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Abstract

Cluster bootstrap is the usually used method for bootstrapping clustered data. A
longitudinal study often contains multiple levels. For example, an educational study may
have two levels: student level and classroom level (students nested within classrooms). In
this case, resampling may be done on either the student level or the classroom level. This
paper compares these two cluster bootstrap methods with the parametric bootstrap method
for standard errors, bias and confidence intervals of parameter estimates obtained under a
two-level mixed model. Several Monte Carlo simulations are also performed, showing that
the parametric bootstrap and cluster bootstrap at the classroom level are better methods
comparing with the residual bootstrap and cluster bootstrap at the student level.
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1. Introduction

Bootstrap is an important statistical tool that can be used to estimate the properties of an
estimator. It is usually used in complex situations where asymptotic approximations are
difficult to compute or non-available (D.Boos 2003). Bootstrap standard error, bias and
confidence intervals are often calculated to measure the accuracy of complex statistics, for
example, the parameter estimates of linear regression model.

In history, the Quenouille-Tukey jackknife method preceded the bootstrap, which was
shown as an approximation to the bootstrap via the delta method (B. Efron 1979). The
bootstrap principle is simple (R. T. B. Efron 1986). In the real world, we have an observed
random sample X = (Xi,...... ,Xn), which is sampled from an unknown probability
distribution P, and the statistic of interest is a function of X: 8 = s(X). In the bootstrap
world, we have an observed bootstrap sample X" = (X',...... ,X"1), which is sampled from
the empirical distribution P (P(A) = %2?21 14(X;), for AE R), and the statistic is
6*=s(X"). Instead of evaluating the statistical properties (bias, standard errors, etc) of &
based on the sampling distribution of @, we mimic this process by evaluating these
properties of 8* based on the bootstrap sampling distribution of 8*. The benefit of doing
so is we don’t actually need to compute the exact bootstrap sampling distribution of 8%, we
can use Monte Carlo methods to obtain an approximation: draw B independent bootstrap

samples X"1,.. ... , X'® from P, compute 8*(®) for each bootstrap sample, and finally
compute the estimated bias, standard errors and confidence intervals from
0, ... ,0*(B) Tt is noticeable that we assume resampled cases in the bootstrap samples
are i,i,d.
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There are various kinds of methods to draw the bootstrap samples from clustered data (A.
C.AField 2007), such as randomized cluster bootstrap, cluster bootstrap, two-stage
bootstrap, random-effect bootstrap, residual bootstrap and parametric bootstrap. In this
study, we use the parametric bootstrap and the cluster bootstrap. The cluster bootstrap is a
simplified version of randomized cluster bootstrap, in which clusters are selected by simple
random sampling with replacement, and no further permutation. When we treat each
observation as a cluster in the horizontal data format, for example, student level in this
study, the cluster bootstrap is simply case resampling bootstrap. The parametric bootstrap
is similar with the nonparametric bootstrap, the difference is parametric bootstrap samples
are taken from the estimated parametric model instead of the empirical distribution P.

In this study, we investigate the relationship between the students’ grades with factors
including classroom, treatment and mother education level. There are 289 students in total,
and each student was measured six times during the semester. A two-level mixed model
(student level, classroom level) is fitted to the data using the Ime4 package in R (Bates
2010).

The paper is organized as follows: In section 2, we make a brief description of the two-
level random effects model. In section 3, we introduce the bootstrap methods we use,
including cluster bootstrap with either cluster in student level (CID) or classroom level
(TID) and parametric bootstrap. In section 4, we explain how to calculate the bootstrap
bias, bootstrap standard errors and bootstrap confidence intervals (percentile method, Bca
method and bootstrap-t method). Section 5 we carry out a Monte Carlo study to evaluate
the performance of different bootstrap methods we use. Finally, in section 6, we apply
different bootstrap methods for our real educational sample.

