coverage probability for each of the missing data methods relative to the estimate 

obtained using the completely observed data for a given simulation.   

 

RESULTS 

Real Data from the NHS 

We fit separate Cox proportional hazards models considering initially two markers 

defining 3 subtypes (with complete case information) among 4380 breast cancer cases 

resulting in the following cross-classified subtypes: ER+/PR-, ER+/PR- and ER-/PR- 

(data available upon request from the authors). Notably, premenopausal BMI (BMI at age 

50) was inversely associated with each of the three subtypes whereas postmenopausal 

BMI (BMI at age 70) was positively associated with ER+/PR+ cancer but potentially 

inversely associated with both ER+/PR- and ER-/PR- cancers cancer (Premenopausal 

BMI: Phet=0.08; Postmenopausal BMI: Phet<0.0001). In addition, a woman’s birth index 
appeared to be inversely associated with both ER+/PR+ and ER+/PR- cancers but not 

ER-/PR- cancer.  We then considered the adjusted HR model introduced by Rosner et. al 
1
 for these 2 tumor markers. In comparison to the unadjusted HR model, postmenopausal 

BMI was strongly positively associated with PR+ cancer but not PR- cancer after 

controlling for a woman’s ER status (Phet<0.001). We did not observe any heterogeneity 
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for postmenopausal BMI and risk of ER+ vs. ER- cancer (Phet=0.60; data available upon 

request from the authors). Additionally, a woman’s birth index appeared differentially 

associated with ER+ vs. ER- cancer suggesting pregnancy to only be inversely associated 

with ER+ cancer (Phet=0.03) but uniformly inversely associated with PR+ and PR- 

cancers (Phet=0.74).  

 

We then expanded our analysis to consider HER-2 status, tumor size and tumor grade in 

addition to ER and PR status. Table 1 (A) depicts the frequency distribution for each of 

the 5 cross-classified tumor markers considering only cases with complete information on 

all possible subtypes (1551 total cases).  An ER+/PR+/HER2-/Well/Small tumor was the 

most common subtype with 663 of the 1551 cases. The next most common subtype was 

ER+/PR+/HER2-/Well/Large tumors with 231 cases. However, if we consider missing 

tumor characteristics, 4380 cases of breast cancer are considered. Table 1 (B) depicts 

cross-classified tumors considering missing characteristics. Notably, while  

ER+/PR+/HER2-/Well/Small were still the most common subtype, a nearly equally 

common subtype was ER+/PR+/HER2-missing/Well/Small tumors with 624 cases. The 

fully cross-classified distribution considering missing case type information and marginal 

distribution of each marker are available upon request from the authors.   

   

We then fit Cox-proportional hazards models and calculated multivariable-adjusted HR 

for each of the 4 methods to address missing tumor information. Results for birth index 

are depicted in Table 2. We observed generally similar results for each of the 4 methods 

where we observe heterogeneous effects of a woman’s birth index for ER+ vs. ER- 

cancer adjusted for PR, HER-2, size and grade but no heterogeneity for any of the other 

adjusted tumor characteristics. For birth index, the standard error for each subtype-

specific HR appeared largest for the complete case model and was generally smallest for 

the missing indicator and multiple imputation methods.  

 

When evaluating the associations between postmenopausal BMI and the subtype-specific 

HR and corresponding test for heterogeneity for each of the missing data methods, the 

HR were generally similar; however, we did note a few differences with respect to the 

tests for heterogeneity (Table 3). For example, higher postmenopausal BMI appeared 

significantly heterogeneously associated with poorly differentiated tumors if missing-

marker information is addressed using the missing indicator or multiple imputation 

methods. Also noteworthy was the HR associated with postmenopausal BMI for a large 

tumor was much smaller using multiple imputation when compared with the other 3 

methods.  

 

A comparison for each of the four methods for all risk factors considered is available 

upon request from the authors. 

