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Abstract 

 

It is critical to use a precise estimate of treatment effect when drawing conclusions, evaluating 
benefit/risk or designing a new study. Utilization of data from all sources in an integrated data 
analysis/meta-analysis will help us move closer to meeting this need. Depending on the data 
sources and objectives, there are many approaches for integrated analyses. These include network 
meta-analysis, multivariate meta-analysis, model-based meta-analysis as well as methods of 
borrowing historical data. In this paper, we discuss these methods with additional details for 
implementation and interpretation. We consider information adaptive repeated cumulative meta-
analyses. We also discuss how to apply three integrated analysis approaches that take into 
account the variability of the overall treatment effect estimate to determine sample size for a new 
trial. Some computation and simulation results are provided.  
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1. Introduction 
 

There are many methods for combining data in an integrated data analysis. They include the 
methods of network meta-analysis [1-6], multivariate meta-analysis [7-8], borrowing of historical 
data [9-14], model-based meta-analysis [15-17] and other types of analysis [18-20]. For network 
meta-analysis, Jones et al. (2011) and Achana et al. (2013) focus on the case of a binary endpoint. 
Mavridis et al. (2014) discuss a model for accounting for publication bias in a full network meta-
analysis. Rucker and Schwarzer (2014) use an example to illustrate the inclusion of studies with 
direct and indirect comparisons for more efficient comparisons between any two treatments. To 
implement the methods of network meta-analysis, one needs information on the correlations 
between any pair of between-treatment differences within study. Unfortunately, publications 
typically do not provide this information. Rucker and Schwarzer (2014) assume certain values for 
the correlations in their work. In reality, these correlations depend on the sample size or the 
number of events of the individual treatments. In addition, adjustment for study level covariates 
may be necessary to meet the assumption of consistency of treatment effects across studies for a 
network meta-analysis to be valid. We will discuss this and other considerations related to 
network meta-analysis in Section 2.1.  
 

When there are two endpoints, a univariate analysis is usually applied to each endpoint separately, 
especially when one endpoint is a continuous endpoint and the other is a binary or time-to-event 
endpoint. This practice applies to meta-analysis also. Riley et al. (2007) consider a bivariate 
meta-analysis and provide formulas for the overall estimates of treatment effects on individual 
endpoints. Even when the two endpoints are of a different type, the formula derived from 
bivariate meta-analysis may still be used for potentially more efficient estimation of treatment 
effects of the individual endpoints. In Section 2.2, we compare the performances of the bivariate 
approach with the univariate approach. The comparison focuses on how much information from 
the treatment effect estimate on one endpoint can contribute to the estimation of the treatment 
effect on the other endpoints under different scenarios. 
 

In recent years, many trialists have realized the value of using historical data when designing and 
analyzing a trial. Many of the applications focus on borrowing historical control data for the 
purpose of reducing the sample size of the control arm in a new study [10-12]. Still, there is an 
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increasing trend to conduct a meta-analysis of all drugs in the same class and apply the overall 
effect estimate to all drugs in the same class, at least for safety assessment (Kramer, 2009 [21]). 
This idea, appropriately modified, can be used to help estimate the efficacy effect of a new drug 
also. The first step is to determine how much historical information to borrow. One approach is to 
discount data from other drugs using a shrinkage estimation approach [22]. Under this approach, 
less information will be borrowed from other drugs if the between-drug variability is high. 
Another approach is to use power likelihood [12-14] for the other drugs. The idea is to use a 
power (exponent) parameter (between 0 and 1) to control the extent of data borrowing from each 
existing drug. The power parameter is determined based on how similar an existing drug is to the 
new drug. We discuss these approaches in Section 2.3.  
 

There are also other types of approaches for integrated data analysis such as the model-based 
meta-analysis. Model-based meta-analysis is especially appealing as it can adjust for design 
differences between studies and allow for the development of a prediction model. We include 
examples of model-based meta-analysis in Section 2.4.  
 