2. Linear Mixed-Effects Model Without Bootstrap

In this study, we would like to investigate the relationship between the students’ grades
(letter sound identification, IsrSIto) with several factors, such as the treatments
(condition=0/1), mother education level (matedu_c), measurement time (time) and time
square (timesq), student (CID) and classroom (TID). Students are nested within the
classrooms, classrooms are randomly nested within the treatments (S.Gray 2011). The
linear mixed model is:

Yixi = Bo + Pr1Xiijki + Botij + Psti® + BaXaiia + BstiiXiiia + Boti?Xijki + boi + uki + biitij + €

i=1,2,...,n; (n;=number of students); j = 1,2,...6 (measurement time point); k = 1,2
(treatment); | = 1,2,..., n; (n;=classroom number); X;: dummy variable for treatment level
(1=conditionl; O=condition0); X,: continuous variable for mother education level; t;:
measurement time point; boi~N(0,01?) random intercept effect for student i; bii~N(0,03%)
random slope effect for student i; uw~N(0, c4%) random intercept effect for classroom 1
within treatment k; €;~N(0, 6?) residual.

If we consider the general form of linear mixed model as 17i=X i E+Z i Ei+§i (1=1,2,... ny),
where Y; is a 6x1 vector. We assume the Y; in the same classroom | within treatment k are
correlated via the random effect Uyg. The variance-covariance matrix of Y; is
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62 o413 O
Cov(Y;)= Z;G;Z} + R;, where R; = Cov(§)) =0’ G; = Cov(b;) =| a5 0% 0

0 0 o}
The intraclass correlation among students within classroom kI is defined as
p=02/(0# * 0%). The REML likelihood function is: -2logL(a; Ky)=In |[KV(a)K'[+(y —
XB) V(a)'(y — XB)+(H-P)In(2r), where V(@) is big variance covariance matrix. The
covariance parameter vector & is defined as (62, 02, 0%, 013,02 ). H is the total observation
number. K is selected as E(K7)=O, P=Rank(X).
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Figure 1: Signed square root, {, of the likelihood ratio test statistic for each of the parameters in the
linear mixed model without bootstrap. The vertical lines are the endpoints of 50%, 80%, 90%, 95%,
and 99% profile confidence interval derived from the REML test statistics. p;3 = 043/04 * 03,
which is the correlation.

We fit this model with lme4 package in R. The restricted maximum likelihood (REML)
estimates and the profile confidence intervals are shown in Table 5 and Table 6. The Ime4
package also provides the profile zeta plots for assessing the variability of the parameter
estimates. The signed square root of the likelihood ratio test statistic, called {, is plotted
versus the parameter value (Figure 1). A { value can be compared to the quantiles of the
standard normal distribution, for example, a 95% profile confidence interval is -1.960<
£<1.960 (Bates 2010). All the profile zeta plots are very close to straight lines, which means
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the statistical inferences based on the parameters’ estimates are reliable. Zero is contained
in the 95% profile confidence intervals of conditionl (Bi1), timesq (Bs3), and
condition]:timesq (Bs).

3. Cluster Bootstrap and Parametric Bootstrap Method

Bootstrapping data with more than one level is complicated. The non-parametric random-
effect bootstrap and residual bootstrap are two commonly used methods, which have been
fully discussed with either balanced data (A. C.A.Field 2007) or unbalanced data (Z. P.
C.A Field 2008). Both these two methods and the parametric bootstrap method generate
the bootstrap samples after modelling, which assumes the model is correctly specified.
Conversely, the cluster bootstrap method (case-resampling method) draws the bootstrap
samples before modelling, thus is more robust to model misspecification. Of course, there
are certain disadvantages of applying the cluster bootstrap method to multilevel data, for
example, resampling at one level will usually destroy the natural hierarchy of the original
data (Carpenter 2003).

3.1 Cluster bootstrap at the student (CID) level or the classroom (TID) level

Our dataset contains 1734 observations in the long format, which are clustered at two
levels: (1) all observations from the same student, and (2) all observations from the same
classroom. There are 289 unique students, each containing 6 observations (6 measurement
times), and there are 92 unique classrooms, containing unequal observations.