 

Simulation study 

Table 4 depicts the results of the simulation study for a covariate used to simulate the 

effect of birth index. For birth index, we assume no effect (γ0 =0) of birth index on the 

specific subtype when each marker is set to its referent value. We also assume a 

protective effect only for ER positive subtypes (γER=-0.25) and well-differentiated 

(γGrade=-0.12) tumors and no effect for PR (γPR=0), HER2 (γHER2=0.0)  and tumor size 

(γSize=0). For each of the methods for addressing missing data we observed negligible 

biases for the complete case, IPW and missing indicator methods. The multiple 

imputation analysis produced slightly more bias for both 20% and 50% missing tumor 

marker information; however, the extent of the increase was not substantial. In terms of 
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efficiency, the complete case and IPW had the largest increases in standard errors with a 

uniform average increase across tumor markers of 12% and 9%, respectively, under 20% 

missing and 42% and 33%, respectively, under 50% missing. However, for the multiple 

imputation and missing indicator methods, we only observed an increase in standard error 

roughly proportional to the degree of missing. Thus, we did not observe substantial 

increases in the standard errors for markers without any missing information (e.g. ER, 

PR) but did observe changes in standard error for HER2, grade and size where increases 

in standard errors were larger for markers with the most missing (HER2) and smaller for 

markers with a lesser degree of missing information (size). The coverage probabilities for 

the associated 95% confidence intervals were also close to the nominal level for the 

complete case and missing indicator methods. Coverage probabilities for analyses 

adjusting for missing using IPW were generally lower; for analyses adjusting for missing 

using multiple imputation, we only observed a decrease in coverage probability for the 

birth index parameter for tumor grade, which, notably, is the only non-zero coefficient 

with missing information.  

 

Table 5 depicts the results of the simulation study for a covariate used to simulate the 

effect of postmenopausal BMI on subtype-specific breast cancer. We assume a common 

protective parameter across all subtypes as -0.14 (γ0), a protective effect for ER positive 

(γER=-0.20), a harmful effect for PR positive (γPR=0.65), HER2 positive (γHER2=0.14), and 

large (γSize=0.50) tumors. We assume no effect of postmenopausal BMI on tumor grade 

(γGrade=0). Similar to the coefficients for birth index, for each of the methods for 

addressing missing data we observed negligible biases for the complete case, IPW and 

missing indicator methods. The multiple imputation analysis produced more bias for both 

20% and 50% missing tumor marker information with the extent of the bias increasing 

among markers with the most missing information. In terms of efficiency, the patterns of 

change in standard error were similar to patterns observed in Table 4 where the complete 

case and IPW had similarly large increases in standard errors uniformly across markers 

(regardless of the amount of missing tumor information for the specific marker) and 

where the missing indicator and multiple imputation methods produced increases in 

standard error specific to the degree of missing in the marker. Thus, we did not observe 

substantial increases in the standard errors for markers without any missing information 

(e.g. ER, PR) but did observe changes in standard error for HER2, grade and size. The 

coverage probabilities for the associated 95% confidence intervals were also close to the 

nominal level for the complete case and missing indicator methods. Coverage 

probabilities for analyses adjusting for missing using IPW were generally lower; for 

analyses adjusting for missing using multiple imputation, we observed a marked decrease 

in coverage probability for the BMI parameter for HER2 and size at 58% and 76%, 

respectively. 

 

DISCUSSION 

In this paper, we evaluated several approaches for addressing missing tumor marker data 

in the context of correlated markers to calculate subtype-specific “adjusted” hazard ratios.  
The missing data approaches we considered were the complete case, inverse probability 

weighting, missing indicator and multiple imputation methods. We applied each of the 

approaches to a study of breast cancer risk factors in the Nurses’ Health Study 

considering 5 correlated tumor characteristics (ER, PR, HER2, grade and size). Overall, 

the results of these analyses suggest similar results for the complete case and inverse 

probability weighting approaches and similar results for the missing indicator and 

multiple imputation approaches. We also observed generally smaller standard errors for 

the missing indicator and multiple imputation approaches as well.  Ultimately, our 

JSM2015 - ENAR

2942



subsequent extensive simulation studies suggested that the missing indicator method for 

addressing missing tumor marker may provide the least bias and smallest increase in 

variance while conserving the nominal 95% confidence limits.  

