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Abstract
We developed a simulation model to investigate the impact of a proposed cluster stepped-wedge
study design on the design effect (DEFF ) for the Ebola candidate vaccine evaluation study. The
DEFF , i.e., variance inflation factor, inflates the sample size necessary to detect a difference due
to randomizing the vaccine to clusters of individuals rather than individuals. We explored several
methods using four risk incidence scenarios for estimating the intra-class correlation (ICC) that is
used to estimate the DEFF . Our four scenarios assumed an incidence per month of: 1) 1.0%, 2)
2.0 and 1.0%, 3) 2.0, 1.0, and 0.5%, 4) 2.0, 1.0, 0.5, and 0.25%. In addition, we considered sample
sizes of 3,600 and 4,500 that are allocated to the step-wedges and clusters within a step-wedge. Our
results illustrate that the estimated design effect ranges from 1.02 to 1.14. Hence, we expect, given
our currently available information, the cluster step-wedge design to have a minimal impact on the
proposed study sample size.
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1. Introduction

Randomized controlled trials are usually considered the ”gold” standard for determining
the efficacy of a vaccine. Randomization often occurs at the individual level but due to
practicality it may not be feasible to randomized at the individual level and a cluster, i.e.,
group, randomized trial may be an attractive and viable alternative (Donner et al., Hayes et
al.). When randomization occurs at the cluster level there is generally a loss of statistical
efficiency, which is reflected as a loss of degrees of freedom and an inflated standard error,
for the estimated vaccine efficacy (V E) (Eldridge et al.). Our purpose is to estimate the
design effect with limited available information for a proposed study design to evaluate a
candidate Ebola vaccine.

2. Design Effect

The loss of statistical efficiency is usually referred to as the design effect (DEFF ) or alterna-
tively the variance inflation factor (V IF ). Failure to account for the lack of independence
of individuals within a cluster in the design stage may result in an underpowered study
(Donner et. al). The DEFF may impact the necessary sample size to detect a difference in
clustered randomized trials (Hayes et al.). A feature of cluster randomized trials is that the
outcomes of individuals within a cluster are correlated rather than independent. There have
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been several DEFF estimators proposed (Eldridge et al.) and here we use the DEFF given
by:

DEFF = 1 + ρ(m− 1), (1)

where ρ is the intraclass correlation coefficient (ICC) and m is the mean cluster size.
To account for dependence during the design stage an estimate of the ICC and mean
cluster size are required. The mean cluster size may be estimated using the best available
information, which is usually easily obtained. Whereas, an estimate of the ICC may be
more difficult to obtain.

3. Intraclass Correlation Coefficient (ICC)

Here, the ICC can be thought of as the amount of dependency among observations taken
on individuals within a cluster, i.e., how related are observations within a cluster for the
outcome (Kerry and Bland). The ICC is defined as:

ICC = ρ =
σ2b

σ2b + σ2w
, (2)

where σ2b and σ2w are the between and within cluster variances, respectively. The ICC is
well defined for a linear model but for a generalized linear model, e.g., logistic regression,
the ICC is more ambiguous. We consider several methods for estimating the ICC on the
probability scale using logistic and log-binomial random-effects models.

Our first potential ICC estimator is based on the logistic distribution, where we assume
the underlying distribution for the latent variable is logistic. The ICC is estimated using:

ICC = ρ =
σ2b

σ2b +
π2

3

, (3)

where π2/3 is the variance of the logistic distribution and σ2b is estimated using the clusters
as the random effect in a logistic regression model. Alternatively, it has been suggested that
it may be more desirable to estimate the ICC on the scale of interest, probability, rather
than on the log-odds scale as for the logistic model, especially when we don’t want to
assume our outcome is a latent variable with an underlying logistic distribution (Eldridge et
al.). Here, because we will have an outcome of Ebola disease (yes / no) with no underlying
continuous distribution we will not consider estimator (3) further. Instead, we use the σ2b
obtained from the random-effects logistic model and calculate the ICC on the probability
scale using the following approximate formulas for estimating σ2b and σ2w when using a
Generalized Linear Mixed Model (GLMM) and logit link:

σ2b ≈ σ2a[p(1− p)]2, (4)

where σ2a is the estimated variance between the clusters on the logit scale and p is the esti-
mated average Ebola probability estimated using the sample data. Our next two estimates
for the ICC are obtained by estimating the σ2a on the log scale rather than the logit scale.
Here we use a random-effects log-binomial model to estimate σ2a and obtain an approximate
estimate of the between cluster variance, σ2b , using two estimators:

σ2b ≈ σ2ap
2 (5)

σ2b ≈ [eσ
2
a − 1]p2 (6)

JSM2015 - Biopharmaceutical Section

2928



Equation (6) provides an alternative approach to equation (5) based on the log link that uses
the properties of the lognormal distribution.

4. Ebola Vaccine Evaluation Design Effect Simulation

Our purpose is to design and conduct a simulation to estimate the ICC and DEFF using
our best available limited information. Our simulation steps are:

1. Outline the step-wedge study design

2. Estimate the expected number of clusters (vaccination groups), overall and within a
step-wedge

3. Estimate the expected number and range of participants per cluster

4. Calculate the expected incidence for the unvaccinated group

5. Estimate the expected incidence for the vaccinated group based on the assumed V E

6. Generate simulation data based on steps 1-5

7. Fit generalized linear mixed models (GLMM) to the simulated data to estimate the
ICC using equation (4), (5), and (6)

8. Calculate the DEFF using the estimated ICC and summarize

Our considered study design is an 18 week step-wedge (Figure 1). Enrolled participants
will be vaccinated over an 18 week period and randomized to a cluster within a vaccination
week. The usable portion of the step-wedge for the efficacy estimation is within the ”black”
box. This design results in 14 usable weeks for the vaccinated and unvaccinated partici-
pants. Participants will be followed for 14 weeks for the usable portion of the efficacy
analysis in both the unvaccinated and vaccinated groups. Hence, the total number of usable
weeks per vaccination status group is 105 weeks. All participants in the unvaccinated and
vaccinated groups were followed and used in the analysis. Technically those participants
in the unvaccinated group who become infected with Ebola would not be followed into the
vaccinated group. However, because only a small proportion of unvaccinated participants
will become infected with Ebola and would not transition into the vaccinated study arm we
keep the number of participants for the vaccinated and unvaccinated groups constant for
the purpose of this simulation.
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Figure 1: The 18 week step-wedge study design layout considered for an Ebola vaccine
evaluation.

The generation of simulation data to estimate the DEFF required several steps. We
started our simulation by using currently available information to define the potential clus-
ter types and expected number of clusters. Our currently available information for the type
of cluster, number of each type of cluster, the staff per cluster type, total staff, and prob-
ability for a given type of cluster are presented in Table 1. There were 4822 staff in 246
clusters with the number of staff per cluster ranging from 2 - 250. We assumed the largest
potential cluster for vaccination as a group is 100. The mean cluster size, i.e., staff per unit,
assuming we place the tertiary hospitals in with the secondary hospitals is 17.8 staff per
cluster.

The provided estimated incidence at the time of the simulation was defined as incidence
per month, where a month is defined as 4 weeks. Since participants will be followed for
different lengths of time we redefined incidence in terms of one week using a Geometric
model. The expected incidence per weeks followed is defined as:

Ii = 1− p
(
i

4
)
, (7)

where i is the number of weeks a participant’s step wedge unvaccinated group is followed
and ranges from 1 to 14 weeks and p is the estimated per month background incidence.
The incidence, p, may be defined by cluster type as we may assume the risk is not constant
per group, i.e., there exists heterogeneity, frailty, among the clusters. At the time of the
simulation there was minimal available information on incidence, which did not include
estimates of heterogeneity.

4.1 Simulation

Our simulation began using the approximate sample size estimates for V E = 50% of 3,600
and 4,500 subjects for the 18 week step-wedge design. We allocated the sample size to the
18 step-wedges by dividing the sample size by 18, e.g., for the sample size of 3,600 we
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Table 1: Provided information for the Sierra Leone Ebola health care worker cluster type,
number of units, staff per unit, and probability (Prob) of the cluster type.