Cluster bootstrapping at the student level: we draw samples of g = (student numbers)
clusters independently with replacement. The bootstrap sample is the set of mg
observations Yj; (m=6, i=1,2,...,g), where the g m-vectors (Y3, ..., Yy, ) are treated as i.i.d
distributions with probability 1/g on each of the g m-vectors (Y, ..., ¥;;,). In this case, we
ignore correlation among students in the same classroom. It has been proven that under the
random-effect model, the simple cluster bootstrap variances of several statistics, such as
the sample total (T = mgY ), between- and within-cluster sum of squares (Sg, =
myL (Y, = V)2, Sy, = X X7, (Y;; — ¥;)?) and the covariance between the sum of
squares are asymptotically correct as g—oo with m fixed (A. C.A.Field 2007).

Cluster bootstrapping at the classroom level: we draw samples of g = (classroom numbers)
clusters independently with replacement. The bootstrap sample contains Z?zl m;
observations. It is noticeable that since our data is unbalanced at the classroom level, the
new bootstrap sample size might not be the same as the original dataset.

In addition, we notice that the classrooms are randomly assigned with a unique treatment
(condition=0/1) in the educational example. In order to reduce the distortion of the natural
hierarchy of the original data, firstly we subset the original dataset into condition=0 group
and condition=1 group, then do the cluster resampling separately in both groups, and finally
combine the two subset samples into a new bootstrap sample.
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3.2 Parametric bootstrap for random-effects models
Based on the random effects model described in section 2. We assume that the parameters

( E, G;,0%) have been estimated by the REML method, and we obtain the estimates

(ﬁ, G;, 6%). Then the parametric bootstrap proceeds as follows:

(1). Simulate &;;,,~N (0, 6?), also simulate the I;L* from the distribution N (0, G;).

(2). Calculate the bootstrap sample data Y;3;; by setting:

Y = Bo + BiXuiji + Batij + Batli + BaXaijir + PstijXaijir + PothiXaijin + boi + Uiy
+ byitij + €

(3). Refit the random-effects model to the new bootstrap sample data in step 2. Get the first

set of bootstrap estimates of parameters (E x (fl-*, 62*).

(4). Repeat steps 1~3 B times to obtain B sets of parameter estimates. Calculate bootstrap
standard errors, bias and confidence intervals.

The build-in function ‘bootMer’ in the R Ime4 package performs model-based parametric
bootstrap for mixed models. We perform two kinds of parametric bootstrap here based the
option ‘use.u=FALSE/TRUE’: if ‘use.u=FALSE’, each simulation creates new values of
both b; and the i.i.d. &, using R rnorm(). If ‘use.u=TRUE’, only the i.i.d. &, are
resampled, and the other random effects are fixed at their estimated values. The first one is
labeled as ‘parametric’, and the second one is called ‘residual’ in the following tables. It is
noticeable that the ‘residual bootstrap’ in the later sections is actually the ‘parametric
residual bootstrap’, not the usual residual bootstrap.

4. Bootstrap Evaluation of the Parameter Estimates

4.1 The bootstrap estimate of standard error

We follow the notations in the Introduction section. Suppose the observed data X =
Xi,..o... ,Xyn) 1s sampled from an unknown probability distribution P, and the statistic of
interest is a function of X: 8 = s(X), to which we will assign an estimated standard error.
Let o(P) be the standard error of 8, indicating a function of the distribution P. we have:
o(P) = [Varp{s(X)}]/?. We define the bootstrap estimate of standard error is 65 =
0'(13), where P as the empirical distribution.

In most cases, it is difficult to calculate the function ¢ (P) and also the function 0(13),
however, since we notice that a bootstrap sample is just the random sample of size n drawn
with replacement from the original data X = (Xi,...... ,Xn) , we can use a Monte Carlo
algorithm to approach to 0(13). Assume the statistics calculated from each bootstrap
sample are m, ...... ,9/*\@, the sample standard deviation of all the "HON (b=1,2,...,.B)

is,
1/2

Zlg=1{m B 9?(')}2
9 = B—1

g0 = 2= 670

It is easy to see that as B—oo, 6 gets closer to 65 = 0(13), it has been shown by Efron
that the difference between 6z and 65 can be ignored once B is adequate large (50~200).
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4.2 The bootstrap estimate of bias

For the non-bootstrap case, based on the definition of bias, the bias of the statistics of
interest 8 = s(X) for estimating parameter p is,