 

Other investigators have proposed alternative methods to address missing information 

tumor marker data. One approach suggested by Chatterjee et al
8
 implements an 

estimating equation approach that requires parametric specification of the 

interdependence of the effects of specific markers for the baseline hazard. With respect to 

our study and for breast cancer in general, this is challenging as with the exception of a 

few well-studied markers it’s rarely known apriori. In our study specifically, we 

observed potential correlations among all 5 markers considered; however, we do not need 

to assume a specific functional relationship between them.   

 

The analyses presented also represent an update of the initial paper introducing the 

concept of an adjusted hazard ratio but considering more than 1000 additional breast 

cancer cases and considering 2 additional tumor markers: size and grade. Our analysis 

confirms our initial findings for the heterogeneous effect of pregnancy for ER+ tumors 

after accounting for PR status where there is no such heterogeneity. Similarly, we also 

observed a significant adverse effect of postmenopausal BMI on PR+ tumors and a 

potentially adverse effect on larger tumors (although this could potentially reflect a 

detection bias, as smaller tumors may be more difficult to detect in a larger woman).  

 

Our simulation studies suggest little bias for each of the methods used to address missing 

tumor characteristic information with the exception of the multiple imputation approach. 

Not surprisingly, in further sensitivity analyses, this bias was assuaged with the addition 

of improved predictors of characteristics with missing information (data not shown). 

Given these predictors are often unknown, the missing indicator approach may be the 

safest with respect to minimal bias, the smallest inflation in standard error and acceptable 

coverage probability. 

 

In summary, though the analyses presented here relate specifically to breast cancer, 

general concepts of etiologic heterogeneity and correlated disease markers are 

documented in other cancers
9,10

 and are not limited to neoplastic disease
11-14

. Therefore, 

with increasing interest in more individualized models of disease and the likely 

concomitant increase in missing information, the methods developed here may add 

important insights into more powerful ways to assess such etiologic heterogeneity.   
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Table 1. Frequency Distribution of ER, PR, HER2 status, Nurses’ Health Study, 1980 – 2010  

A Complete Cases (1551 cases) 

ER PR HER2 Grade Size Count (%) 

+ + - Well small 663 (43) 

+ + - Well large 231 (15) 

+ + + Well small 80 (5) 

+ - - Well small 78 (5) 

+ + - Poor small 68 (4) 

- - - Poor large 63 (4) 

- - - Poor small 48 (3) 

+ + - Poor large 46 (3) 

- - + Poor large 34 (2) 

- - - Well small 33 (2) 

+ - - Well large 31 (2) 

+ - - Poor small 24 (2) 

+ + + Well large 23 (1) 

+ - - Poor large 17 (1) 

+ + + Poor large 16 (1) 

- - + Well small 15 (1) 

+ + + Poor small 14 (1) 

- - - Well large 13 (1) 

+ - + Well small 13 (1) 

- - + Well large 12 (1) 

- - + Poor small 8 (1) 

+ - + Well large 8 (1) 

+ - + Poor small 7 (<1) 

+ - + Poor large 6 (<1) 

B 

Considering Missing as a Category (top 24 

classifications only; 4380 cases) 

ER PR HER2 Grade Size Count (%) 

+ + - Well small 663 (15) 

+ + Missing Well small 624 (14) 

+ + Missing Missing small 404 (9) 

+ + - Well large 231 (5) 

+ + Missing Missing Missing 166 (4) 

+ + Missing Missing large 146 (3) 

+ + Missing Well large 129 (3) 

+ - Missing Well small 115 (3) 

+ - Missing Missing small 102 (2) 

+ + Missing Poor small 101 (2) 

- - Missing Missing small 93 (2) 
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- - Missing Poor small 85 (2) 

- - Missing Poor large 83 (2) 

+ + + Well small 80 (2) 

+ - - Well small 78 (2) 

+ + - Missing small 75 (2) 

+ + Missing Poor large 69 (2) 

+ + - Poor small 68 (2) 

- - - Poor Large 63 (1) 

+ + - Missing Missing 56 (1) 

- - - Poor small 48 (1) 

- - Missing Missing Missing 46 (1) 

+ + - Poor large 46 (1) 

