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Abstract 
Cluster bootstrap is the usually used method for bootstrapping clustered data. A 
longitudinal study often contains multiple levels. For example, an educational study may 
have two levels: student level and classroom level (students nested within classrooms). In 
this case, resampling may be done on either the student level or the classroom level. This 
paper compares these two cluster bootstrap methods with the parametric bootstrap method 
for standard errors, bias and confidence intervals of parameter estimates obtained under a 
two-level mixed model. Several Monte Carlo simulations are also performed, showing that 
the parametric bootstrap and cluster bootstrap at the classroom level are better methods 
comparing with the residual bootstrap and cluster bootstrap at the student level. 
Key Words: cluster effect, Monte Carlo simulation, multilevel 
 

1. Introduction 
 
  Bootstrap is an important statistical tool that can be used to estimate the properties of an 
estimator. It is usually used in complex situations where asymptotic approximations are 
difficult to compute or non-available (D.Boos 2003). Bootstrap standard error, bias and 
confidence intervals are often calculated to measure the accuracy of complex statistics, for 
example, the parameter estimates of linear regression model.  
 
  In history, the Quenouille-Tukey jackknife method preceded the bootstrap, which was 
shown as an approximation to the bootstrap via the delta method (B. Efron 1979). The 
bootstrap principle is simple (R. T. B. Efron 1986). In the real world, we have an observed 
random sample X = (X1,……,Xn), which is sampled from an unknown probability 
distribution P, and the statistic of interest is a function of X: 𝜃𝜃� = s(X). In the bootstrap 
world, we have an observed bootstrap sample X* = (X*

1,……,X*
n), which is sampled from 

the empirical distribution 𝑃𝑃�  (𝑃𝑃�(𝐴𝐴) =  1
𝑛𝑛
∑ 1𝐴𝐴(𝑋𝑋𝑖𝑖), 𝑓𝑓𝑓𝑓𝑓𝑓 𝐴𝐴 ⊑ 𝑅𝑅𝑛𝑛
𝑖𝑖=1 ), and the statistic is 

𝜃𝜃∗�=s(X*). Instead of evaluating the statistical properties (bias, standard errors, etc) of 𝜃𝜃� 
based on the sampling distribution of 𝜃𝜃� , we mimic this process by evaluating these 
properties of 𝜃𝜃∗� based on the bootstrap sampling distribution of 𝜃𝜃∗�. The benefit of doing 
so is we don’t actually need to compute the exact bootstrap sampling distribution of 𝜃𝜃∗�, we 
can use Monte Carlo methods to obtain an approximation: draw B independent bootstrap 
samples X*(1),……, X*(B) from 𝑃𝑃� , compute 𝜃𝜃∗(𝑏𝑏)�  for each bootstrap sample, and finally 
compute the estimated bias, standard errors and confidence intervals from 
𝜃𝜃∗(1)� ,……,𝜃𝜃∗(𝐵𝐵)� . It is noticeable that we assume resampled cases in the bootstrap samples 
are i,i,d.  
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  There are various kinds of methods to draw the bootstrap samples from clustered data (A. 
C.A.Field 2007), such as randomized cluster bootstrap, cluster bootstrap, two-stage 
bootstrap, random-effect bootstrap, residual bootstrap and parametric bootstrap. In this 
study, we use the parametric bootstrap and the cluster bootstrap. The cluster bootstrap is a 
simplified version of randomized cluster bootstrap, in which clusters are selected by simple 
random sampling with replacement, and no further permutation. When we treat each 
observation as a cluster in the horizontal data format, for example, student level in this 
study, the cluster bootstrap is simply case resampling bootstrap. The parametric bootstrap 
is similar with the nonparametric bootstrap, the difference is parametric bootstrap samples 
are taken from the estimated parametric model instead of the empirical distribution 𝑃𝑃�.     
 
  In this study, we investigate the relationship between the students’ grades with factors 
including classroom, treatment and mother education level. There are 289 students in total, 
and each student was measured six times during the semester. A two-level mixed model 
(student level, classroom level) is fitted to the data using the lme4 package in R (Bates 
2010).  
 
  The paper is organized as follows: In section 2, we make a brief description of the two-
level random effects model. In section 3, we introduce the bootstrap methods we use, 
including cluster bootstrap with either cluster in student level (CID) or classroom level 
(TID) and parametric bootstrap. In section 4, we explain how to calculate the bootstrap 
bias, bootstrap standard errors and bootstrap confidence intervals (percentile method, Bca 
method and bootstrap-t method). Section 5 we carry out a Monte Carlo study to evaluate 
the performance of different bootstrap methods we use. Finally, in section 6, we apply 
different bootstrap methods for our real educational sample.  
 

