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Abstract 

The Closure Principle of Marcus, Peritz, and Gabriel (1976) is re-visited, and a new 
implementation of this principle is devised which is shown to provide improvement of 
power over other closed testing procedures in many common settings. Such settings arise 
in medical studies when the hypotheses being tested correspond to treatment effects that 
are expected to trend similarly. As an example, a drug that is expected to quicken the 
time to improvement of a disease is usually also expected to prolong the improvement 
time.  

In this paper, we first discuss the implementation of the proposed procedure in the case of 
two hypotheses where the test statistics are independent. We prove that the procedure 
maintains strong control of the familywise error rate (FWER) under mild regulatory 
assumptions on the distribution of the test statistics. We then devise an extension of 
Hochberg’s step-up procedure using the same principle. We compare the extended 
procedure to the original Hochberg procedure under various non-null configurations. We 
also show how the procedure can be extended to correlated test statistics while 
maintaining strong control of the FWER. Finally, we propose an extension for more than 
two hypotheses. 

 

1. Introduction 

Closed testing procedures are based on the Closure Principle of Marcus, Peritz, and 
Gabriel (1976) which is stated below: 

Let X be a random variable with distribution 𝑃𝜃  (𝜃 ∈ Ω). Let = {𝜔𝛽} be a set up null 
hypotheses, i.e. a set of subsets of Ω, closed under intersection: 𝜔𝑖 , 𝜔𝑗 ∈ 𝑊 implies 𝜔𝑖 ∩

𝜔𝑗 ∈ 𝑊. For each 𝜔𝛽 let 𝜙𝛽(𝑋) be a level 𝛼 test, that is, 𝑝𝑟𝜃{𝜙𝛽(𝑋) = 1} ≤ 𝛼 for all 
𝜃 ∈ 𝜔𝛽. Now consider the following procedure. 

Any null hypothesis 𝜔𝛽 is tested by means of 𝜙𝛽(𝑋) if and only if all hypotheses 𝜔 that 
are included in 𝜔𝛽(𝜔 ⊂ 𝜔𝛽) and belonging to 𝑊(𝜔 ∈ 𝑊) have been tested and rejected. 
The probability of making no type I error with this procedure is at least 1 − 𝛼. 

Loosely speaking, this principle states that with a closed family of hypotheses, in order to 
strongly control the familywise error rate, we use the following procedure: to reject any 
hypothesis in the family, we must test and reject it by an 𝛼-level test, and we also must 
test and reject any other hypothesis in the family that implies it. 

The closure principle has been re-stated by many others. One such re-statement was done 
by Hochberg and Tamhane in the textbook Multiple Comparison Procedures (1987), 
using slightly different notations but otherwise identical to the original. 
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Another common re-statement of the closure principle is as follows: 

Suppose there are k hypotheses 𝐻1 , … , 𝐻𝑘 to be tested and the overall type I error rate is 
𝛼. The closed testing principle allows the rejection of any one of these elementary 
hypotheses, say 𝐻𝑖, if all possible intersection hypotheses involving 𝐻𝑖 can be rejected by 
using valid local level 𝜶 tests. It controls the familywise error rate for all the k 
hypotheses at level 𝛼 in the strong sense.” 

Note that the tests are referred to as local tests, which can lead to loss of power (see 
section 2.1). 

In this paper, a G-closed procedure, an extension of the closed testing procedure, is 
proposed. The extension allows to devise a family of tests that provides an increase of 
power under the alternative configuration where several of the tested hypotheses are 
false. An example of this generalization based on Hochberg’s procedure, G-Hochberg, 
will be shown. 

 

2. An Extended Class of Closed Testing Procedures 

2.1 A closed testing procedure for two hypotheses 

Suppose we are testing two means, 𝜇1 and 𝜇2, against one-sided alternatives. The global 
null is the intersection of 𝐻1 and 𝐻2, and it states that both means are zero. Let  𝐻1: 𝜇1 =
0, 𝐻2: 𝜇2 = 0, and 𝐻0 = 𝐻1 ∩ 𝐻2. 

The closed family consists of the global null, 𝐻0, and the two individual hypotheses, 𝐻1 
and 𝐻2. Note that 𝐻0 implies both 𝐻1 and 𝐻2, i.e., if 𝐻0 is true, then it necessarily follows 
that both 𝐻1 and 𝐻2 are also true. 