- - Missing Well small 45 (1) 
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Table 2: Multivariable-Adjusted Subtype Specific adjusted HR for Birth Index for each candidate 

method for adjusting for missing data 

HR displayed denote a birth index of 102 (corresponding to 4 births at ages 20, 23, 26, 29 and age 

at menopause = 50)  vs. nulliparous 

Method of Adjustment HR (95% CI) HR (95% CI) Phet 

 

ER Status 

  + -  

Complete 0.70 (0.58, 0.85)   1.36 (0.77, 2.40) 0.05 

Missing Indicator 0.70 (0.62, 0.78) 1.13 (0.80, 1.60) 0.01 

IPW 0.69 (0.58, 0.84) 1.38 (0.81, 2.36) 0.03 

Multiple Imputation 0.69 (0.62, 0.77) 1.10 (0.80, 1.50) 0.01 

    

 PR Status  

 + -  

Complete 0.81 (0.66, 1.00) 0.70 (0.47, 1.05) 0.58 

Missing Indicator 0.81 (0.69, 0.94) 0.75 (0.60, 0.93) 0.96 

IPW 0.81 (0.65, 1.00) 0.71 (0.49, 1.01) 0.57 

Multiple Imputation 0.75 (0.66, 0.85) 0.74 (0.60, 0.92) 0.89 

    

 HER2 Status  

 + -  

Complete 0.91 (0.61, 1.35) 0.75 (0.63, 0.89) 0.39 

Missing Indicator 0.78 (0.56, 1.09) 0.74 (0.62, 0.87) 0.76 

IPW 0.89 (0.60, 1.32) 0.75 (0.63, 0.89) 0.43 

Multiple Imputation 0.81 (0.66, 1.00) 0.73 (0.66, 0.81) 0.28 

    

 Size  

 Small Large  

Complete 0.82 (0.68, 1.00) 0.66 (0.45, 0.96) 0.32 

Missing Indicator 0.79 (0.69, 0.91) 0.64 (0.50, 0.83) 0.17 

IPW 0.83 (0.69, 1.00) 0.64 (0.44, 0.92) 0.24 

Multiple Imputation 0.78 (0.70, 0.88) 0.65 (0.53, 0.79) 0.13 

    

 Grade  

 Well Poor  

Complete 0.83 (0.69, 1.01) 0.65 (0.48, 0.87) 0.16 

Missing Indicator 0.75 (0.67, 0.83) 0.66 (0.54, 0.80) 0.10 

IPW 0.83 (0.69, 1.01) 0.65 (0.48, 0.87) 0.17 

Multiple Imputation 0.79 (0.70, 0.88) 0.65 (0.54, 0.78) 0.05 

Additionally adjusted for all risk factors in Supplemental Table 1. -  reproductive factors (duration 

of premenopause, duration following natural menopause, duration following bilateral 

oophorectomy, gynecologic age at first birth – agefirst birth-agemenarche, birth index - ∑ ሺ�∗ − �௜ሻܾ௜௧௦�௜=ଵ , 

where ܾ௜௧ = ͳ if parity ≥ � at age t, = Ͳ else, �௜ =age at i
th

 birth), anthropometric and lifestyle 

characteristics (body mass index, height, alcohol intake, and use of hormones), and disease history 

(family history of breast cancer, benign breast disease). 
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Table 3: Multivariable-Adjusted Subtype Specific adjusted HR for BMI at Age 70 for each 

candidate method for adjusting for missing data 

HR is for difference in BMI from age 50 to 70 (Postmenopausal BMI) of 8 units (BMI 30 vs. BMI 

22) 

Method of Adjustment HR (95% CI) HR (95% CI) Phet 

 

ER Status 

  + -  

Complete 1.09 (0.89, 1.33) 1.11 (0.60, 2.07) 0.95 

Missing Indicator 1.21 (1.09, 1.36) 0.85 (0.59, 1.24) 0.03 

IPW 1.09 (0.90, 1.33) 1.13 (0.64, 2.01) 0.92 

Multiple Imputation 1.20 (1.08, 1.34) 0.91 (0.64, 1.28) 0.15 

    

 PR Status  

 + -  

Complete 1.34 (1.07, 1.67) 0.68 (0.44, 1.05) 0.01 

Missing Indicator 1.43 (1.16, 1.76) 0.79 (0.62, 0.99) <0.0001 

IPW 1.34 (1.07, 1.67) 0.70 (0.47, 1.03) 0.01 

Multiple Imputation 1.37 (1.21, 1.55) 0.77 (0.61, 0.97) <0.0001 

    