2. Linear Mixed-Effects Model Without Bootstrap 
 
  In this study, we would like to investigate the relationship between the students’ grades 
(letter sound identification, lsrSIto) with several factors, such as the treatments 
(condition=0/1), mother education level (matedu_c), measurement time (time) and time 
square (timesq), student (CID) and classroom (TID). Students are nested within the 
classrooms, classrooms are randomly nested within the treatments (S.Gray 2011). The 
linear mixed model is:  
 

Yijkl = β0 + β1X1ijkl + β2tij + β3tij
2 + β4X2ijkl + β5tijX1ijkl + β6tij

2X1ijkl + b0i + ukl + b1itij + εijkl 
 
i = 1,2,…,𝑛𝑛𝑖𝑖  (𝑛𝑛𝑖𝑖=number of students); j = 1,2,…6 (measurement time point); k = 1,2 
(treatment); l = 1,2,…, 𝑛𝑛𝑙𝑙 (𝑛𝑛𝑙𝑙=classroom number); X1: dummy variable for treatment level 
(1=condition1; 0=condition0); X2: continuous variable for mother education level; tij: 
measurement time point; b0i~N(0,σ1

2) random intercept effect for student i; b1i~N(0,σ3
2) 

random slope effect for student i; ukl~N(0, σ4
2) random intercept effect for classroom l 

within treatment k; εijkl~N(0, σ2) residual.  
 
  If we consider the general form of linear mixed model as 𝑌𝑌�⃑𝑖𝑖=𝑋𝑋𝑖𝑖  𝛽𝛽+𝑍𝑍𝑖𝑖𝑏𝑏�⃑ 𝑖𝑖+𝜀𝜀𝑖𝑖 (i=1,2,… 𝑛𝑛𝑖𝑖), 
where 𝑌𝑌�⃑𝑖𝑖 is a 6×1 vector. We assume the 𝑌𝑌�⃑𝑖𝑖 in the same classroom l within treatment k are 
correlated via the random effect ukl. The variance-covariance matrix of 𝑌𝑌�⃑𝑖𝑖  is 
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Cov(𝑌𝑌�⃑𝑖𝑖 )=  𝑍𝑍𝑖𝑖𝐺𝐺𝑖𝑖𝑍𝑍𝑖𝑖′ + 𝑅𝑅𝑖𝑖 , where  𝑅𝑅𝑖𝑖 = 𝐶𝐶𝐶𝐶𝐶𝐶(𝜀𝜀𝑖𝑖) = σ2I. 𝐺𝐺𝑖𝑖 = 𝐶𝐶𝐶𝐶𝐶𝐶�𝑏𝑏�⃑ 𝑖𝑖� = �
𝜎𝜎12 𝜎𝜎13 0
𝜎𝜎13 𝜎𝜎32 0
0 0 𝜎𝜎42

�  . 

The intraclass correlation among students within classroom kl is defined as 
ρ=𝜎𝜎42 (𝜎𝜎42 ∗ 𝜎𝜎2)⁄ . The REML likelihood function is:  -2logL(𝛼⃑𝛼;𝐾𝐾𝑦⃑𝑦)=In |KV(𝛼⃑𝛼)K`|+(𝑦⃑𝑦 −
𝑋𝑋𝛽̂𝛽)` V(𝛼⃑𝛼)-1(𝑦⃑𝑦 − 𝑋𝑋𝛽̂𝛽)+(H-P)In(2π), where V(𝛼⃑𝛼) is big variance covariance matrix. The 
covariance parameter vector 𝛼⃑𝛼 is defined as (𝜎𝜎12,𝜎𝜎32,𝜎𝜎42,𝜎𝜎13,𝜎𝜎2 ). H is the total observation 
number. K is selected as E(K𝑌𝑌�⃑ )=0, P=Rank(X).  
 

 
Figure 1: Signed square root, ζ, of the likelihood ratio test statistic for each of the parameters in the 
linear mixed model without bootstrap. The vertical lines are the endpoints of 50%, 80%, 90%, 95%, 
and 99% profile confidence interval derived from the REML test statistics. 𝝆𝝆𝟏𝟏𝟏𝟏 = 𝝈𝝈𝟏𝟏𝟏𝟏 𝝈𝝈𝟏𝟏 ∗ 𝝈𝝈𝟑𝟑⁄ , 
which is the correlation. 
 
  We fit this model with lme4 package in R. The restricted maximum likelihood (REML) 
estimates and the profile confidence intervals are shown in Table 5 and Table 6. The lme4 
package also provides the profile zeta plots for assessing the variability of the parameter 
estimates. The signed square root of the likelihood ratio test statistic, called ζ, is plotted 
versus the parameter value (Figure 1). A ζ value can be compared to the quantiles of the 
standard normal distribution, for example, a 95% profile confidence interval is -1.960< 
ζ<1.960 (Bates 2010). All the profile zeta plots are very close to straight lines, which means 
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the statistical inferences based on the parameters’ estimates are reliable. Zero is contained 
in the 95% profile confidence intervals of condition1 (β1), timesq (β3), and 
condition1:timesq (β6). 
 

3. Cluster Bootstrap and Parametric Bootstrap Method 
 
  Bootstrapping data with more than one level is complicated. The non-parametric random-
effect bootstrap and residual bootstrap are two commonly used methods, which have been 
fully discussed with either balanced data (A. C.A.Field 2007) or unbalanced data (Z. P. 
C.A.Field 2008). Both these two methods and the parametric bootstrap method generate 
the bootstrap samples after modelling, which assumes the model is correctly specified. 
Conversely, the cluster bootstrap method (case-resampling method) draws the bootstrap 
samples before modelling, thus is more robust to model misspecification. Of course, there 
are certain disadvantages of applying the cluster bootstrap method to multilevel data, for 
example, resampling at one level will usually destroy the natural hierarchy of the original 
data (Carpenter 2003).  
 