Suppose we have test statistics, 𝑍1 and 𝑍2, to test the individual hypotheses. The statistics 
are independent standard normal under their respective null hypotheses, have 
corresponding p-values 𝑃1 and 𝑃2, and ordered values 𝑃(1) and 𝑃(2). Suppose an 𝛼-level 
test 𝜑(𝑍1, 𝑍2)  is designed to test the global null hypothesis. A typical closed testing 
procedure for this setting is as follows:  

Use the 𝜑 Test for the global null hypothesis, 𝐻0; If 𝐻0 is rejected, then test 𝐻1 and 𝐻2 
each at level 𝛼 . 

A graphical display of the procedure is shown in Figure 1. 
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Figure 1: Typical Closed Testing Procedure 

 

Notice that the area bounded by the dashed line is an area in which the global null 𝐻0 is 
rejected, but the subsequent local tests do not reject either 𝐻1 or 𝐻2. This situation is termed 
“non-consonance,” and it leads to some loss of power. 

 

2.2 G-Closed testing procedure 

Motivated by the example described above, we derive a different closed testing procedure 
for the same setting: 1. Let 𝜑 test for the global null hypothesis, 𝐻0; 2. If 𝐻0 is rejected, 
then reject 𝐻(1)(the hypothesis corresponding to 𝑃(1)); 3. reject 𝐻(2) (the other hypothesis) 
if 𝑃(2) ≤ 𝛼′.  

Figure 2: G-Closed Testing Procedure 

1 
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Figure 2 (cont.) : G-Closed Testing Procedure 
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Notice in this procedure, there is no loss of power since whenever 𝐻0 is rejected, at least 
one of the individual hypotheses will be rejected. We will show that this procedure has 
strong control of the FWER for some choices of 𝜑 and 𝛼′. Such choices can be devised 
using an extension of Hochberg’s step-up procedure. 
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3. An Extension of Hochberg’s Step-up Procedure 

3.1 G-Hochberg procedure 

Figure 3 displays the Hochberg one-sided test for the setting described above. 
Hochberg’s procedure rejects both hypotheses if both p-values ≤ 𝛼, or it rejects either 
hypothesis if its p-value  ≤ 𝛼

2
 . When at least one hypothesis is rejected, the global null 

hypothesis, 𝐻0, is rejected; thus, Hochberg’s test is also a test of the global null. 

Figure 3: Hochberg Procedure 

 
Figure 4 shows the G-Hochberg procedure. The green line represents the original 
Hochberg test for the global null, which has probability 𝛼. In the G-Hochberg procedure, 
the point where both p-values ≤ 𝛼 is re-positioned to 𝛼(2), a point that is between 𝛼 and 
2𝛼. The point corresponding to Hochberg’s 𝛼/2 is re-positioned to 𝛼(1) so that the 
probability of the rejection region for the global null is hypothesis is maintained at 𝛼. 
Thus both the Hochberg and G-Hochberg procedures are 𝛼-level tests for the global null 
hypothesis. 

The G-Hochberg procedure proceeds as follows and is graphically displayed in Figure 4: 

1. Reject the global null hypothesis 𝐻0 if 𝑃(2) ≤ 𝛼(2)𝑜𝑟 𝑃(1) ≤ 𝛼(1); 2. If 𝐻0 is rejected, 
then reject 𝐻(1); and, 3. Reject  𝐻(2) if 𝑃(2) ≤ 𝛼′. 

 

 

 

 

 

 

 

JSM2015 - Biopharmaceutical Section

2919



Figure 4: G-Hochberg Testing Procedure 
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The steps to determine the critical points 𝛼(1), 𝛼(2) and 𝛼′are as follows: 

1) Set 𝛼(2), where 𝛼

2
≤ 𝛼(2) ≤ 𝛼. 

2) Calculate 𝛼(1) so that the test to reject the global null is an 𝛼-level test, i.e., 𝛼(1) =
(𝛼(2))2−𝛼

2𝛼(2)−2
. 

3) Calculate 𝛼′ so that the probability to reject 𝐻1 and 𝐻2 is ≤ 𝛼, i.e., 𝛼′ =

√𝛼2 − (𝛼(2) − 𝛼)2. 

Note that for choice of 𝛼(2) = 𝛼, the G-Hochberg procedure is equivalent to the original 
Hochberg procedure. Additionally, when selecting 𝛼(2) > 𝛼, for example 𝛼(2) = 2𝛼, the 
G-Hochberg procedure leads to a rejection of at least one hypothesis whose p-value is  >
𝛼 (but ≤ 2𝛼).  

 

3.2 Strong Control of FWER 

For strong control of the FWER, all hypotheses in the family must be protected at level 𝛼. 
Clearly, the global null is protected at level 𝛼 because by design, the test for the global 
null is an 𝛼-level test.   