¢ = Bias(0) = EpR(X,P) = Ep{s(X)} — u(P)
where R(X,P) = s(X) — u(P)

E represents the expectation with the probability distribution of P. For example, s(X) can
be the sample mean, y(P) can be the true mean of distribution P. For the bootstrap case,
the bootstrap estimate of bias is,

és = Buas(0*) = EpR(X", P) = Ep{s(X*)} — u(P)
where R(X*,P) = s(X*) — u(P)
As we do for the bootstrap standard estimate, we can apply a Monte Carlo algorithm to
approach to the &5, which is,

& * Zg=19’*(~b) D ’X) ~ & * &
g =2=0T () =670 — A(P)  AsB, & - .

4.3 The bootstrap estimate of confidence interval

Once we have the B bootstrap samples, we can estimate the sampling distribution of the
interested statistics, from which the bootstrap confidence intervals can be obtained. There
are a variety of confidence interval types. The simplest case, standard confidence interval
is calculated as,

9L(standard) = 9-Za/25'§, eU(standard) = é\"_Zoz/zoﬁl;

where 0 is the estimate of statistic of interest based on the original data, and &3 is the
bootstrap standard error. z,/, represents the critical value of the standard normal
distribution.

The percentile interval is calculated by the empirical quantiles of the bootstrap

—

replications, 8*@)_ ... ,0*(B) that is,
PP 1 B —
P(G* < GL(percentile)) = _2 1{9*(b) < 9L(percentile)} =S
B Lap=1 2
P(H = HU(percentile)) = Ezb—l 1{9 (®) = 9U(percentile)} = Ea
The Bias Corrected Accelerated (BCA) method is a modification of the Bias Corrected
percentile method, it adjusts for both bias and skewness of the bootstrap distribution.
Define the cumulative bootstrap sample distribution of statistics 07 is G, that is, G(t) =
#(6*®) < t)/B, (b=12,...,B, # represents the number counting). G~'(-) is the
corresponding quantile function from bootstrap distribution. ®~1()is the quantile function
from the standard normal distribution. The bias corrected percentile confidence interval
(BC) is described as follows: 2, is the bias correction factor,  is the estimate of statistic
of interest based on the original data. The BC confidence interval becomes the percentile
interval when Z, = 0 (no bias):
OLe) = GTD(22, + Zgs2)]
Oue) = GTHD(22, + Z1_a2)]
#(6*® < §)
B

Furthermore, we define 9_i as the interested statistic calculated by deleting observation x;
from the original sample (x4, ...,%,), the average deleted statistic is defined as 8, =
Y™ .8 ;/n, which is similar with the jackknife principle. The Bias Corrected Accelerated

—_

where 2o = ®71[G(0)] = &1
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(BCA) confidence interval is described as follows, @ is the accelerated factor, the BCA
confidence interval becomes the BC interval when @ = 0.

ZAO + Za/z
1 - a.(ZAO + Za/z)

~ Zo+ z4_
Ouaea) = GHP (2, + AO " 1-a/2
1- a(zo + Zl_a/z)

Za(80 - 0.)°
6[27,(Bo — 6232
Finally, we consider the bootstrap-t confidence interval (A.Colin Cameron 2000). Instead
of calculating the confidence interval of 8, we define w = (8 — 0)/&, where & is the
estimated standard error of 8 based on the original sample, and we want to calculate the
bootstrap confidence interval of w. Similarly, we draw B bootstrap samples from the

OLBca) = G P [20 +

where 4 =

original sample, calculate w; = (6*®) — 0)/c*®) | where o*®) is the standard error
estimate based on the bootstrap sample b. Based on the calculated wy, ..., wg, we draw the
percentile bootstrap-t confidence interval as below,

—_

o 18 ,
P(Wb < WL(percentile)) = Ezb_l 1{Wb < WL(percentile)} ~ —

[EEN \S]

S 1 B .
P(Wb = WU(percentile)) = Ezb_l 1{Wb = WU(percentile)} ~5

5. Monte Carlo Simulation

In order to examine the properties of our bootstrap methods, we conduct several Monte
Carlo exercises for the two level linear mixed model below. Compared with the model in
section 2, we exclude the mother education fixed effect:

Yij = Bo + B1Xiik + Batij + Psti® + PatiXiija + Pstii>Xiiki + boi + uki + buiti + ijk

i=1,2,...,n; (n;=number of students); j = 1,2,...6 (measurement time point); k = 1,2
(treatment); | = 1,2,..., n; (n;=classroom number); X;: dummy variable for treatment level
(I=condition1; O=condition0); t;: measurement time point; bo~N(0,5:%) random intercept
effect for student i; b;i~N(0,53%) random slope effect for student i; u~N(0, 64?) random
intercept effect for classroom 1 within treatment k; g;~N(0, 62) residual.

We generate R=500 Monte Carlo samples by using the parameter estimates as in Section
2. The random effect values are obtained by using rmvnorm and rnorm function in R. We
assume there are 92 classrooms with 5 students in each classroom, each student is measured
at six time points (time= 1, 2, 3.5, 6, 7.3, 8.8). We assign 49 out of 92 classrooms with
treatment 0, and the other 43 classrooms with treatment 1. Totally, each Monte Carlo
sample contains 2760 (92x5%6) observations.

For each Monte Carlo sample we generate B=1000 bootstraps by using the different
methods discussed in section 3. Finally we get R=500 bootstrap confidence intervals
(0=0.05). If the method is appropriate, the probability of the confidence intervals
containing the corresponding true parameter values should be around 0.95 (for 95%
confidence interval). It is noticeable that the model might not converge for some bootstrap
samples, and the Bca confidence interval might not be able to calculate in some cases. So
the total number of confidence intervals is less than or equal to R=500.
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Table 1 and Table 2 show the Monte Carlo simulation results for different bootstrap
methods with the normal distribution model. The shaded area in Table 1 and Table 2 are

the numbers outside the theoretical interval 0.95+1.96* /O'Oggg'%, which is (0.931, 0.969).

Table 1: Monte Carlo simulation results of the fixed effects parameters (model residual term
normally distributed). R: Monte Carlo sample number. The scores in the table are the percentiles
of confidence intervals containing the true parameter values. Good methods will have the values
around 95%, since our significance level a=0.05.
Monte Carlo Simulations (Normal, R=500,a=0.05)
Methods . . . conditnl: | conditnl:
Intercept | conditnl time timesq . .
time timesq
No bootstrap 95.60% | 94.80% | 96.20% | 96.80% | 94.00% 94.20%
Residual (Perc) 56.00% | 54.60% | 95.20% | 97.80% | 92.20% 93.00%
Parametric (Perc) | 97.00% | 95.80% | 95.20% | 94.80% | 95.40% 95.00%
Cluster TID (Perc) | 96.00% | 93.80% | 95.00% | 94.40% | 93.20% 92.80%
Cluster CID (Perc) | 85.60% | 85.60% | 95.40% | 96.20% | 93.80% 94.80%
Residual (Bca) 55.40% | 53.80% | 95.00% | 97.40% | 91.80% 92.80%
Parametric (Bca) 96.40% | 95.20% | 96.00% | 96.40% | 95.00% 95.00%
Cluster TID (Bca) 95.80% | 94.20% | 93.00% | 94.00% | 93.20% 93.80%
Cluster CID (Bca) 85.20% | 85.60% | 95.00% | 96.40% | 94.00% 94.40%
Cluster TID (b_t) 96.40% | 94.40% | 95.40% | 94.20% | 92.80% 92.40%
Cluster CID (b_t) 77.20% | 77.20% | 95.60% | 96.20% | 93.40% 93.80%

Table 2: Monte Carlo simulation results of the random effects parameters (model residual term
normally distributed). sdcorl(o;): random intercept effect for student; sdcor3(o3): random slope
effect for student; sdcord: random intercept effect for classroom; sdcor2 (o,) = 0,3/0; * 03,
which is the correlation. sdcor: residual term.