3.1 Cluster bootstrap at the student (CID) level or the classroom (TID) level 
  Our dataset contains 1734 observations in the long format, which are clustered at two 
levels: (1) all observations from the same student, and (2) all observations from the same 
classroom. There are 289 unique students, each containing 6 observations (6 measurement 
times), and there are 92 unique classrooms, containing unequal observations.   
 
  Cluster bootstrapping at the student level: we draw samples of g = (student numbers) 
clusters independently with replacement. The bootstrap sample is the set of mg 
observations 𝑌𝑌𝑖𝑖𝑖𝑖∗  (m=6, i=1,2,…,g), where the g m-vectors (𝑌𝑌𝑖𝑖1∗ , … ,𝑌𝑌𝑖𝑖𝑖𝑖∗ ) are treated as i.i.d 
distributions with probability 1/g on each of the g m-vectors (𝑌𝑌𝑖𝑖1, … ,𝑌𝑌𝑖𝑖𝑖𝑖). In this case, we 
ignore correlation among students in the same classroom. It has been proven that under the 
random-effect model, the simple cluster bootstrap variances of several statistics, such as 
the sample total ( 𝑇𝑇 = 𝑚𝑚𝑚𝑚𝑌𝑌..� ), between- and within-cluster sum of squares ( 𝑆𝑆𝐵𝐵2 =
𝑚𝑚∑ (𝑌𝑌�𝑖𝑖. − 𝑌𝑌�..)2

𝑔𝑔
𝑖𝑖=1 , 𝑆𝑆𝑊𝑊2 = ∑ ∑ (𝑌𝑌𝑖𝑖𝑖𝑖 − 𝑌𝑌�𝑖𝑖.)2𝑚𝑚

𝑗𝑗=1
𝑔𝑔
𝑖𝑖=1 ) and the covariance between the sum of 

squares are asymptotically correct as g→∞ with m fixed (A. C.A.Field 2007).     
 
  Cluster bootstrapping at the classroom level: we draw samples of g = (classroom numbers) 
clusters independently with replacement. The bootstrap sample contains ∑ 𝑚𝑚𝑖𝑖

𝑔𝑔
𝑖𝑖=1  

observations. It is noticeable that since our data is unbalanced at the classroom level, the 
new bootstrap sample size might not be the same as the original dataset.  
 
  In addition, we notice that the classrooms are randomly assigned with a unique treatment 
(condition=0/1) in the educational example. In order to reduce the distortion of the natural 
hierarchy of the original data, firstly we subset the original dataset into condition=0 group 
and condition=1 group, then do the cluster resampling separately in both groups, and finally 
combine the two subset samples into a new bootstrap sample. 
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3.2 Parametric bootstrap for random-effects models 
  Based on the random effects model described in section 2. We assume that the parameters 
(𝛽𝛽,𝐺𝐺𝑖𝑖,𝜎𝜎2 ) have been estimated by the REML method, and we obtain the estimates 
(𝛽̂𝛽,𝐺𝐺�𝑖𝑖,𝜎𝜎�2). Then the parametric bootstrap proceeds as follows: 
 
(1). Simulate 𝜀𝜀𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖∗ ~𝑁𝑁(0,𝜎𝜎�2), also simulate the 𝑏𝑏�⃑ 𝑖𝑖∗ from the distribution 𝑁𝑁(0,𝐺𝐺�𝑖𝑖).  
(2). Calculate the bootstrap sample data 𝑌𝑌𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖∗  by setting: 
𝑌𝑌𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖∗ = 𝛽̂𝛽0 + 𝛽̂𝛽1𝑋𝑋1𝑖𝑖𝑖𝑖𝑘𝑘𝑘𝑘 + 𝛽̂𝛽2𝑡𝑡𝑖𝑖𝑖𝑖 + 𝛽̂𝛽3𝑡𝑡𝑖𝑖𝑖𝑖2  + 𝛽̂𝛽4𝑋𝑋2𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 + 𝛽̂𝛽5𝑡𝑡𝑖𝑖𝑖𝑖𝑋𝑋1𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 + 𝛽̂𝛽6𝑡𝑡𝑖𝑖𝑖𝑖2 𝑋𝑋1𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 + 𝑏𝑏0𝑖𝑖∗ + 𝑢𝑢𝑘𝑘𝑘𝑘∗

+ 𝑏𝑏1𝑖𝑖∗ 𝑡𝑡𝑖𝑖𝑖𝑖 + 𝜀𝜀𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖∗  
(3). Refit the random-effects model to the new bootstrap sample data in step 2. Get the first 
set of bootstrap estimates of parameters (𝛽̂𝛽∗,𝐺𝐺�𝑖𝑖

∗,𝜎𝜎�2∗). 
(4). Repeat steps 1~3 B times to obtain B sets of parameter estimates. Calculate bootstrap 
standard errors, bias and confidence intervals.   
 