During a new drug development process, studies are being completed sequentially. Sequential 
repeated meta-analyses have been proposed to take advantage of the cumulative data to make 
strategic decisions in a timely manner. For example, if the amount of data anticipated is likely to 
be inadequate for a specific objective based on the conditional power calculation, adaptation on 
program-wise sample size may be made. When this occurs, the analysis needs to take into 
account the potential sample size increase to control the overall type I error rate. We discuss 
adaptive repeated cumulative meta-analysis including the option for sample size re-estimation in 
Section 3.1 and sample size calculation for a new study with different variability for the estimate 
of treatment effect in Section 3.2. We conclude the paper with additional remarks in Section 4. 
 

2. Methods of integrated data analysis 
 

In this section, we summarize and provide new insights on some existing methods for 
integrated/meta-analysis.   
 
2.1.  Network Meta-analysis 
 

Network meta-analysis is a useful tool to combine information from all trials to compare between 
any pair of treatments. A network meta-analysis includes trials that contribute to the comparison 
between two treatments directly (e.g., comparing Treatment 1 versus Treatment 2) and trials that 
contribute indirectly to a comparison (e.g., comparing Treatment 1 versus Treatment 2 through a 
comparison between Treatment 1 versus Treatment 3 and a comparison between Treatment 2 
versus Treatment 3). Extensive literature exists on network meta-analysis [1-6]. 
 

Suppose there are a total of K treatments and a total of S studies that have at least one pair of the 
K treatments. Let )',...,( 1 K   denote the vector of parameters of the individual within-
treatment effects. For certain endpoints, the estimates for {θi} may not be available from 
publications or study reports. Let jiij    represent the difference in effect between 

treatments i and j. These parameters are more likely to appear in a publication than the {θi}. For 
example, for the analysis of a time to event endpoint, hazard rates for individual treatment groups 
potentially as functions of time may not be always available. However, the hazard ratio for 
between-treatment comparison is typically available. We borrow the data example of Rucker and 
Schwarzer (2013) as shown in Table 1 for illustration.  
 

Notice that if a study has more than two treatments, some of the between-treatment differences 
can be expressed as a linear combination of the other between-treatment differences. For 
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example, for a study with 3 treatment arms 1, 2 and 3 like Study 1 in Table 1, the design matrix 
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is singular because difference 32    can be expressed as the difference between 31    and 

21   . The corresponding full rank design matrix concerning )',...,( 1 K    
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can be obtained by deleting the third row and adding other columns with zero elements for k , 
k>3. For the other studies with perhaps other treatments, the full rank design matrices like (1) can 
also be specified in a similar fashion. Putting all these full rank design matrices for all studies 
together and deleting the last column, we have a full rank design matrix (otherwise the sum of all 
the columns will be zero) treating K  as a reference. For the studies and between-treatment 
comparisons in Table 1, we have 
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or  A .  
 

Table 1. Fictional Example from Rucker and Schwarzer (2013): 4 treatments and 4 studies 
 

Study ID First Treatment 
in a Pair  

Second Treatment in 
a Pair 

Difference Variance of 
difference 

1 1 2 0.50 0.03 
1 1 3 0.75 0.04 
1 2 3 0.25 0.05 
2 1 2 0.40 0.02 
2 1 4 0.60 0.05 
2 2 4 0.20 0.05 
3 1 2 0.45 0.05 
4 3 4 0.25 0.05 

 
Because the estimators of treatment effects from different studies are independent, the 
corresponding covariance matrix is full rank and block diagonal with the diagonal elements from 
the variance column in Table 1 
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Both 1r  and 2r  in (3) are not directly available from Table 1 and may also not be directly 

available from publications. Since )ˆvar()ˆˆ,ˆˆcov( 13121   , they are actually the estimates 

of the variance of 1̂  in study 1 and study 2, respectively. One assumption for the application of 
the network meta-analysis is consistency of treatment effects across studies. This strong 
assumption is particularly important for indirect comparisons and may not hold if different 
studies were conducted in patients with different characteristics. To make this assumption more 
attainable, it may be better to incorporate study level baseline characteristics into the analysis.  
 