VMethods Monte Carlo Simulations (Normal, R=500, a=0.05)
sdcorl sdcor2 sdcor3 sdcor4d sdcor
No bootstrap 97.00% 96.00% 94.80% 96.00% 95.00%
Residual (Perc) 38.40% 32.20% 8.00% 37.60% 95.60%
Parametric (Perc) 96.40% 95.80% 94.80% 94.80% 95.80%
Cluster TID (Perc) 96.00% 94.40% 93.20% 93.60% 94.20%
Cluster CID (Perc) 28.80% 91.60% 93.40% 6.60% 93.80%
Residual (Bca) 2.14% 25.00% 0.00% 36.55% 96.20%
Parametric (Bca) 96.20% 96.00% 95.00% 95.40% 95.60%
Cluster TID (Bca) 95.40% 94.40% 94.20% 94.00% 94.00%
Cluster CID (Bca) 62.30% 96.20% 94.40% 0.00% 93.80%

We notice that for all fixed effect parameters and random effect parameters, the
parametric bootstrap and cluster bootstrap (TID) methods have the Monte Carlo score
around 95%, which means about 95% confidence intervals calculated by these two methods
contain the true corresponding parameter values. However, the residual bootstrap and
cluster bootstrap (CID) methods fails to achieve the 95% score for the fixed effects
(intercept, conditionl) and the random effects (sdcorl, sdcor2, sdcor3, sdcor4). This
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simulation result indicates that clustering in higher level (classroom, TID) is better than
clustering in lower level (student, CID); it is because that bootstrap at student level ignores
correlation among the children in the same classroom. Residual bootstrap is much less
accurate than the parametric bootstrap, since it only resamples the i.i.d. &y, but not the
other random effects. Different confidence interval calculation methods, the percentile, the
Bca and bootstrap-t, do not have significant impacts on the final Monte Carlo simulation
results.

Table 3: Monte Carlo simulation results of the fixed effects parameters (model residual term log
normally distributed).

Monte Carlo Simulations (Log Normal, R=500,0=0.05)

Methods . . . conditnl: | conditnl:
Intercept | conditnl | time timesq . .
time timesq

Residual (Perc) 1.00% 8.80% | 85.80% | 88.00% | 96.00% 96.40%
Parametric (Perc) 8.00% 27.80% | 85.00% | 83.60% | 97.80% 96.60%
Cluster TID (Perc) 7.80% 22.00% | 93.60% | 93.60% | 94.00% 94.60%
Cluster CID (Perc) 3.40% 12.40% | 93.80% | 93.20% | 94.20% 94.40%

Residual (Bca) 1.20% 12.20% | 85.80% | 87.00% | 95.80% 96.60%
Parametric (Bca) 7.60% 23.20% | 84.00% | 83.00% | 97.00% 96.60%
Cluster TID (Bca) 8.20% 22.40% | 92.60% | 92.60% | 93.60% 93.80%
Cluster CID (Bca) 4.40% 13.00% | 93.20% | 92.60% | 93.60% 93.20%
Cluster TID (b_t) 8.20% 23.40% | 92.40% | 92.60% | 93.20% 93.00%
Cluster CID (b_t) 1.60% 10.20% | 94.20% | 92.60% | 93.80% 93.20%

Table 4: Monte Carlo simulation results of the random effects parameters (model residual term
log normally distributed).
Monte Carlo Simulations (Log Normal, R=500, a=0.05)
Methods

sdcorl sdcor2 sdcor3 sdcord sdcor
Residual (Perc) 23.60% 25.60% 12.00% 51.80% 0.00%
Parametric (Perc) 77.80% 72.00% 64.20% 96.00% 0.00%
Cluster TID (Perc) 94.00% 93.00% 91.20% 93.40% 0.00%
Cluster CID (Perc) 48.20% 91.60% 91.20% 5.20% 0.00%
Residual (Bca) 2.14% 25.00% 0.00% 36.55% 0.00%
Parametric (Bca) 77.60% 63.80% 70.40% 95.80% 0.00%
Cluster TID (Bca) 91.60% 90.66% 85.60% 93.40% 0.00%
Cluster CID (Bca) 62.30% 98.73% 87.20% 0.00% 0.00%