  The build-in function ‘bootMer’ in the R lme4 package performs model-based parametric 
bootstrap for mixed models. We perform two kinds of parametric bootstrap here based the 
option ‘use.u=FALSE/TRUE’: if ‘use.u=FALSE’, each simulation creates new values of 
both 𝑏𝑏�⃑ 𝑖𝑖∗  and the i.i.d. 𝜀𝜀𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖∗  using R rnorm(). If ‘use.u=TRUE’, only the i.i.d. 𝜀𝜀𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖∗  are 
resampled, and the other random effects are fixed at their estimated values. The first one is 
labeled as ‘parametric’, and the second one is called ‘residual’ in the following tables. It is 
noticeable that the ‘residual bootstrap’ in the later sections is actually the ‘parametric 
residual bootstrap’, not the usual residual bootstrap.  

 
4. Bootstrap Evaluation of the Parameter Estimates 

 
4.1 The bootstrap estimate of standard error 
  We follow the notations in the Introduction section. Suppose the observed data X = 
(X1,……,Xn) is sampled from an unknown probability distribution P, and the statistic of 
interest is a function of X: 𝜃𝜃� = s(X), to which we will assign an estimated standard error. 
Let 𝜎𝜎(𝑃𝑃) be the standard error of 𝜃𝜃�, indicating a function of the distribution P. we have: 
𝜎𝜎(𝑃𝑃) = [𝑉𝑉𝑉𝑉𝑉𝑉𝑃𝑃{𝑠𝑠(𝑋𝑋)}]1/2 . We define the bootstrap estimate of standard error is 𝜎𝜎�𝐵𝐵 =
𝜎𝜎�𝑃𝑃��, where 𝑃𝑃� as the empirical distribution.  
 
  In most cases, it is difficult to calculate the function 𝜎𝜎(𝑃𝑃) and also the function 𝜎𝜎�𝑃𝑃��, 
however, since we notice that a bootstrap sample is just the random sample of size n drawn 
with replacement from the original data X = (X1,……,Xn) , we can use a Monte Carlo 
algorithm to approach to 𝜎𝜎�𝑃𝑃�� . Assume the statistics calculated from each bootstrap 
sample are 𝜃𝜃∗(1)� ,……,𝜃𝜃∗(𝐵𝐵)� , the sample standard deviation of all the 𝜃𝜃∗(𝑏𝑏)� s (b=1,2,…,B) 
is, 

𝜎𝜎�𝐵𝐵∗ = �
∑ �𝜃𝜃∗(𝑏𝑏)� −𝜃𝜃∗(.)� �

2𝐵𝐵
𝑏𝑏=1

𝐵𝐵 − 1
�

1/2

 

𝜃𝜃∗(.)� =
∑ 𝜃𝜃∗(𝑏𝑏)�𝐵𝐵
𝑏𝑏=1
𝐵𝐵

 

  It is easy to see that as B→∞, 𝜎𝜎�𝐵𝐵∗ gets closer to 𝜎𝜎�𝐵𝐵 = 𝜎𝜎�𝑃𝑃��, it has been shown by Efron 
that the difference between 𝜎𝜎�𝐵𝐵∗ and 𝜎𝜎�𝐵𝐵 can be ignored once B is adequate large (50~200).  
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4.2 The bootstrap estimate of bias 
  For the non-bootstrap case, based on the definition of bias, the bias of the statistics of 
interest 𝜃𝜃� = s(X) for estimating parameter μ is, 

𝜉𝜉 = 𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵�𝜃𝜃�� = 𝐸𝐸𝑃𝑃𝑅𝑅(𝑋𝑋,𝑃𝑃) = 𝐸𝐸𝑃𝑃{𝑠𝑠(𝑋𝑋)} − 𝜇𝜇(𝑃𝑃) 
𝑤𝑤ℎ𝑒𝑒𝑒𝑒𝑒𝑒 𝑅𝑅(𝑋𝑋,𝑃𝑃) = 𝑠𝑠(𝑋𝑋) − 𝜇𝜇(𝑃𝑃) 

  E represents the expectation with the probability distribution of P. For example, s(X) can 
be the sample mean, 𝜇𝜇(𝑃𝑃) can be the true mean of distribution P. For the bootstrap case, 
the bootstrap estimate of bias is, 

𝜉𝜉𝐵𝐵 = 𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵��𝜃𝜃�∗� = 𝐸𝐸𝑃𝑃�𝑅𝑅�𝑋𝑋∗,𝑃𝑃�� = 𝐸𝐸𝑃𝑃�{𝑠𝑠(𝑋𝑋∗)} − 𝜇𝜇(𝑃𝑃�) 
𝑤𝑤ℎ𝑒𝑒𝑒𝑒𝑒𝑒 𝑅𝑅�𝑋𝑋∗,𝑃𝑃�� = 𝑠𝑠(𝑋𝑋∗) − 𝜇𝜇(𝑃𝑃�) 

  As we do for the bootstrap standard estimate, we can apply a Monte Carlo algorithm to 
approach to the 𝜉𝜉𝐵𝐵, which is, 

𝜉𝜉𝐵𝐵∗ = ∑ 𝜃𝜃∗(𝑏𝑏)�𝐵𝐵
𝑏𝑏=1

𝐵𝐵
− 𝜇𝜇(𝑃𝑃�) = 𝜃𝜃∗(.)� −  𝜇̂𝜇(𝑃𝑃)      As B→∞, 𝜉𝜉𝐵𝐵∗ → 𝜉𝜉𝐵𝐵. 