 HER2 Status  

 + -  

Complete 1.26 (0.84, 1.90) 1.06 (0.87, 1.27) 0.44 

Missing Indicator 1.22 (0.85, 1.76) 0.95 (0.79, 1.14) 0.23 

IPW 1.25 (0.83, 1.88) 1.07 (0.89, 1.28) 0.49 

Multiple Imputation 1.27 (1.03, 1.57) 1.12 (1.01, 1.24) 0.21 

    

 Size  

 Small Large  

Complete 0.91 (0.73, 1.12) 1.83 (1.30, 2.58) 0.001 

Missing Indicator 1.05 (0.92, 1.21) 1.87 (1.48, 2.37) <0.0001 

IPW 0.92 (0.75, 1.13) 1.81 (1.29, 2.55) 0.002 

Multiple Imputation 1.04 (0.93, 1.17) 1.49 (1.23, 1.79) 0.002 

    

 Grade  

 Well Poor  

Complete 1.02 (0.83, 1.26) 1.29 (0.95, 1.75) 0.21 

Missing Indicator 1.16 (1.05, 1.29) 1.37 (1.14, 1.65) 0.02 

IPW 1.04 (0.85, 1.27) 1.27 (0.94, 1.73) 0.28 

Multiple Imputation 1.05 (0.93, 1.17) 1.33 (1.11, 1.58) 0.02 

Additionally adjusted for all risk factors in Supplemental Table 1. -  reproductive factors (duration 

of premenopause, duration following natural menopause, duration following bilateral 

oophorectomy, gynecologic age at first birth – agefirst birth-agemenarche, birth index - ∑ ሺ�∗ − �௜ሻܾ௜௧௦�௜=ଵ , 

where ܾ௜௧ = ͳ if parity ≥ � at age t, = Ͳ else, �௜ =age at i
th

 birth), anthropometric and lifestyle 

characteristics (body mass index, height, alcohol intake, and use of hormones), and disease history 

(family history of breast cancer, benign breast disease). 

JSM2015 - ENAR

2947



Table 4: Results of Simulation Study for Birth Index 

Method  No missing disease characteristics 

  ER PR HER-2 Grade Size ߛ௧௥௨௘∗   -0.25 0.00 0.00 -0.12 0.00 

       

Full Cohort Bias (x 10
2
) 0.29 -0.09 0.04 -0.05 -0.09 

 95% Coverage Probability 94.4 95.9 94.5 94.8 94.3 

  With Missing Disease Characteristics 

 
  No Missing 20% Missing Information 

  ER PR HER-2 Grade Size 

Complete 

case 

  

  

Bias (x 10
2
) 0.18 0.39 0.10 -0.02 0.08 

Standard Error (% change) 12.5 12.6 11.7 11.7 11.6 

95% Coverage Probability 94.4 95.2 94.1 95.4 94.6 

IPW Bias (x 10
2
) 0.27 -0.14 0.07 -0.09 -0.13 

  Standard Error (% change) 8.2 9.0 8.1 8.4 9.2 

  95% Coverage Probability 93.0 93.9 92.2 94.0 93.7 

Missing 

Indicator 

  

  

Bias (x 10
2
) 0.30 -0.33 0.15 -0.03 -0.05 

Standard Error (% change) -0.7 0.5 9.0 3.3 1.4 

95% Coverage Probability 94.5 95.9 95.2 95.1 94.1 

Multiple 

Imputation 

   

  

Bias (x 10
2
) 0.47 -0.01 -0.01 -0.49 -0.09 

Standard Error (% change) 0.80 0.20 9.5 5.0 1.5 

95% Coverage Probability 94.3 95.9 97.8 94.3 94.9 

  No Missing 50% Missing Information 

   ER PR HER-2 Grade Size 

Complete 

case 

  

  

Bias (x 10
2
) 0.75 0.96 0.32 -0.22 0.55 

Standard Error (% change) 43.9 44.3 41.3 41.5 41.0 

95% Coverage Probability 94.3 95.3 94.4 95.0 95.3 

IPW 

  