Furthmore, we also do 500 Monte Carlo simulations based on log normal distributed
samples, which means in the model, &ij~LogN(0, 6?). We still use the parameter estimates
as in Section 2, except we decrease the residual error estimate to the half of the original
value. The log normal Monte Carlo results are shown in Table 3 and Table 4, most of the
values are out of the theoretical interval (0.931, 0.969). However, there are still certain
values calculated by cluster bootstrap method within the range. It is noticeable that the
sdcor has 0.00% for all methods. In order to explain it, we perform another R=300 log
normal Monte Carlo simulation and calculate the Monte Carlo bias of sdcor: Cluster CID
(3.37), Cluster TID (3.38), Parametric (3.46), Residual (3.45). All methods have very large
bias, which explain the 0.00% estimation power.
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6. Application Results

In Section 2, we applied the simple linear mixed model to our educational data, however,
we observed a lot of outliers of this data from the chi-square QQ plot (Figure 2). The next
step, we applied the bootstrap methods and bootstrap bias, standard error, confidence
interval calculations to our real educational dataset. The simple regression result without
any bootstrapping is shown in Section 2. Here, we show the confidence interval results of
the fixed effect parameters and random effect parameters in Table 5 and Table 6
correspondently.

QQ Plot Assessing Multivariate Normality of the Educational Sample

40

Mahalanohis D2

qchisg{ppoints(n), df = p)

Figure 2: Chi-square QQ plot of the educational data. The multinormality of the educational data
(IsrSTtol. 1srSIto2... IsrSIto6) is assessed by the chi-square QQ plot. Only the complete observations
were used for making the plot, those with missing values were ignored

Under the null hypothesis Ho: Bi=0, we reject if zero is not within the calculated
confidence interval. Different bootstrap methods and confidence interval calculation
methods give us similar results (Table 5), for example, all methods suggest a significant
linear time trend(time), however ,the quadratic time trend (timesq) is not significant. The
distinct predictions are marked in bold in Table 5, for example, the cluster bootstrap (TID)
indicates insignificant coefficient for conditionl:time, however, the other methods suggest
that it is significant. The intraclass correlation:

p = 3.016%/(3.0162 + 2.8476%) = 0.5287.

It is interesting that the estimates of sdcor4, which is the random intercept effect for
classroom, are very different between the cluster bootstrap (CID) and cluster bootstrap
(TID) (Table 6). The cluster bootstrap method (CID) gives us the biggest variability
between classrooms. No significant differences exist among different confidence interval
calculation methods (percentile, Bca and bootstrap -t). The abbreviations are shown in
Table 7.
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Table 7: Table of Abbreviations

Definition | grp varl var2
sdcorl TID:CID | (Intercept) <NA>
sdcor2 TID:CID | (Intercept) time
sdcor3 TID:CID | time <NA>
sdcor4 TID (Intercept) <NA>
sdcor Residual <NA> <NA>

The bootstrap bias and bootstrap standard errors are shown in Table 8 and Table 9. Since
we don’t know the true parameter value, the bias of the ‘no bootstrap’ cannot be calculated.
Also, since the sampling distribution of variance estimates is in general strongly
asymmetric, the standard error is not a good characterization of the uncertainty. Here we
don’t provide the Wald variance-covariance matrix of the variance-covariance parameters
themselves. In accordance with the confidence interval results, the cluster bootstrap (CID)
method gives the biggest bias (1.779) of sdcor4 (random intercept effect for classroom).

7. Conclusion

In this study, we compare several different bootstrap methods (parametric bootstrap,
parametric residual bootstrap and clustering bootstrap) for clustered, hierarchical or multi-
level data. The Monte Carlo simulations demonstrate that the parametric bootstrap and
clustering bootstrap (at classroom level) perform better estimation than the residual
bootstrap and cluster bootstrap (at student level). The application result shows that different
bootstrap methods do make some differences on the final estimates, however different
confidence interval calculation methods (percentile, Bca, bootstrap-t) give us similar
results corresponding to each bootstrap method. The cluster bootstrap provides a very
simple resampling scheme comparing with the more complex strategies, for example,
random-effects bootstrap or wild bootstrap. It will be interesting to explore the number of
clusters effect in our future study.
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