 
4.3 The bootstrap estimate of confidence interval 
  Once we have the B bootstrap samples, we can estimate the sampling distribution of the 
interested statistics, from which the bootstrap confidence intervals can be obtained. There 
are a variety of confidence interval types. The simplest case, standard confidence interval 
is calculated as, 

𝜃𝜃𝐿𝐿(𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠) = 𝜃𝜃�-𝑧𝑧𝛼𝛼/2𝜎𝜎�𝐵𝐵∗,    𝜃𝜃𝑈𝑈(𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠) = 𝜃𝜃�+𝑧𝑧𝛼𝛼/2𝜎𝜎�𝐵𝐵∗ 
where 𝜃𝜃� is the estimate of statistic of interest based on the original data, and 𝜎𝜎�𝐵𝐵∗  is the 
bootstrap standard error. 𝑧𝑧𝛼𝛼/2  represents the critical value of the standard normal 
distribution.  
  
  The percentile interval is calculated by the empirical quantiles of the bootstrap 
replications, 𝜃𝜃∗(1)� ,……,𝜃𝜃∗(𝐵𝐵)� , that is, 

𝑃𝑃��𝜃𝜃∗� ≤ 𝜃𝜃𝐿𝐿(𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝)� =
1
𝐵𝐵
� 1�𝜃𝜃∗(𝑏𝑏)� ≤ 𝜃𝜃𝐿𝐿(𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝)�

𝐵𝐵

𝑏𝑏=1
≈

1
2
𝛼𝛼 

𝑃𝑃��𝜃𝜃∗� ≥ 𝜃𝜃𝑈𝑈(𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝)� =
1
𝐵𝐵
� 1�𝜃𝜃∗(𝑏𝑏)� ≥ 𝜃𝜃𝑈𝑈(𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝)�

𝐵𝐵

𝑏𝑏=1
≈

1
2
𝛼𝛼 

  The Bias Corrected Accelerated (BCA) method is a modification of the Bias Corrected 
percentile method, it adjusts for both bias and skewness of the bootstrap distribution. 
Define the cumulative bootstrap sample distribution of statistics 𝜃𝜃∗� is 𝐺𝐺�, that is, 𝐺𝐺�(𝑡𝑡) =
#(𝜃𝜃∗(𝑏𝑏)� < 𝑡𝑡) 𝐵𝐵⁄ , (b=1,2,…,B, # represents the number counting). 𝐺𝐺�−1(∙)  is the 
corresponding quantile function from bootstrap distribution. Φ−1(∙)is the quantile function 
from the standard normal distribution. The bias corrected percentile confidence interval 
(BC) is described as follows: 𝑧̂𝑧0 is the bias correction factor, 𝜃𝜃� is the estimate of statistic 
of interest based on the original data. The BC confidence interval becomes the percentile 
interval when 𝑧̂𝑧0 = 0 (no bias):  

𝜃𝜃𝐿𝐿(𝐵𝐵𝐵𝐵) = 𝐺𝐺�−1[Φ(2𝑧̂𝑧0 + 𝑧𝑧𝛼𝛼/2)] 
𝜃𝜃𝑈𝑈(𝐵𝐵𝐵𝐵) = 𝐺𝐺�−1[Φ(2𝑧̂𝑧0 + 𝑧𝑧1−𝛼𝛼/2)] 

𝑤𝑤ℎ𝑒𝑒𝑒𝑒𝑒𝑒 𝑧̂𝑧0 = Φ−1�𝐺𝐺��𝜃𝜃��� = Φ−1 �
#(𝜃𝜃∗(𝑏𝑏)� < 𝜃𝜃�)

𝐵𝐵 � 

  Furthermore, we define 𝜃𝜃�_𝑖𝑖 as the interested statistic calculated by deleting observation 𝑥𝑥𝑖𝑖 
from the original sample (𝑥𝑥1, … , 𝑥𝑥𝑛𝑛 ), the average deleted statistic is defined as 𝜃𝜃�0 =
∑ 𝜃𝜃�_𝑖𝑖
𝑛𝑛
𝑖𝑖=1 𝑛𝑛⁄ , which is similar with the jackknife principle. The Bias Corrected Accelerated 
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(BCA) confidence interval is described as follows, 𝑎𝑎� is the accelerated factor, the BCA 
confidence interval becomes the BC interval when 𝑎𝑎� = 0. 