Suppose B is the design matrix for the baseline covariates of interest and   is the vector of the 
coefficients or effects of the covariates. Combining the two design matrices, we have 

                                       
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where ̂  is the vector of the observed values of  ,  BAX  , 



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


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


  and   has a 

multivariate normal distribution with mean zero and known covariance matrix  . Based on (4), 
the least square estimate of   is 

                                          ˆ')'(ˆ 111   XXX                       (5) 

and the corresponding estimate of the covariance is 11 )'()ˆvar(  XX . With ̂ , the estimate 
and the variance of the relative treatment effect between any pair of treatments for the network 
meta-analysis can be derived. For example, i̂  is the estimate of treatment effect of Treatment i 

compared to the reference treatment, while 21
ˆˆ    is the estimate of treatment effect between 

Treatments 1 and 2. The covariance matrix )ˆvar(  for ̂  through (5) is the upper left corner 

submatrix of ).ˆvar(  If baseline covariates are not considered in the analysis (see (2) for 

example), an alternative estimate for   can be obtained through 
                                      ˆ')'(ˆ 111*   AAA                           (6) 

and the corresponding covariance matrix 11* )'()ˆvar(  AA . Since )'( 1 AA   is the upper left 

corner submatrix of XX 1'  , theoretically, )ˆvar()ˆvar( *   . We will demonstrate this through 
simulations later. 
 

For a binary endpoint, sample sizes and numbers of events for individual treatments are generally 
available from publications. Jones et al. (2011) discuss method for network meta-analysis for a 
binary endpoint. Their methods can be easily extended to incorporate study level baseline 
covariates in the analysis. 
 

If only two treatments are considered and all the included studies had the two treatments, one of 
the treatments can be treated as a reference and (5) is essentially a meta-regression analysis. Note 
that in this case all off-diagonal elements of the covariance matrix are zero. 
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We conducted simulations to compare the performances of ̂  in (5) (denoted as Method 1) with 
*̂  in (6) (denoted as Method 2). Results are reported in Table 2. For the simulations, we 

assumed that ),(~ˆ  XN  and used 10,000 runs. For the case of 6 data points  
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As anticipated, the variance of Method 1 is greater than that of Method 2 for all cases. When 
there is no covariate effects ( =0), both methods provide consistent estimates and the 95% 
confidence intervals also have the nominal coverage probabilities. When there are large covariate 
effects, Method 2 provides biased estimates and the coverage probabilities of the 95% confidence 
intervals were much smaller than the nominal level probably due to the bias and partially due to 
the smaller estimated variance particularly when the number of observations is large. Basically, 
incorporating covariates in the analysis provides more robust results. The choice of   for the 
second scenario was to assess the ultimate impact of the covariate effect on the estimation of 
treatment effect. 

Table 2. Simulation results for network meta-analysis 
ଷ 1ߠ ଶߠ ଵߠ    2  3

True value 1.00 0.50 0.25 െ0.05 െ0.05 0.05 

መ̅ Method 1 0.9990 0.4981 0.2409 -0.0385 -0.0647 0.0441ߚ
Method 2 0.9336 0.4739 0.1948 NA NA NA 

ෞݎܽݒ ሺߚመሻതതതതതതതതത Method 1 0.0800 0.0500 0.1000 0.1500 0.1400 0.0800
Method 2 0.0315 0.0326 0.0311 NA NA NA 

Coverage rate 
of 95% CI 

Method 1 0.9560 0.9540 0.9470 0.9510 0.9350 0.9430
Method 2 0.9280 0.9510 0.9380 NA NA NA 

ଷ 1ߠ ଶߠ ଵߠ    2  3
True value 1.00 0.50 0.25 െ0.30 െ0.20 0.20 

መ̅ Method 1 1.0090 0.5022 0.2513 -0.2978 -0.2041 0.1858ߚ
Method 2 0.6503 0.3506 -0.0418 NA NA NA 