Cluster Units Staff / Unit Total Staff Prob

Community Health Clinic 30 30 900 0.122
Clinic 21 15 315 0.085

Community Health Post (CHP) 23 10 230 0.093
Maternal and Child Health Post (MCHP) 30 5 150 0.122

Secondary Hospital 10 100 1000 0.041
Burial Teams 20 12 240 0.081

District Surveillance Officer (DSO) 24 3 72 0.098
Ambulance Teams 22 2 44 0.089

Quarantine 1 25 25 0.004
Nutrition 2 18 36 0.008

Tertiary Hospital 3 250 750 0.012
Contact Tracers 46 10 460 0.187

Ebola Holding Center (EHC) 10 40 400 0.041
Ebola Treatment Unit (ETU) 4 50 200 0.016

Total 246 4822 1.0

divided by 18 giving us 200 subjects per step-wedge. We assume the number of subjects
per step-wedge is constant across the study but we could allow this to vary by step-wedge.
Hence, assuming 200 participants per wedge and 18 wedges results in a total sample size of
3600 participants. However, because the step-wedge with a three week lag-time results in
only 14 wedges of usable time per group we have a total sample size of 2800 per vaccination
status group for estimating efficacy. We computed the expected number of Ebola cases in
the unvaccinated arm by wedge and summed over all wedges to get the overall expected
number Ebola cases. We assumed a 1.0% incidence per month (provided as the estimated
incidence at the time of the simulation) and estimated the incidence for each of the 14
wedges using:

Ii = 1− 0.99
(
i

4
)
, (8)

where i ranges from 1 to 14. Next we computed the number of person weeks per wedge,
e.g., for vaccination week 18 we have 14 usable weeks of unvaccinated time and 200 par-
ticipants so we have 2800 weeks of person time (PT). For each wedge we have an estimated
incidence per week so we multiply the total person weeks of a wedge times by the incidence
per week to estimated the expected number of Ebola cases for a step-wedge. Once we com-
puted the expected Ebola cases for each step-wedge we summed over all step-wedges for
the unvaccinated groups to obtain a total expected number of cases.

Alternatively, since our ICC is estimated over all step-wedges we could sum the 14 us-
able wedges, which results in a total number of weeks of 105, and multiply by the expected
participants per week to estimate the total PT. For example, if we have 200 participants per
week and 105 total weeks of PT for the 14 usable step-wedges then we estimate 200*105
= 21,000 weeks of follow-up time. Furthermore, since the incidence of 1.0% is based on 4
weeks we divided 21,500 by 4 for a total of 5,250 4 weeks periods of follow-up time. Since
our incidence is expressed as a percent we divided the 5,250 by 100 to obtain an expected
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number of Ebola cases in the unvaccinated group of 52.5 cases. For the vaccinated group,
assuming V E = 50%, we estimate the number of Ebola cases in the vaccinated group as
0.5*52.5 = 26.25 cases.

Our simulation parameters are provided in Table 2. For generating simulation data the
total number of clusters was randomly chosen using a Poisson distribution with expected
values of 156 and 195. The expected number of clusters was determined by taking the
sample size, e.g., 3,600, and dividing by the expected cluster size (17.8, see Table 1). Next,
the number of subjects per cluster was randomly chosen using the table of probabilities
based on the cluster type (Table 1). Next we randomly drew from a binomial distribution
given the cluster size as n and the incidence probability. We assumed several scenarios to
add heterogeneity to the estimated incidence for the unvaccinated group and adjusted the
vaccinated group by 50%. There are four scenarios conducted under each sample size and
ICC estimation method for a total of 12 estimated DEFF . These scenarios are I (only one
risk group, 1.0%), II (risk groups of 1.0 and 2.0%, III (risk groups of 2.0, 1.0, and 0.5%),
and IV (risk groups of 2.0, 1.0, 0.5, and 0.25%). We assumed that for multiple risk groups
that the risk groups are equally likely and we assigned the risk group by drawing a random
variable from a Uniform [0, 1] distribution. Our expected number of clusters, subjects per
cluster, probability of cluster type, and expected Ebola cases based on our assumptions are
given in Tables 1 and 2.