To show that the individual hypotheses are protected at level 𝛼, we show that the 
probability to reject  𝐻1 is no more than 𝛼, which by symmetry, also holds for 𝐻2.  

The blue area in Figure 5 represents the rejection region of 𝐻1. 

Figure 5: Rejection Region of 𝐻1 Part 1 

 
We assume that the two test statistics are independent and normally distributed and thus 
the joint density has a bell shape. This is represented by the concentric circles in Figure 5. 
Under the global null, the two means are zero. The probability of the blue area is clearly 
less than or equal to 𝛼 since it is smaller than the probability of the rejection region of the 
global null, which is 𝛼 by design. 
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When 𝐻1 is true but 𝐻2 is not, the bivariate normal moves away from zero along the 
vertical axis, 𝑍2. Figure 6 illustrates that in this scenario, the rejection region is also less 
than 𝛼. A vertical line is drawn to create 3 areas: area 1, area 2 and area 3. If 
𝑃(𝐴𝑟𝑒𝑎 1) + 𝑃(𝐴𝑟𝑒𝑎 3) ≥ 𝑃(𝐴𝑟𝑒𝑎 2) for every value of 𝜇2, then 𝑃(𝐵𝑙𝑢𝑒 𝐴𝑟𝑒𝑎) ≤ 𝛼.  
The proof follows below. 

Figure 6: Rejection Region of 𝐻1 Part 2 

 

As defined in section 3.1,  𝛼′ = √𝛼2 − (𝛼(2) − 𝛼)2, i.e., 𝛼′ is calculated so that the 

probability to reject 𝐻1 and 𝐻2 is less than or equal to 𝛼. Specifically, 𝛼′ is calculated so 
that 𝑃(𝐴𝑟𝑒𝑎 1) = 𝑃(𝐴𝑟𝑒𝑎 2) under the global null hypothesis.  

Now, the bivariate normal distribution with non-negative correlation is totally positive of 
order 2 (TP2). The TP2 property implies that 𝑃(𝐴𝑟𝑒𝑎 1)

𝑃(𝐴𝑟𝑒𝑎 2)
 is an increasing function of 𝜇2. It 

follows that for all 𝜇2 ≥ 0, 𝑃(𝐴𝑟𝑒𝑎 1) ≥ 𝑃(𝐴𝑟𝑒𝑎 2) and 𝑃(𝐴𝑟𝑒𝑎 1) + 𝑃(𝐴𝑟𝑒𝑎 3) ≥
𝑃(𝐴𝑟𝑒𝑎 2) is true for every value of 𝜇2.  𝐻1 is therefore protected at level 𝛼. By 
symmetry,  𝐻2 is also protected at level 𝛼. 
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3.3 Power Comparisons 

Table 1 shows the power comparisons between the standard Hochberg and two different 
G-Hochberg procedures, one when 𝛼(2) = 2𝛼 and the other when 𝛼(2) = 1.5𝛼. 

Table 1: Power (%) Comparison: Hochberg vs. G-Hochberg under independence 

  Probability to Reject at least One Hypothesis (%) 

𝜇1 𝜇2 Hochberg 
G-Hochberg 

𝛼(2) = 2𝛼,  𝛼′ = 0 
G-Hochberg 

𝛼(2) = 1.5 𝛼,  𝛼′ = 0.021651 
0 0 2.50 2.50 2.50 
0 1 11.92 11.99 11.96 
0 2 41.36 41.27 41.37 
0 3 77.98 77.76 77.93 
1 0 11.92 11.99 11.96 
1 1 20.69 22.03 21.29 
1 2 47.55 49.65 48.56 
1 3 80.47 81.56 81.05 
2 0 41.36 41.27 41.37 
2 1 47.55 49.65 48.56 
2 2 65.82 69.43 67.62 
2 3 87.51 89.54 88.58 
3 0 77.98 77.76 77.93 
3 1 80.47 81.56 81.05 
3 2 87.51 89.54 88.58 
3 3 95.55 96.73 96.20 

 

Power is calculated as the probability to reject at least one hypothesis. Note that when 
𝜇1and 𝜇2 are zero, the probability to reject at least one hypothesis is equal to the type 1 
error for both procedures. When the distance from the null increases in only one 
direction, i.e. only one mean increases, Hochberg’s procedure has slightly higher power.  
When the distance increases in both directions, i.e. both means increase, the power of the 
G-Hochberg increases relative to Hochberg, with a maximum difference of almost 4%. 