ෞݎܽݒ ሺߚመሻതതതതതതതതത Method 1 0.0800 0.0500 0.1000 0.1500 0.1400 0.0800
Method 2 0.0315 0.0326 0.0311 NA NA NA 

Coverage rate 
of 95% CI 

Method 1 0.9510 0.9500 0.9420 0.9370 0.9390 0.9360
Method 2 0.5040 0.8650 0.6240 NA NA NA 

 
2.2. Multivariate meta-analysis and the use of surrogate endpoint 
 

Multivariate meta-analysis has been proposed for joint synthesis of treatment effects on multiple 
endpoints [7-8]. This type of analysis allows borrowing information from correlated endpoints 
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when assessing treatment effect on one specific endpoint. The borrowing may result in potentially 
more efficient estimates. For example, if a Phase IIb study uses only a surrogate endpoint as the 
study endpoint, the estimate of treatment effect on the surrogate endpoint can be utilized to 
estimate treatment effect on a clinical endpoint.  
 

Let’s consider the case of two endpoints. Riley et al (2007) propose a random effects meta-
analysis approach for the evaluation of bivariate outcomes. They provide close form formulas for 
the estimates of treatment effects of individual endpoints and the corresponding estimates of 
variances. The use of a random effects model demands a robust estimate of the between-study 
covariance that needs a reasonably large number of studies. Unfortunately, for most new drug 
development programs, the number of studies, particularly the number of studies with the clinical 
endpoint as the primary study endpoint, is usually small. Therefore, the use of a fixed effects 
model is more reasonable even though it does not take into account between-study variability. 
 

Suppose the vector of estimates of treatment effects on the two endpoints from S sources has the 
following distribution 
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For a fixed effects model, 
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i . Despite different patient populations for different studies, 

it may be reasonable to assume a constant treatment effect across studies upon the selection of an 
appropriate metric to measure the magnitude of the treatment effect. For example, if hazard ratio is 
used for measuring treatment effect (log hazard ratio will be used for statistical inference), the 
treatment effect observed from a Phase II study with a low risk patient population may be similar 
to that of a Phase III study with an enriched patient population. Besides choosing an appropriate 
metric, adopting the same standard for endpoint measurement and the same adjudication process 
within the same drug development program as well as clever adjustment of baseline characteristics 
could also contribute to a reasonably constant treatment effect across studies. 
 

Denote the covariance matrix of the treatment effect estimates on the two endpoints in study i by 
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To simplify the notations, we use iii 21 ˆˆ    to denote the estimated covariance between the 

treatment effect estimates in study i. The estimated variance 2ˆ ji  depends on the amount of 

information in study i and can differ from study to study. We assume a common correlation   
across studies here.  
 

When individual patient data are available, we can estimate the correlation by applying a 
multivariate analysis to the two endpoints. A univariate approach may be more convenient when 
the two endpoints are of different types, e.g., one endpoint is continuous and the other is a time-
to-event endpoint. When a univariate approach is used to analyze the two endpoints separately, 
one can apply the Jackknife or bootstrapping method to obtain an estimate of the correlation as 
suggested by Daniels and Hughes (1997). The weighted average of the estimated correlations 
with sample sizes as the weights across studies is an estimate for the common correlation. This 
estimate can be used for studies without individual patient data that can be used to estimate the 
correlation. 
 

Setting between-study covariance matrix to zero in the formulas of Riley et al. (2007), we obtain 
the overall estimate of treatment effect for endpoint j as 
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and an estimate for its variance   
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where 2'j  if j=1 and 1'j  if j=2. If the correlations for all the studies are zero, (7) and (8) 
reduce to  
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These are the formulas for the univariate meta-analysis based on a fixed effects model when the 
inverse variance weighting is used. For a study with no data for an endpoint, Riley et al. (2007) 
proposed setting the corresponding variance of the estimate of the treatment effect for the 
endpoint to infinity and still use formulas (7) and (8).  
 

