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Abstract 
As thousands of human genomes become available, there is pressing need for efficient 
and intuitive analysis and visualization methods. The genotypes observed in a set of 
genomes can be represented as a [genome x variant] matrix. Standard PCA-based 
visualizations of genotype matrices can reveal population structure, but give little insight 
into genetic admixture in individuals or the history of individual variants. 
 
We present Espaliers, a novel visualization of non-negative matrices, including genotype 
matrices. Given an ordering of the genomes (columns), we compute a position for each 
variant (row) that reflects the information in the genotype matrix. An Espalier plots each 
variant by this position and its population frequency (row sum), which is related to the 
variant’s age. The resulting Espalier plot resembles a parsimonious evolutionary tree 
connecting the genomes that is consistent with the input ordering of the genomes. 
 
We compare Espaliers with PCA, provide examples of Espaliers for Big Data sets from 
genomics and transcriptomics, and discuss potential future directions. 
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1. Introduction 
 
Since the first human genome sequences were determined (Venter et al. 2001; Lander et 
al. 2001), DNA sequencing technology has become affordable and efficient enough to 
enable sequencing tens of thousands of whole genomes. The massive raw data from each 
sequenced DNA sample is mapped to a standard reference sequence and expressed as a 
few million “variants” from the reference. While other genotyping technologies evaluate 
a subset of known variant positions, whole genome sequencing (WGS) systematically 
collects nearly complete genotypes. As in other disciplines, studies of population 
structure are both enabled and challenged by the availability of such “Big Data”; new 
methods for analysis and especially for visualization of such large datasets are needed. 
Here we present Espaliers as a visualization metaphor for genotypes and other large 
datasets that share a common object-attribute matrix structure. We describe the 
construction of Espaliers and discuss Espalier Plot visualizations of large genotype and 
gene expression datasets to demonstrate the value of the Espalier metaphor. 
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The remaining sections are organized as follows. In Section 2 we describe object-
attribute matrices that arise in many “Big Data” contexts, and introduce two examples. In 
Section 3 we present the Espalier metaphor and discuss Principal Component Analysis 
(PCA; Pearson 1901) as a potential means of constructing Espaliers. We then present Key 
Espalier Analysis (KEA), a true Espalier construction method. In Section 4 we compare 
principal components and KEA Espaliers derived from a set of 2,504 genotypes, and 
compare Espalier Plots and KEA biplots with the standard population structure 
visualization, the PCA biplot. In Section 5 we make similar comparisons for Espaliers 
constructed from a dataset of gene expression in 16 tissue samples. We summarize our 
conclusions in Section 6. 
 
 

2. Object-Attribute Matrices 
 
Many “Big Data” studies concern counts or other measured amounts aij of each attribute i 
of an object j. In text mining, for example, the data may be counts aij of word i in source 
text j. In gene expression studies, the amount aij of mRNA or protein i is measured in 
each tissue or blood sample j. In social networks, the data may be a binary indicator aij of 
a relationship of some particular type between “entities” i and j. Note that numerical 
categories are not amounts; two type 1 errors do not constitute a type 2 error. We make 
this distinction between quantitative “amount” data and numerical (but not quantitative) 
data because quantitative data lies in a metric space and therefore has a natural, Euclidean 
geometry, which numerical categories do not. Amount data are inherently non-negative 
and arise in so many contexts that analysis methods and visualizations well-suited to this 
class of data will have broad application. 
 
2.1 Definition of an Object-Attribute Matrix 
 
Triplets <i, j, aij> are sufficient to define the set of edges for a weighted, directed graph, 
with the sets of attributes and objects defining the sets of source and target nodes, 
respectively, and the amounts providing the edge weights. Equivalently, a set of triplets 
define a sparse m x n adjacency matrix A = {aij}, where m is the number of distinct 
“attributes” and n the number of distinct “objects” mentioned in at least one edge. Entries 
aij in the (dense) adjacency matrix A without a corresponding triplet are not missing data, 
but mean the amount of attribute i of object j is zero. The terms “object” and “attribute” 
may have a context-specific meaning but have no mathematical meaning, and the sets of 
objects and attributes may overlap or be identical. 
 