Table 2: The model parameters for generating 1,000 datasets of simulation data.

Simulation Parameters

Sample Size 3,600

Parameter Mean Estimate Distribution Range Total

Useable Wedges 14 Constant NA NA
Subjects per Wedge 200 Constant NA NA

Clusters 156 Poisson NA NA
Subjects per Cluster 17.8 Table (see Table 2) 2, 100 NA

Probability of Infection

Unvaccinated 0.01 Binomial NA 52.50
Vaccinated 0.005 Binomial NA 26.25

Sample Size 4,500

Parameter Mean Estimate Distribution Range Total

Useable Wedges 14 Constant NA NA
Subjects per Wedge 250 Constant NA NA

Clusters 195 Poisson NA NA
Subjects per Cluster 17.8 Table (see Table 2) 2, 100 NA

Probability of Infection

Unvaccinated 0.01 Binomial NA 65.625
Vaccinated 0.005 Binomial NA 32.8125
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4.2 Simulation Results

Simulation results were compared against the ”truth” for the expected number of clusters
and table of cluster type probabilities. The expected number of subjects per cluster and
cluster type probabilities are summarized and presented in Figure 2. Our 1,000 generated
simulation datasets results in a mean and 95% percentile limits for the sample sizes 3,600
and 4,500 of 155.9 (131.5, 179) and 194.9 (167.5, 221), respectively, which results in
the means almost identical to the ”truth.” Our simulation results using the equations (4),
(5), and (6) are presented in table 3. There are no substantial difference in the estimated
DEFF using the three different approaches (equations (4), (5), and (6)). As expected as
the heterogeneity increases from scenario I to IV the DEFF increases. Scenario IV has the
most heterogeneity and the DEFF ranges from 1.08 - 1.14. There was little difference in
the estimated DEFF using the two sample sizes of 3,600 and 4,500. For our simulation
assumptions there is no evidence of a substantial DEFF .

Figure 2: Results from the simulation for the estimated number of health care worker
clusters and percent of cluster type.

5. Conclusion

Estimating the DEFF for a cluster randomized trial during the study design phase is cru-
cial for determining an adequate sample size for detecting the effect of interest. The DEFF

may be estimated from prior studies, pilot data, or the literature but for rapidly emerging
diseases there may be little or no information available for estimating the DEFF . A re-
cently completed Ebola vaccine trial assumed an intra-class correlation coefficient of 0.05,
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Table 3: Simulation results based on 1,000 simulations using Methods I, II, and III for
estimating the ICC and 95% confidence interval (CI), and the DEFF and 95% CI. We
considered per-wedge sample sizes of 200 and 250 subjects for the 18 week step-wedge
design, which resulted in a total sample size of 3,600 and 4,500 participants, respectively.
We conducted four scenarios using each sample size. These scenarios were I (only one risk
group, 1.0%), II (risk groups of 1.0 and 2.0%, III (risk groups of 2.0, 1.0, and 0.5%), and
IV (risk groups of 2.0, 1.0, 0.5, and 0.25%).

Scenario ICC 95% CI ICC DEFF 95% CI DEFF

Method I: Equation (4)

Sample Size 3,600

I 0.0016 0.000061, 0.0050 1.03 1.00, 1.08
II 0.0026 0.000053, 0.0080 1.04 1.00, 1.13
III 0.0040 0.00012, 0.010 1.07 1.00, 1.17
IV 0.0045 0.00014, 0.011 1.07 1.00, 1.18

Sample Size 4,500

I 0.0014 0.000063, 0.0047 1.02 1.00, 1.08
II 0.0024 0.000076, 0.0070 1.04 1.00, 1.11
III 0.0038 0.00022, 0.0096 1.06 1.00, 1.16
IV 0.0045 0.00044, 0.010 1.08 1.01, 1.17

Method II: Equation (5)

Sample Size 3,600

I 0.0016 0.000048, 0.0052 1.03 1.00, 1.08
II 0.0028 0.00013, 0.0082 1.05 1.00, 1.13
III 0.0042 0.00014, 0.011 1.07 1.00, 1.18
IV 0.0049 0.00027, 0.012 1.08 1.00, 1.20