Table 3. Simulation results for comparing (7) and (8) versus (9)  
with data for the second endpoint available for only some of the studies 

Method 1̂ ߩ  2̂  Var( 1̂ ) Var( 2̂ ) )ˆar(v̂ 1  )ˆar(v̂ 2  

0.2 
1 0.15017 0.49931 0.00018 0.00664 0.00019 0.00661 
2 0.15017 0.49938 0.00019 0.00677 0.00019 0.00675 

0.4 
1 0.15015 0.49926 0.00017 0.00623 0.00019 0.00626 
2 0.15015 0.49937 0.00019 0.00677 0.00019 0.00675 

0.6 
1 0.15013 0.49930 0.00015 0.00539 0.00020 0.00575 
2 0.15013 0.49936 0.00019 0.00677 0.00019 0.00675 

0.8 
1 0.15012 0.49953 0.00010 0.00375 0.00024 0.00547 
2 0.15010 0.49936 0.00019 0.00677 0.00019 0.00675 

 
We conducted simulations to compare the performance of (7) and (8) versus (9), assuming the 
endpoint follows a normal distribution. We consider the case of 5 studies. The true parameters for 
treatment effects on the two endpoints are 15.01   and 5.02  . The corresponding standard 
deviations are 0.32 and 1.41. We select sample sizes of 124, 158, 198, 252, 337 per group, so that 
power to detect non-zero treatment effects for the two endpoints in the 5 studies at level of 0.05 
are 0.74, 0.84, 0.91, 0.96, 0.99, and 0.50, 0.60, 0.70, 0.80, 0.90 correspondingly. We assume that 
data on endpoint 2 are not observed in study 1, 2 and 3. Results are summarized in Table 4. 
Method 1 is based on (7) and (8), and Method 2 is based on (9). Both methods continue to 
provide consistent estimates of the true treatment effects. As the correlation increases, the 
variance of the estimate of endpoint 2 from Method 1 becomes smaller than that of Method 2 
through borrowing information from the other endpoint. The sample variance of the point 
estimate is similar to the average of the estimates of the corresponding variance when   is small, 

but as   increases the average of the variance estimates becomes smaller than the sample 
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variance of the estimates. For endpoint 1 we find that Var( 1̂ ), the average of the variance 

estimate in (8) under Method 1 decreases as   increases. By comparison, the sample variance of 

the estimates )ˆar(v̂ 1  under Method 1 goes in the opposite direction and becomes greater than 

that of Method 2 when   is large. 
 

2.3. Use of historical data or data of other drugs in the same class 
 

There is a rich literature on borrowing control data from historical trials with the goal of reducing 
sample size of the control arm of a new trial [9-14]. Even though there is still the consistency 
issue when borrowing data from multiple historical studies that were conducted for different 
drugs, there is less concern if only control data are utilized. Also, it should be less controversial if 
data from studies conducted on the same drug are included in a meta-analysis. However, if one 
intends to borrow data of both active treatment and control arms from studies conducted on 
different drugs (albeit in the same class) to assess treatment effect of a specific drug, one should 
consider discounting part of the historical data. We will discuss discounting approaches in this 
section. 
 

The usual practice is to first conduct a meta-analysis for individual drugs in the same class to 
obtain the estimate i̂  and variance 2ˆ i  for drug i, i=1, …, D. Models for these meta-analyses 
could be different. For example, some of them could be a fixed-effects model if the treatment 
effects are homogeneous across the studies of the same drug while others could be a random-
effects model. A second layer of meta-analysis based on i̂  and 2ˆ i , i=1, …, D can then be 
performed to obtain an overall estimate of treatment effect for the entire class. If the number of 
drugs in the class is reasonably large, one could assume a random effects model for the true 
treatment effect for drug i 
                                       ),(~ 2 Ni , i=1, …, D                   (10) 

with between-drug variability/variance 2 . The overall estimate ~  of the true treatment effect   
in (10) for the whole drug class is  