We will refer to any such non-negative adjacency matrix of amounts as an object-
attribute matrix. While object-attribute matrices encompass diverse datasets, we note 
they specifically do not encompass graphs with negative edge weights, with multiple 
categories of edges, with multiple weights per edge, with node weights, or with multiple 
edges for the same object-attribute pair <i, j>. The object-attribute matrices we will use to 
illustrate the Espalier metaphor and Espalier Plots are described below. 
 
2.2 Genotype Data: 1000 Genomes, phase 3 
 
Large-scale genotyping studies determine the state of a large set of genetic markers over 
a population of DNA samples. Genotyping arrays interrogate hundreds of thousands of 
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nucleotides along the human genome that vary between individuals (single-nucleotide 
variants, SNVs); SNVs are selected for both assay reliability and relevance to ancestry, 
typically having two states (reference and variant) that are measured simultaneously for 
both the maternally-inherited and paternally-inherited chromosome. Each interrogated 
marker i is classified into one of three states: sample j contained the reference allele twice 
(homozygous reference), both the reference and variant alleles (heterozygous), or the 
variant allele twice (homozygous variant). Thus, a genotype array of this sort results in an 
object-attribute matrix <i, j, aij>, where aij = 0, 1, or 2 is the amount of variant alleles 
observed at variant j in DNA sample i. 
 
Phase 3 of the 1000 Genomes Project made public WGS data for 2,504 samples 
ascertained to belong to 26 populations. The variants in this data are from a combination 
of WGS, genotyping arrays, exome sequencing, and other methods, including imputation 
of some values, as described (1000 Genomes Project Consortium, 2012, 2013). As an 
object-attribute matrix, approximately 15% of all triplets are nonzero. 
 
2.3 Gene Expression Data: BodyMap2 
 
The Illumina BodyMap2 RNASeq dataset (NCBI GEO Accession No. GSE30611) 
contains counts of cDNA sequence reads from 16 human tissue samples (adipose, adrenal 
gland, brain, breast, colon, heart, kidney, liver, lung, lymph node, ovary, prostate, skeletal 
muscle, testes, thyroid, and white blood cells) mapped to RNA transcripts; the identified 
transcripts were then processed and mapped to 29,663 genes as described (Glusman, G. 
and others 2013) . Triplets <i, j, aij> from this dataset represent the count aij of reads, 
normalized by the relative length of the gene transcripts, from gene i detected in tissue 
sample j. As an object-attribute matrix, approximately 64% of all triplets are nonzero. 
 
2.4 Visualizing Object-Attribute Matrices 
 
While such data can be visualized as “hairball” weighted graph structures, such 
visualizations can be hard to comprehend, especially for large datasets. BioFabric 
(Longabaugh 2012) is a better visualization method for conveying the geometric structure 
of such datasets. An alternative approach is to visualize the object vectors (columns of 
the object-attribute matrix) in a Euclidean space with a dimensionality-reduction method 
such as PCA. While more general, non-linear dimensionality reduction methods have 
been developed, including kernel PCA (Schölkopf, Smola, and Müller 1998), Self-
Organizing Maps (Yin 2007), and t-SNE (van der Maaten and Hinton 2008), PCA 
remains popular due to its simplicity and its implicit statistical interpretation. PCA is the 
first step in standard analyses of both genotype and expression data. 
 
 

3. The Espalier Metaphor 
 
Fruit trees or other garden plants are sometimes spread on a planar support, an espalier, 
for both aesthetic and practical reasons. The espalier transforms the 3D structure 
characteristic to the plant into a more convenient 2D plane, facilitating tasks such as 
grafting, pollination, and harvesting. Branches are a plant’s support structure, and 
positioning the branches on the espalier controls the positions of the leaves, flowers, and 
fruit. 
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We see the garden espalier as an appropriate metaphor for organizing the objects and 
attributes of an object-attribute matrix. Mathematically, we define an Espalier as a 
geometrically flat axis (an Espalier Coordinate, EC) together with a set of m+n positions 
{xi}, one for each attribute i (1 ≤ i ≤ m) and one for each object j (m < m+j ≤ m+n). We 
require an EC to be geometrically flat in the sense that positions along an EC are 
additive, like positions along a line, rather than sub-additive like the x- and y-coordinates 
of points on a circle, or multiplicative like logarithms of amounts (the sum of the 
logarithms of two amounts is the logarithm of the product of the amounts, not their sum). 
This requirement ensures that the induced geometry of a Cartesian product of a set of 
ECs will be a Euclidean geometry, just as the geometry of a Cartesian product of a set of 
measured amounts is Euclidean. 
 