𝜃𝜃𝐿𝐿(𝐵𝐵𝐵𝐵𝐵𝐵) = 𝐺𝐺�−1{Φ�𝑧̂𝑧0 +
𝑧̂𝑧0 + 𝑧𝑧𝛼𝛼 2⁄

1 − 𝑎𝑎��𝑧̂𝑧0 + 𝑧𝑧𝛼𝛼 2⁄ �
�} 

𝜃𝜃𝑈𝑈(𝐵𝐵𝐵𝐵𝐵𝐵) = 𝐺𝐺�−1{Φ�𝑧̂𝑧0 +
𝑧̂𝑧0 + 𝑧𝑧1−𝛼𝛼 2⁄

1 − 𝑎𝑎��𝑧̂𝑧0 + 𝑧𝑧1−𝛼𝛼 2⁄ �
�} 

𝑤𝑤ℎ𝑒𝑒𝑒𝑒𝑒𝑒 𝑎𝑎� =
∑ �𝜃𝜃�0 − 𝜃𝜃�_𝑖𝑖�

3𝑛𝑛
𝑖𝑖=1

6[∑ (𝜃𝜃�0 − 𝜃𝜃�_𝑖𝑖)2𝑛𝑛
𝑖𝑖=1 ]3/2 

  Finally, we consider the bootstrap-t confidence interval (A.Colin Cameron 2000). Instead 
of calculating the confidence interval of 𝜃𝜃 , we define 𝑤𝑤 = (𝜃𝜃� − 𝜃𝜃) 𝜎𝜎�⁄ , where 𝜎𝜎�  is the 
estimated standard error of 𝜃𝜃 based on the original sample, and we want to calculate the 
bootstrap confidence interval of w. Similarly, we draw B bootstrap samples from the 
original sample, calculate 𝑤𝑤𝑏𝑏∗ = (𝜃𝜃∗(𝑏𝑏)� −𝜃𝜃�)/𝜎𝜎∗(𝑏𝑏)� , where 𝜎𝜎∗(𝑏𝑏)�  is the standard error 
estimate based on the bootstrap sample b. Based on the calculated 𝑤𝑤1∗, … ,𝑤𝑤𝐵𝐵∗ , we draw the 
percentile bootstrap-t confidence interval as below, 

𝑃𝑃��𝑤𝑤𝑏𝑏∗ ≤ 𝑤𝑤𝐿𝐿(𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑒𝑒)� =
1
𝐵𝐵
� 1�𝑤𝑤𝑏𝑏∗ ≤ 𝑤𝑤𝐿𝐿(𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝)�

𝐵𝐵

𝑏𝑏=1
≈

1
2
𝛼𝛼 

𝑃𝑃��𝑤𝑤𝑏𝑏∗ ≥ 𝑤𝑤𝑈𝑈(𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝)� =
1
𝐵𝐵
� 1�𝑤𝑤𝑏𝑏∗ ≥ 𝑤𝑤𝑈𝑈(𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝)�

𝐵𝐵

𝑏𝑏=1
≈

1
2
𝛼𝛼 

 
5. Monte Carlo Simulation 

 
  In order to examine the properties of our bootstrap methods, we conduct several Monte 
Carlo exercises for the two level linear mixed model below. Compared with the model in 
section 2, we exclude the mother education fixed effect: 
  

Yijkl = β0 + β1X1ijkl + β2tij + β3tij
2 + β4tijX1ijkl + β5tij

2X1ijkl + b0i + ukl + b1itij + εijkl 
 
i = 1,2,…,𝑛𝑛𝑖𝑖  (𝑛𝑛𝑖𝑖=number of students); j = 1,2,…6 (measurement time point); k = 1,2 
(treatment); l = 1,2,…, 𝑛𝑛𝑙𝑙 (𝑛𝑛𝑙𝑙=classroom number); X1: dummy variable for treatment level 
(1=condition1; 0=condition0); tij: measurement time point; b0i~N(0,σ1

2) random intercept 
effect for student i; b1i~N(0,σ3

2) random slope effect for student i; ukl~N(0, σ4
2) random 

intercept effect for classroom l within treatment k; εijkl~N(0, σ2) residual.  
 
  We generate R=500 Monte Carlo samples by using the parameter estimates as in Section 
2. The random effect values are obtained by using rmvnorm and rnorm function in R. We 
assume there are 92 classrooms with 5 students in each classroom, each student is measured 
at six time points (time= 1, 2, 3.5, 6, 7.3, 8.8). We assign 49 out of 92 classrooms with 
treatment 0, and the other 43 classrooms with treatment 1. Totally, each Monte Carlo 
sample contains 2760 (92×5×6) observations.   
  
  For each Monte Carlo sample we generate B=1000 bootstraps by using the different 
methods discussed in section 3. Finally we get R=500 bootstrap confidence intervals 
(α=0.05). If the method is appropriate, the probability of the confidence intervals 
containing the corresponding true parameter values should be around 0.95 (for 95% 
confidence interval). It is noticeable that the model might not converge for some bootstrap 
samples, and the Bca confidence interval might not be able to calculate in some cases. So 
the total number of confidence intervals is less than or equal to R=500.    
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  Table 1 and Table 2 show the Monte Carlo simulation results for different bootstrap 
methods with the normal distribution model. The shaded area in Table 1 and Table 2 are 

the numbers outside the theoretical interval 0.95±1.96*�0.05∗0.95
500

, which is (0.931, 0.969).  

 

 
 
Table 2: Monte Carlo simulation results of the random effects parameters (model residual term 
normally distributed). sdcor1(𝜎𝜎1): random intercept effect for student; sdcor3(𝜎𝜎3): random slope 
effect for student; sdcor4: random intercept effect for classroom; 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠2 (𝜎𝜎2) = 𝜎𝜎13 𝜎𝜎1 ∗ 𝜎𝜎3⁄ , 
which is the correlation. sdcor: residual term. 