                                  
D
i i

D
i ii ww 11 /ˆ~  )/1,(~/ˆ

1 wNwwD
i ii                           

where 2̂  is the estimate of 2  and )ˆˆ/(1 22
iiw    is the estimate of the inverse of the variance 

of i̂ , and  
D
i iww 1 . An empirical shrinkage estimator for i  is 
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The estimator ߜሚ௜ is derived by borrowing information from the other drugs through ~ . The larger 

the between-drug variance ߬̂ଶ is or the smaller the 2ˆ i  is, the less information will be borrowed 
from the other drugs. One concern for the use of the empirical shrinkage estimator is that it may 
borrow too much information from the other drugs when estimating ߜ௜ [22]. Also, the empirical 
shrinkage method relies on the use of a random effects model that requires a reasonably large 

number of drugs in the class and the estimator has a relatively large variability. Variance of  i
~

 
under a random effects model can be estimated. When the number of drugs in the class is small, it 
is more realistic to use a fixed effects model for the second layer meta-analysis where the true 
treatment effect i  for drug i is treated as a parameter rather than a random variable as in a 

random-effects model. When the i ’s are the same across all drugs, this is equivalent to 2 =0 in 
a random-effects model. In this case, the overall estimate of treatment effect for the whole class 
based on the fixed effects model is 
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                                            
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D
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1 ˆ/1/ˆ/ˆˆ  . 

Another estimate for ߜ௜ is the James-Stein (J-S) estimator that takes the following form  

                                         )ˆ()1(ˆ
000   iii ccc



 
The J-S estimator minimizes the following mean square error under a fixed effects model  
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The optimal parameters that minimize the WMSE are  

                                  0






D
i i

D
i ii

1
2

1
2

/1

/


                                    (11) 

and    
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where  
s
i ii1

22 /)(   is a measure of the variability among Dii ,...,2,1,  . After replacing 

the unknown i  in (11) and (12) by i̂ , we obtain ܿ̂ and  ˆ)ˆ1(ˆˆ cc ii 


. The J-S estimator 
differs from the empirical shrinkage estimate in that the shrinkage factor for the J-S estimator is 
constant across different drugs. For a fixed ĉ  which is a consistent estimate of c, the variance of 
the J-S estimator can be estimated by 

                                 
D
j jii ccc 1

222 /1/)ˆ1)(ˆ1(ˆ)var( 


. 

The J-S estimator borrows information from the other drugs through ̂ . The larger the between 
drug variability is, the less information from the other drugs will be borrowed. Compared to the 
empirical shrinkage estimate, the J-S estimator generally borrows less information from the other 
drugs (Quan et al. 2014) [22]. 
 

The empirical Bayes and the J-S estimation approaches explicitly express the amount of 
information to be borrowed from the other drugs. A more flexible alternative approach may be 
the use of power likelihood. This approach is often used for borrowing partial historical control 
data for a new study [12-14]. For our scenario, a power (or exponent) bj (0 1 jb ) is applied to 

the likelihood of the estimate of the treatment effect of drug j. The magnitude of jb  depends on 

the similarity of drug j to the target drug i. If drug j is totally different from drug i, jb  can be set 

to zero. If drug j is believed to be very similar to drug i, jb  can be set close to 1. The overall 

likelihood for the parameter i  of the treatment effect of drug i is 

                              


D

ij
ij

jb
iii ffF ),ˆ(),ˆ()(  , 10  jb  

where ),ˆ( ijf   is the likelihood based on data of drug j. For example, it can be the density of an 

asymptotic normal distribution )ˆ,(~ˆ 2
jij N  . The determination of jb  is similar to the 

specification of the prior distribution of the effect of drug j toward i  in a Bayesian analysis 
setting. Ibrahim and Chen (2000) propose a Bayesian analysis with power prior. Basically, a prior 
distribution )(0 i  for i  is added to the above likelihood. 
 

2.4. Model-based integrated data analysis 
 

Model-based integrated analysis can be applied to address questions that cannot be answered 
through a regular meta-analysis. They are generally specific depending on the nature of the 
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endpoint (continuous, binary, time to event or even recurrent event), the availability of data (e.g., 
PK data) and objective of the analysis. Therefore, it is difficult to discuss a broadly applicable 
model-based meta-analysis approach. We will illustrate the thinking via specific examples below.  
 