3.1 Principal Components are not Espaliers 
 
PCA finds and orders axes within a high-dimensional Euclidean space in order to capture 
as much variance as possible in the first k dimensions. Standard PCA first normalizes 
each attribute to the corresponding z-score (Z = { zij } = (aij-µi)/ σi). The eigenvalues and 
eigenvectors of the correlation matrix ZTZ are found by singular value decomposition of Z 
(SVD; Beltrami 1873). The right eigenvectors are ranked in decreasing order of the 
corresponding eigenvalue, producing the principal components (PC1, PC2, …) of the 
object vectors; the left eigenvectors correspond to the variable (attribute) “loadings”. The 
first k coordinates PC1, …, PCk computed by Standard PCA capture the most Pearson 
correlation possible for a linear reduction of the object vectors to a k-dimensional 
subspace. 
 
The normalization to z-scores used in Standard PCA is motivated by statistical ideas 
about variance and Pearson correlations, not the geometric ideas of an Espalier. In 
particular, the variable loadings vary systematically with the total amount in each row, 
and the relationships between individual objects and attributes are neither emphasized nor 
visible in plots of principal components and the associated variable loadings. 
 
3.2 Key Espalier Analysis: Constructing Espaliers by Design 
 
The singular value decomposition used to compute principal components, however, has a 
natural geometric interpretation. Let u and v be a singular vector pair for an m x n 
nonnegative matrix M with singular value s; then M, s, u, and v satisfy the system of 
equations uTM = svT, Mv = su. While PCA focuses on u and v as eigenvectors of the 
covariance (or in Standard PCA, correlation) matrix MTM, geometrically the defining 
equations for singular vector pairs above identify u in Rm and v in Rn as corresponding 
directions invariant under multiplication by M. SVD identifies the full set of such 
correspondences intrinsic to the matrix M, along with the scaling constants s, and fully 
defines the bilinear, geometric transformation between Rm and Rn expressed in M as 
scaling along these corresponding directions. 
 
Note however that u and v are direction vectors confined to the unit sphere in their 
respective spaces. These spheres are curved manifolds and are not additive, i.e. the sum 
of two left (or right) singular vectors for the same matrix M does not always lie on the 
unit sphere. However, we can project u and v into corresponding additive manifolds; 
specifically, geometrically flat manifolds tangent to the unit spheres at corresponding 
points. Letting u0, v0 be another left and right singular vector pair for M, note that u0 and 
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u are orthogonal, and their component-wise ratio u’ = u/u0 is constrained to the (flat, 
additive) manifold tangent to the Rm unit sphere at u0; by the same reasoning, v’ = v/v0 is 
constrained to the additive manifold tangent to the Rn unit sphere at v0. This projection 
completes construction of a true Espalier, in which the objects and attributes have 
corresponding positions in a geometrically flat space, rather than corresponding 
directions in a geometrically curved space. 
 
Like principal components, Espaliers can be ordered by their corresponding singular 
values, and the first k Espalier components provide a representation of the objects in a k-
dimensional space that preserves the k most significant independent relationships 
between the objects and attributes. So long as the matrix is not too sparse, an 
appropriately modified version of the Sinkhorn and Knopp (1967) algorithm can find 
strictly positive vectors dm of length m and dn of length n so that the row and column 
vectors of the scaled matrix W = diag(dm) A diag(dn) have constant length; i.e. the rows 
and columns lie on spheres in Rm and Rn, respectively. W is therefore a scaled version of 
A in which the differences between the rows and between the columns are entirely 
directional. This is the motivation for the normalization: to convert the length and 
direction information in the rows and columns of A into purely directional information in 
preparation for SVD, which finds a full set of corresponding directions between the space 
spanned by the row vectors and the space spanned by the column vectors of a matrix. The 
pairs of corresponding singular vectors for W therefore capture as much of the correlation 
structure of A as possible for any scaling of A.  
 
In addition, normalizing the object-attribute matrix in this way renders the correlation 
between the EC positions of the objects and attributes independent of the total amount of 
data for each attribute and each object; it is therefore natural to visualize the objects and 
attributes on each Espalier coordinate against an appropriate measure of the amount of 
data for each attribute and object, the row and column sums of the object-attribute matrix. 
We call this visualization an Espalier Plot. 
 