  

Bias (x 10
2
) 1.15 -0.85 0.15 -0.45 -0.12 

Standard Error (% change) 33.4 35.3 32.3 33.4 34.7 

95% Coverage Probability 90.0 93.2 90.9 92.4 93.8 

Missing 

Indicator 

  

  

Bias (x 10
2
) 0.77 -0.47 0.32 -0.49 0.08 

Standard Error (% change) -1.3 0.3 31.2 10.3 3.8 

95% Coverage Probability 94.5 95.7 94.1 94.1 94.8 

Multiple 

Imputation 

  

  

Bias (x 10
2
) 0.86 -0.02 -0.01 -1.46 0.03 

Standard Error (% change) 2.0 0.6 21.9 12.1 4.1 

95% Coverage Probability 94.8 95.9 99.8 86.4 95.9 

*γtrue
 includes a “common” parameter among subtypes of γ0 =-0.14 – that is the effect when all subtypes are 

set to their referent values (i.e. a tumor of the subtype: ER negative, PR negative, HER2 negative, small and 

well-differentiated) 
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Table 5: Results of Simulation Study for Postmenopausal BMI 

Method  No missing disease characteristics 

  ER PR HER-2 Grade Size ߛ௧௥௨௘∗   -0.20 0.65 0.14 0.00 0.50 

       

Full Cohort Bias (x 10
2
) 0.01 0.05 0.08 -0.02 0.02 

 95% Coverage Probability 94.9 95.0 94.5 95.6 95.3 

  With Missing Disease Characteristics 

 
  No Missing 20% Missing Information 

  ER PR HER-2 Grade Size 

Complete 

case 

  

  

Bias (x 10
2
) -0.06 0.86 0.20 0.01 0.48 

Standard Error (% change) 12.2 12.3 11.3 11.4 11.3 

95% Coverage Probability 94.2 93.8 94.9 95.5 94.3 

IPW Bias (x 10
2
) 0.05 0.05 0.09 -0.10 0.03 

  Standard Error (% change) 8.4 9.4 8.1 8.6 9.3 

  95% Coverage Probability 93.0 93.9 92.2 94.0 93.7 

Missing 

Indicator 

  

  

Bias (x 10
2
) 0.00 0.11 0.05 -0.15 -0.08 

Standard Error (% change) -0.9 0.5 8.9 3.3 1.4 

95% Coverage Probability 95.3 95.5 95.2 94.8 94.6 

Multiple 

Imputation 

   

  

Bias (x 10
2
) 0.14 0.21 -2.38 -1.41 -1.10 

Standard Error (% change) 0.8 0.2 9.3 4.8 1.4 

95% Coverage Probability 95.2 95.0 91.6 94.7 93.1 

  No Missing 50% Missing Information 

   ER PR HER-2 Grade Size 

Complete 

case 

  

  

Bias (x 10
2
) 0.11 2.42 0.42 0.13 1.4 

Standard Error (% change) 42.7 43.1 40.0 40.3 39.9 

95% Coverage Probability 94.4 92.2 93.4 95.1 91.7 

IPW 

  

  

Bias (x 10
2
) 0.19 -0.07 0.04 -0.02 -0.05 

Standard Error (% change) 34.0 36.3 32.6 33.7 35.0 

95% Coverage Probability 91.0 91.6 89.9 92.7 92.6 

Missing 

Indicator 

  

  

Bias (x 10
2
) 0.21 0.09 -0.19 -0.28 -0.43 

Standard Error (% change) -1.6 0.2 31.2 10.4 3.8 

95% Coverage Probability 95.3 95.5 95.2 94.8 94.6 

Multiple 

Imputation 

  

  

Bias (x 10
2
) 0.20 0.22 -6.12 -2.94 -2.95 

Standard Error (% change) 1.8 0.4 21.5 11.5 3.9 

95% Coverage Probability 95.6 95.5 57.8 88.8 76.4 

*γtrue
 includes a “common” parameter among subtypes of γ0 =-0.14 – that is the effect when all subtypes are 

set to their referent values (i.e. a tumor of the subtype: ER negative, PR negative, HER2 negative, small and 

well-differentiated) 
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