Individual patient data from studies are typically available to the trial sponsor. When the sponsor 
performs an integrated analysis, individual patient data can be included in a more sophisticated 
model for potentially more efficient analysis. Quan et al (2014) discuss a case of modeling 
exposure-response relationship to justify the dose selection for a drug treating multiple sclerosis. 
Two phase III studies with very similar design and the same primary endpoint of annualized 
number of relapses (count data) demonstrated similar treatment effects for two doses of an 
experimental drug. A question arose as to whether a dose higher than the two existing doses 
would provide an improved treatment efficacy and a dose lower than the existing ones would also 
provide a similar treatment efficacy effect. Rather than designing a new Phase III study to address 
the question, a PK/PD modeling approach was applied. Data from the two Phase III studies were 
integrated in the analysis. A negative binomial regression model with study as a stratification 
factor, steady-state mean trough PK concentration and many other baseline values/charateristics 
as covariates was fitted to the data. The model reasonably depicted the relationship between PK 
parameters and the annualized relapse rate. After obtaining the predicted PK geometric means for 
all doses including doses not studied in the Phase III program (using a separate dose-PK model), 
treatment effects of different doses versus placebo control can be predicted through the negative 
binomial regression model.  
 

When individual patient data are not available, model-based meta-analysis needs a reasonably 
large number of studies. Gross et al. (2013) apply a novel model-based meta-analysis to indirectly 
compare the efficacy of two DPP-4 inhibitors for treating type 2 diabetes mellitus using data from 
25 studies. Moreover, Mercier et al. (2014) propose a model-based meta-analysis to make indirect 
comparison between two opioid drugs in their effect on pain intensity along with the tolerability 
characterized by the adverse event and dropout rates.  
 

3. Additional applications of integrated and meta-analysis 
 

Besides more precise quantification of treatment effect, integrated data analysis or meta-analysis 
can be used to generate hypothesis or help make a regulatory decision. For example, since safety 
evaluation needs a large data set, it may be acceptable to use a meta-analysis to conclude the non-
inferiority of an experimental drug compared to a control on a safety endpoint. For example, a 
guidance issued by the Food and Drug Administration in the United States [23] states that a meta-
analysis of cardiovascular (CV) event data from a new diabetes drug development program can 
be used to rule out certain level of CV risk associated with the drug.  
 

During the development process, it may be necessary to assess, based on available data from 
completed studies, the amount of data required in future studies to achieve the desired power for 
the ultimate decision. As a result of the assessment, sample size for the whole program may be 
adapted. Depending on how the variability of the estimate of treatment effect is taken into 
account, the required sample size for a new study (or studies) can be very different. In this section, 
we will discuss these additional applications of integrated data analysis. 
 

3.1. Adaptive and repeated meta-analyses and conditional power calculation 
 

In a new drug development program, the Clinical Development Plan (CDP) outlines the number 
of studies along with the primary objective and the required sample size for each study. Using the 
CDP, one can estimate the amount of cumulative data over time from the program. Repeated 
meta-analyses can be planned to address a question that cannot be answered using data of 
individual studies alone. That is, repeated meta-analyses can be performed upon the completions 
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of additional major studies to closely monitor treatment effect. This also allows adjustment to be 
made to the development strategy, if necessary (Quan et al 2014 [18]). Suppose the null and 
alternative hypotheses are 

                                  :0H         versus     :aH ,             (13) 

where   is the true overall treatment effect. Assuming small ߜ is more desirable, ∆	in (13) will 
be set to 0 for testing superiority and 0  for testing non-inferiority.  
 

Among many things, the analysis plan should pre-specify the total number of meta-analyses K 
and how the overall type-I error rate will be controlled. For example, if there is no intention to 
stop the new drug development program early unless there is a serious safety concern, then no 
alpha will be spent at the intermediate meta-analyses and the entire alpha will be reserved for the 
final analysis. This will ensure the highest power for the final analysis. Pre-specifications 
contribute to the credibility of results from the repeated meta-analysis.  
 