We call the Espalier construction method Key Espalier Analysis (KEA). In summary, A 
is scaled to W by finding the vectors dm and dn; the first k corresponding singular vectors 
of W are found using a sparse SVD algorithm such as the implicitly restarted Lanczos 
bidiagonalization algorithm (Baglama and Reichel, 2006); and each singular vector is 
projected to the geometrically flat tangent space by division by another singular vector 
pair. Due to the non-negativity of object-attribute matrices the singular vector pair 
corresponding to the largest singular value is typically strongly correlated with total 
amount, and we use this pair as the divisor. The resulting coordinates we call Espalier 
coordinates (ECs) in analogy to Principal Components (PCs). In the next two sections, 
we compare the results of PCA and KEA on two kinds of object-attribute matrices that 
arise in biomedical studies. 
 
 

4. Espaliers for Genotype Data 
 
The most common visualization of population structures is the PCA biplot (Fig.1, upper 
left). The DNA samples (colored dots) are positioned using their first few PCs; rarely, the 
variable loadings (black dots, one per variant) are also shown. Although the variable 
loadings and principal components of the DNA samples are mathematically related as left 
and right singular vectors, these relationships are generally not visually apparent in a 
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PCA biplot even when the variable loadings are shown, and provide little evolutionary 
insight. 
 
The other plots in Figure 1 are Espalier Plots, showing the objects (DNA samples) and 
attributes (variants) of an object-attribute matrix on the horizontal axis against a measure 
of data quantity on the vertical axis. Here the measure of data quantity is the variant allele 
count across all samples, plotted on a logarithmic scale. 
 
The Espalier Plot for PC1 (Fig.1, lower left) reveals that PCA systematically assigns a 
broader range of PC values to more common variants than to rarer variants, and PCA 
therefore organizes the DNA samples primarily by the frequencies of common variants. 
Since time is required for a new variant allele to reach high frequency in the population, 
rarer variants are expected to have arisen more recently (Kimura and Ohta, 1973), and the 
older, more common variants are believed to have arisen prior to the earliest separations 
of human populations, the so-called “Out of Africa” event(s). Differences in frequency of 
common variants between populations are believed to be due to the effect known as 
“genetic drift”: stochastic differences in the rate at which variant alleles are retained in 
independently-evolving populations. 
 
 

 
  
Figure 1: Espalier Plots. Upper left: Conventional PCA biplot showing DNA samples 
(colored dots) on the first two principal coordinates, augmented by corresponding 
variable loadings (black points). Lower left: Espalier plot of PC1 (horizontal axis) and 
variant allele count (vertical axis, log scale). Lower right: Espalier Plot showing the 
corresponding first Key Espalier Analysis (KEA) Espalier coordinate. PCA assigns large 
values to common variants, while KEA assigns large values to rare variants. Upper right: 
Espalier Plot of the second Espalier component. DNA samples are colored by 1000 
Genomes population of origin (legend). 
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Conversely, the rarest variants are believed to have arisen by mutation after human 
populations separated geographically. O’Connor and others have recently shown (2015) 
that removing the common variants prior to performing PCA permits derivation of more 
accurate and detailed population structures. Espalier plots with ECs derived by KEA as 
the horizontal axis display vertically aligned subsets of variants, with a broader range of 
EC values for the rarer variants, and the resulting visualization approximates a 
phylogenetic tree. PCA and KEA therefore appear to be sensitive to the outcomes of 
different evolutionary forces: PCA to genetic drift, and KEA to patterns of mutation over 
time.  
 
While PCA and KEA are both based on SVD of the same data, the normalization of the 
data differs and a comparison of PCA and KEA biplots (Fig. 2) shows that the methods 
lead to qualitatively different organizations of the data. Compare, for instance, the 
different positions of the genomes (objects) from African populations in biplots of PC2 
and PC3 versus EC2 and EC3 (Fig. 2, upper plots). The two analyses differ dramatically 
in the organization of the variants (attributes): in the PCA biplots (Fig.2, left plots) the 
variants are organized in linear structures involving the origin, while in the KEA biplots 
(Fig.2, right plots) subsets of variants cluster around subsets of objects and along lines 
between objects. These biplots demonstrate that KEA exposes the richly interrelated 
structure of the genotype-variant matrix in a comprehensible, visibly geometric form. 
 