 

4. G-Hochberg for Two Correlated Hypotheses 

The bivariate normal with a positive correlation is TP2. Thus, the G-Hochberg procedure 
has strong control of the FWER for positively correlated normal statistics as long as the 
test for the global null hypothesis is of level 𝛼. 

With a known correlation and by selecting (1), 𝛼(2) and 𝛼′, the G-Hochberg procedure 
can be constructed. In the following examples, we selected 𝛼(1) to be the same as in the 
independence case, where 𝛼(2) = 2𝛼. For each correlation, 𝛼(2) is calculated so that the 
type 1 error for testing the global null hypothesis is 𝛼. 
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Table 2: G-Hochberg for One-sided Positively Correlated Cases 

  Critical values 
𝜌 𝛼(1) 𝛼(2) 𝛼′ 

0.1 0.011842 0.0458 0.0116 
0.3 0.011842 0.0404 0.01569 
0.5 0.011842 0.0383 0.01633 
0.7 0.011842 0.0375 0.01617 
0.9 0.011842 0.0349 0.01751 

Note that as the correlation increases, 𝛼(2) must approach 𝛼; Also, for this choice of 𝛼(1), 
𝛼(2) > 𝛼, which means that one can reject a hypothesis even when its p-value > 𝛼.  

Table 3 shows the power comparisons between Hochberg and G-Hochberg for the 
correlated cases demonstrated above.  

Table 3: Power (%) Comparison: Hochberg vs. G-Hochberg when correlated 

      Probability to Reject at least one hypothesis (%) 
𝜌 𝜇1 𝜇2 Hochberg  G-Hochberg 

0.1 0 0 2.49 2.50 
 0 1 11.85 11.91 
 0 2 41.18 40.99 
 0 3 77.83 77.52 
 1 1 20.33 21.47 
 1 2 46.78 48.40 
 1 3 79.86 80.57 
 2 2 64.27 67.22 
 2 3 86.33 88.01 
 3 3 94.66 95.77 

0.3 0 0 2.46 2.50 
 0 1 11.69 11.71 
 0 2 40.91 40.50 
 0 3 77.67 77.18 
 1 1 19.53 20.41 
 1 2 45.29 46.24 
 1 3 78.88 79.03 
 2 2 61.23 63.33 
 2 3 84.07 85.20 
  3 3 92.75 93.72 

0.5 0 0 2.40 2.50 
 0 1 11.46 11.49 
 0 2 40.66 40.11 
 0 3 77.59 77.02 
 1 1 18.50 19.46 
 1 2 43.74 44.44 
 1 3 78.13 77.95 
 2 2 58.02 59.99 
 2 3 81.86 82.75 
 3 3 90.58 91.59 
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Table 3 (cont.): Power (%) Comparison: Hochberg vs. G-Hochberg when correlated 

      Probability to Reject at least one hypothesis (%) 
𝜌 𝜇1 𝜇2 Hochberg  G-Hochberg 

0.7 0 0 2.28 2.50 
 0 1 11.16 11.19 
 0 2 40.48 39.79 
 0 3 77.56 76.96 
 1 1 17.19 18.49 
 1 2 42.17 42.67 
 1 3 77.68 77.22 
 2 2 54.47 56.80 
 2 3 79.74 80.41 
  3 3 88.02 89.30 

0.9 0 0 2.09 2.50 
 0 1 10.79 10.59 
 0 2 40.42 39.65 
 0 3 77.56 76.96 
 1 1 15.50 17.41 
 1 2 40.71 40.40 
 1 3 77.56 76.96 
 2 2 50.24 53.37 
 2 3 77.89 77.76 
 3 3 84.80 86.60 

 

As for independence, Hochberg’s procedure has a slightly higher power when the 
deviation from the global null is in the direction of only one of the means. When the 
deviation is in the direction of both means, the G-Hochberg has higher power.  

 

5. Conclusion 

The G-Closed testing procedure proposed in this paper can be devised using global tests 
rather than local tests. It can make simultaneous inferences on individual hypotheses 
without going through the full closed testing procedure.  

Inspired by the Hochberg procedure, an extended Hochberg procedure is proposed. In the 
independence case, the extended Hochberg procedure is shown to gain as much as 4% in 
power compared to Hochberg’s procedure when both means are non-null. Examples of 
such configurations occur when testing an effect of a drug in several sub-populations, for 
example, Males/Females, Young/Old; Or when testing an effect of a drug at two dose 
levels. Extensions to more than two endpoints, as well as generalizations using other 
global tests are currently being pursued.  
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