Methods 
 Monte Carlo Simulations (Normal, R=500, α=0.05)  

sdcor1 sdcor2 sdcor3 sdcor4 sdcor 
No bootstrap 97.00% 96.00% 94.80% 96.00% 95.00% 

Residual (Perc) 38.40% 32.20% 8.00% 37.60% 95.60% 
Parametric (Perc) 96.40% 95.80% 94.80% 94.80% 95.80% 
Cluster TID (Perc) 96.00% 94.40% 93.20% 93.60% 94.20% 
Cluster CID (Perc) 28.80% 91.60% 93.40% 6.60% 93.80% 

Residual (Bca) 2.14% 25.00% 0.00% 36.55% 96.20% 
Parametric (Bca) 96.20% 96.00% 95.00% 95.40% 95.60% 
Cluster TID (Bca) 95.40% 94.40% 94.20% 94.00% 94.00% 
Cluster CID (Bca) 62.30% 96.20% 94.40% 0.00% 93.80% 

 
  We notice that for all fixed effect parameters and random effect parameters, the 
parametric bootstrap and cluster bootstrap (TID) methods have the Monte Carlo score 
around 95%, which means about 95% confidence intervals calculated by these two methods 
contain the true corresponding parameter values. However, the residual bootstrap and 
cluster bootstrap (CID) methods fails to achieve the 95% score for the fixed effects 
(intercept, condition1) and the random effects (sdcor1, sdcor2, sdcor3, sdcor4). This 

Table 1: Monte Carlo simulation results of the fixed effects parameters (model residual term 
normally distributed). R: Monte Carlo sample number. The scores in the table are the percentiles 
of confidence intervals containing the true parameter values. Good methods will have the values 
around 95%, since our significance level α=0.05. 

Methods 

 Monte Carlo Simulations (Normal, R=500,α=0.05) 

Intercept conditn1 time timesq conditn1: 
time 

conditn1: 
timesq 

No bootstrap 95.60% 94.80% 96.20% 96.80% 94.00% 94.20% 
Residual (Perc) 56.00% 54.60% 95.20% 97.80% 92.20% 93.00% 

Parametric (Perc) 97.00% 95.80% 95.20% 94.80% 95.40% 95.00% 
Cluster TID (Perc) 96.00% 93.80% 95.00% 94.40% 93.20% 92.80% 
Cluster CID (Perc) 85.60% 85.60% 95.40% 96.20% 93.80% 94.80% 

Residual (Bca) 55.40% 53.80% 95.00% 97.40% 91.80% 92.80% 
Parametric (Bca) 96.40% 95.20% 96.00% 96.40% 95.00% 95.00% 
Cluster TID (Bca) 95.80% 94.20% 93.00% 94.00% 93.20% 93.80% 
Cluster CID (Bca) 85.20% 85.60% 95.00% 96.40% 94.00% 94.40% 
Cluster TID (b_t) 96.40% 94.40% 95.40% 94.20% 92.80% 92.40% 
Cluster CID (b_t) 77.20% 77.20% 95.60% 96.20% 93.40% 93.80% 
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simulation result indicates that clustering in higher level (classroom, TID) is better than 
clustering in lower level (student, CID); it is because that bootstrap at student level ignores 
correlation among the children in the same classroom. Residual bootstrap is much less 
accurate than the parametric bootstrap, since it only resamples the i.i.d. 𝜀𝜀𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖∗ , but not the 
other random effects. Different confidence interval calculation methods, the percentile, the 
Bca and bootstrap-t, do not have significant impacts on the final Monte Carlo simulation 
results.  
 

Table 3: Monte Carlo simulation results of the fixed effects parameters (model residual term log 
normally distributed). 

Methods 

 Monte Carlo Simulations (Log Normal, R=500,α=0.05) 

Intercept conditn1 time timesq conditn1: 
time 

conditn1: 
timesq 

Residual (Perc) 1.00% 8.80% 85.80% 88.00% 96.00% 96.40% 
Parametric (Perc) 8.00% 27.80% 85.00% 83.60% 97.80% 96.60% 
Cluster TID (Perc) 7.80% 22.00% 93.60% 93.60% 94.00% 94.60% 
Cluster CID (Perc) 3.40% 12.40% 93.80% 93.20% 94.20% 94.40% 

Residual (Bca) 1.20% 12.20% 85.80% 87.00% 95.80% 96.60% 
Parametric (Bca) 7.60% 23.20% 84.00% 83.00% 97.00% 96.60% 
Cluster TID (Bca) 8.20% 22.40% 92.60% 92.60% 93.60% 93.80% 
Cluster CID (Bca) 4.40% 13.00% 93.20% 92.60% 93.60% 93.20% 
Cluster TID (b_t) 8.20% 23.40% 92.40% 92.60% 93.20% 93.00% 
Cluster CID (b_t) 1.60% 10.20% 94.20% 92.60% 93.80% 93.20% 

 
Table 4: Monte Carlo simulation results of the random effects parameters (model residual term 
log normally distributed). 