 

 
  
Figure 2: PCA and KEA biplots for genotype data. Same 1000 Genomes object-
attribute matrix as shown in Fig. 1, but shown as biplots on coordinates determined by 
PCA or KEA. Genomes (objects) are shown as colored dots; variants (attributes) are 
shown as translucent black points. Upper left: PCs 3 (x-axis) and 2 (y-axis) determined 
by PCA; attributes correspond to variable loadings rescaled to the same range as the 
object principal components. Upper right: EC3 (x-axis) vs. EC2 (y-axis) biplot. KEA 
computes EC coordinates for both objects and attributes, scaled to have the same range. 
Lower figures: Same as upper figures, but showing only the attributes. 
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5. Espaliers for Expression Data 
 
When applied to the Illumina BodyMap2 gene expression dataset (Fig.3), KEA again 
finds correspondences between objects (tissue types) and attributes (genes) that are 
independent of total amounts (gene expression level summed across all tissues; Fig.3, 
lower right). In Espalier Plots (Fig.3, lower right), genes expressed in a single tissue align 
directly above the tissue. In KEA biplots (Fig.3, upper right), note that tissues with 
known functional similarities, such as heart and skeletal muscle, kidney and liver, and 
tissues of the immune system such as lymph nodes and white blood cells, are organized 
along lines marked by dense, linear subsets of genes; upon examination, these gene 
subsets are observed to have higher expression in the aligned tissues relative to other 
tissues. Comparison of tissue and gene positioning is therefore informative about both 
tissue function and gene function. 
 

 
 
Figure 3: PCA and EC biplots for expression data. The BodyMap2 dataset visualized 
using PCA or KEA. Tissue samples are labeled in blue; genes are shown as translucent black 
points. Upper left: PC3 (x-axis) and PC4 (y-axis) determined by PCA; attributes correspond to 
variable loadings rescaled to the same range as the object principal components. Lower left: 
Espalier plot of gene expression level vs. PC3. Upper right: EC3 (x-axis) vs. EC4 (y-axis) biplot. 
KEA computes EC coordinates for both objects and attributes, scaled to have the same range. 
Lower right: Espalier plot of gene expression level vs. EC3. 
 
In contrast, organization of tissues in the PCA biplot (Fig.3, upper left) is more dispersed 
and does not include linear arrangements of tissues, nor does the organization of the 
genes guide interpretation of tissue positions. In the PCA-derived Espalier Plot (Fig.3, 
lower left), some lines of genes are discernable, however these structures are not 
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vertically aligned, nor is their association with a specific tissue visible. Thus while PCA 
is guaranteed to maximize the variance in the data represented in a given number of 
dimensions, the Espalier coordinates provide a geometric correspondence between 
objects and attributes that guides insight and interpretation of the relationships between 
gene expression and tissue function in both Espalier Plots and biplots. 
 
 

6. Conclusions 
 
We have introduced the garden espalier as a useful metaphor for visualization of 
relationships between objects and the attributes on which they have been measured. This 
metaphor is applicable to a wide variety of “amount” data that is being collected and 
analyzed in massive quantities in this age of “Big Data”. We have also shown how to 
realize this metaphor mathematically via Key Espalier Analysis, which is based on a 
novel, geometrically motivated normalization, followed by singular value decomposition 
and a novel projection into the geometrically flat tangent manifold. 
 
The geometric nature of Espaliers is valuable for both visualization and computational 
analysis of objects and attributes represented on Espalier coordinates, and the ability of 
Key Espalier Analysis to expose the inherent geometric structures of object-attribute 
matrices makes the Espalier metaphor an important new tool in the analysis of Big Data 
across many applications. As shown here, KEA maps objects and attributes in a manner 
that allows the relationships between them to be visible as simple geometric structures. 
KEA is particularly useful for identifying specific attributes as markers for the objects 
with which they are closely associated. This identification of markers is particularly 
visible in Espalier Plots, in which marker attributes are vertically aligned above the 
associated object(s). In KEA biplots, the geometric nature of the bilinear transformation 
an object-attribute matrix represents results in linear structures that are likely to be 
interpretable in the context from which the matrix arose, as discussed for the gene 
expression dataset. In future work we intend to demonstrate the value of this “marker” 
relationship, and to provide intuitive interpretations for the linear structures visible in 
KEA biplots of genotype data. 
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