Sample Size 4,500

I 0.0014 0.000050, 0.0044 1.02 1.00, 1.07
II 0.0024 0.00013, 0.0070 1.04 1.00, 1.12
III 0.0038 0.00023, 0.009 1.06 1.00, 1.15
IV 0.0045 0.00030, 0.011 1.08 1.00, 1.18

Method III: Equation (6)

Sample Size 3,600

I 0.0018 0.000048, 0.0062 1.03 1.00, 1.11
II 0.0032 0.00012, 0.0023 1.05 1.00, 1.17
III 0.0059 0.00014, 0.018 1.10 1.00, 1.29
IV 0.0082 0.00029, 0.029 1.14 1.01, 1.47

Sample Size 4,500

I 0.0016 0.000048, 0.0051 1.03 1.00, 1.09
II 0.0028 0.00012, 0.0084 1.05 1.00, 1.14
III 0.0050 0.00026, 0.015 1.08 1.00, 1.24
IV 0.0074 0.00028, 0.023 1.12 1.00, 1.39
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based on unpublished data, whereas our simulation using our available information and
considered scenarios estimated the largest ICC as approximately 0.008 using our scenarios
(Henao-Restrepo et al., Ebola Consortium). Our largest DEFF for our considered scenar-
ios was approximately 1.14, which is substantially less than if we had assumed an ICC
of 0.05. It may seem counterintuitive to estimate a small DEFF . However, given our ex-
pectation of about 150 clusters per vaccination group with an estimated 25-50 Ebola cases
per group we would expect most clusters to have zero cases of Ebola. Furthermore, those
clusters that have an Ebola case are unlikely to have more than one or two Ebola cases.
We demonstrated the feasibility of estimating the DEFF using simulation given a minimal
amount of information. In designing a study using simulation the estimate the DEFF will
be beneficial.

REFERENCES

Donner, A., Birkett, N., and Buck, C. (1981), “Randomization by cluster. Sample size requirements and
analysis,” American Journal of Epidemiology, 114, 906–914.

Eldridge, S. M., Ashby, D, and Kerry, S. (2006), “Sample size for cluster randomized trials: effect of coefficient
of variation of cluster size and analysis method,” International Journal of Epidemiology, 35, 1292–1300.

Ebola a Suffit Ring Vaccination Trial Consortium. (2015), “The ring vaccination trial: a novel cluster random-
ized controlled trial design to evaluate vaccine efficacy and effectiveness during outbreaks, with special
reference to Ebola,” BMJ, 351, h3740.
Donner, A., and Klar, N. (1996), “Statistical considerations in the design and analysis of community
intervention trials,” Journal of Clinical Epidemiology, 49, 435–439.

Hayes, R. J., and Bennett, S. (1999), “Simple sample size calculation for cluster randomized trials,” Interna-
tional Journal of Epidemiology, 28, 319–326.

Henao-Restrepo, A. M., Longini, I. M., Egger, M., Dean, N. E., Edmunds, W. J., Camacho, A., Carroll, M.
W., Doumbia, M., Draguez, B., Duraffour, S., Enwere, G., Grais, R., Gunther, S., Hossmann, S., Kond,
M. K., Kone, S., Kuisma, E., Levine, M. M., Mandal, S., Norheim, G., Riveros, X., Soumah, A., Trelle,
S., Vicari, A. S., Watson, C. H., Kta, S., Kieny, M. P., Rttingen, J. A. (2015), “Efficacy and effectiveness
of an rVSV-vectored vaccine expressing Ebola surface glycoprotein: interim results from the Guinea ring
vaccination cluster-randomised trial,” Lancet, 386(9999), 857-866.

Kerry, S.M., and Bland, J. M. (1998), “The intracluster correlation coefficient in cluster randomization,” BMJ,
316, 1455.

Lake, S., Kammann, E., Klar, N., and Betensky, R. (2002), “Sample size re-estimation in cluster randomization
trials,” Statistics in Medicine, 21, 1337–1350.

JSM2015 - Biopharmaceutical Section

2935