Methods 
 Monte Carlo Simulations (Log Normal, R=500, α=0.05)  

sdcor1 sdcor2 sdcor3 sdcor4 sdcor 
Residual (Perc) 23.60% 25.60% 12.00% 51.80% 0.00% 

Parametric (Perc) 77.80% 72.00% 64.20% 96.00% 0.00% 
Cluster TID (Perc) 94.00% 93.00% 91.20% 93.40% 0.00% 
Cluster CID (Perc) 48.20% 91.60% 91.20% 5.20% 0.00% 

Residual (Bca) 2.14% 25.00% 0.00% 36.55% 0.00% 
Parametric (Bca) 77.60% 63.80% 70.40% 95.80% 0.00% 
Cluster TID (Bca) 91.60% 90.66% 85.60% 93.40% 0.00% 
Cluster CID (Bca) 62.30% 98.73% 87.20% 0.00% 0.00% 

 
  Furthmore, we also do 500 Monte Carlo simulations based on log normal distributed 
samples, which means in the model, εijkl~LogN(0, σ2). We still use the parameter estimates 
as in Section 2, except we decrease the residual error estimate to the half of the original 
value. The log normal Monte Carlo results are shown in Table 3 and Table 4, most of the 
values are out of the theoretical interval (0.931, 0.969). However, there are still certain 
values calculated by cluster bootstrap method within the range. It is noticeable that the 
sdcor has 0.00% for all methods. In order to explain it, we perform another R=300 log 
normal Monte Carlo simulation and calculate the Monte Carlo bias of sdcor: Cluster CID 
(3.37), Cluster TID (3.38), Parametric (3.46), Residual (3.45). All methods have very large 
bias, which explain the 0.00% estimation power.  
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6. Application Results 
 

  In Section 2, we applied the simple linear mixed model to our educational data, however, 
we observed a lot of outliers of this data from the chi-square QQ plot (Figure 2). The next 
step, we applied the bootstrap methods and bootstrap bias, standard error, confidence 
interval calculations to our real educational dataset. The simple regression result without 
any bootstrapping is shown in Section 2. Here, we show the confidence interval results of 
the fixed effect parameters and random effect parameters in Table 5 and Table 6 
correspondently.  

 
Figure 2: Chi-square QQ plot of the educational data. The multinormality of the educational data 
(lsrSIto1. lsrSIto2… lsrSIto6) is assessed by the chi-square QQ plot. Only the complete observations 
were used for making the plot, those with missing values were ignored  
   
  Under the null hypothesis H0: βi=0, we reject if zero is not within the calculated 
confidence interval. Different bootstrap methods and confidence interval calculation 
methods give us similar results (Table 5), for example, all methods suggest a significant 
linear time trend(time), however ,the quadratic time trend (timesq) is not significant. The 
distinct predictions are marked in bold in Table 5, for example, the cluster bootstrap (TID) 
indicates insignificant coefficient for condition1:time, however, the other methods suggest 
that it is significant. The intraclass correlation: 

 𝜌𝜌 = 3.0162 (3.0162 + 2.84762)⁄ = 0.5287. 
  It is interesting that the estimates of sdcor4, which is the random intercept effect for 
classroom, are very different between the cluster bootstrap (CID) and cluster bootstrap 
(TID) (Table 6). The cluster bootstrap method (CID) gives us the biggest variability 
between classrooms. No significant differences exist among different confidence interval 
calculation methods (percentile, Bca and bootstrap -t). The abbreviations are shown in 
Table 7. 
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Table 7: Table of Abbreviations  
Definition grp var1 var2 
sdcor1 TID:CID (Intercept) <NA>  
sdcor2 TID:CID (Intercept) time 
sdcor3 TID:CID time <NA>  
sdcor4 TID (Intercept) <NA>  
sdcor Residual <NA>  <NA>  

 
  The bootstrap bias and bootstrap standard errors are shown in Table 8 and Table 9. Since 
we don’t know the true parameter value, the bias of the ‘no bootstrap’ cannot be calculated. 
Also, since the sampling distribution of variance estimates is in general strongly 
asymmetric, the standard error is not a good characterization of the uncertainty. Here we 
don’t provide the Wald variance-covariance matrix of the variance-covariance parameters 
themselves. In accordance with the confidence interval results, the cluster bootstrap (CID) 
method gives the biggest bias (1.779) of sdcor4 (random intercept effect for classroom). 
 

 
7. Conclusion 

 
  In this study, we compare several different bootstrap methods (parametric bootstrap, 
parametric residual bootstrap and clustering bootstrap) for clustered, hierarchical or multi-
level data. The Monte Carlo simulations demonstrate that the parametric bootstrap and 
clustering bootstrap (at classroom level) perform better estimation than the residual 
bootstrap and cluster bootstrap (at student level). The application result shows that different 
bootstrap methods do make some differences on the final estimates, however different 
confidence interval calculation methods (percentile, Bca, bootstrap-t) give us similar 
results corresponding to each bootstrap method. The cluster bootstrap provides a very 
simple resampling scheme comparing with the more complex strategies, for example, 
random-effects bootstrap or wild bootstrap. It will be interesting to explore the number of 
clusters effect in our future study.     
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