Suppose a conditional power calculation is performed after the kth meta-analysis. Given the 
observed results from the previous analyses, conditional power as a function of the true treatment 
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where i̂  and 2ˆ i  are the estimate of treatment effect and the corresponding variance based on 

data between the i-1 and ith meta-analyses, respectively; also, where )1,0(~ NZ  asymptotically. 

To have '1   conditional power, we need 
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The above conditions suggest that we may need to add new studies into the development program 

to have enough data from the future studies such that 


K

ki
iiw

1
ˆ/  is large enough for (14) to hold.  

When new studies are added between the originally planned i-1 and ith meta-analyses, additional 
data will make i̂ ’s smaller.  
 

Sutton et al. (2007) consider the problem of designing a new study and adding it to an updated 
meta-analysis. They propose to first conduct a meta-analysis of the existing studies. The estimate 
of treatment effect from this meta-analysis is used to design the new study and to calculate the 
required sample size to test the hypothesis in the updated meta-analysis. Sample size for the new 
study obtained this way can be considered a sample size adaptation based on the observed 
treatment effect of the previous studies. Without appropriate adjustment in the updated meta-
analysis, the type I error rate may not be controlled. For example, if the observed treatment effect 
from the meta-analysis of the existing studies is already significant, the new study will be small. 
If the actual sample sizes are used as weights in the updated meta-analysis, a small new study will 
contribute very little to the updated meta-analysis and thus make it easier to demonstrate a 
significant treatment effect. However, if the weights are pre-specified and not dependent on the 
early result, a smaller new study will have a larger variability in the estimate and may therefore 
not guarantee a significant treatment effect in the updated meta-analysis. 
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3.2. Application of the integrated analysis to design a new study  
 

One of the purposes for an integrated data analysis is to obtain an estimate of treatment effect for 
sample size calculation for a new study. In this section, as in the case of designing a new Phase 
III study using existing data, we assume that only data from the new study are used in the 
statistical inference and will not be combined with historical data for an updated meta-analysis. 

Suppose ),(~)|ˆ( 2
iiii N   and ),(~ 2 Ni , i=1, …, H are from the historical studies 

potentially for different compounds but for the same indication. The true treatment effect *  for 
the new study is also assumed to follow the same normal distribution 

                                                ),(~ 2*  N .                                   (15) 
The analysis approach for the new study is the frequentist hypothesis-testing approach. For 
example, to declare a positive result, the upper bound of the confidence interval should satisfy 

 
*

1
* /2ˆ Nz    where *N  is the sample size per treatment group and 2  is the variance 

of the endpoint for the new study. There are different approaches for calculating the sample size 
for the new study for the desired power. A common approach is to simply use formula 

                                          22
11

2*1 )ˆ/()(2     zzN .                      (16) 

Some researchers use the overall estimate ̂  (defined in Section 2.3) of the treatment effect from 
existing studies based on a fixed-effects model as the true treatment effect for the new study and 

consider no variability for * . In other words, they treat * = = ̂  and 02  .  
 

An estimate of the overall treatment effect ~  under a random-effects model can also be used to 

replace ̂  in (16). To take the uncertainty or variability of  *  into account, another sample size 

for the new study *2N  is the solution of 
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where the expectation is with regard to  
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The estimate of the treatment effect for the new study, *̂ , follows )/2,(~|ˆ *22*** NN  . 

This *2N  takes into account the variability of *  but replaces the unknown parameter   (in 

(15)) with ~  without considering the variability associated with ~ . When 02  , *1N  and *2N  

are the same. For 02  , *2N  is greater than *1N . Since ~  itself is an estimate based on 
existing/historical data, it is prudent to consider its variability. This leads to a posterior 
distribution for ߜ as 

                                 ))/(1/1,
~

(~)ˆ,...,ˆ|( 2

1

2
1   



H

i
iH N

 
where H represents the number of prior studies included in determining ~ . Thus,  
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This leads to a third sample size formula for the new study *3N  which is the solution of 
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where the expectation is with regard to the distribution in (18). Since the variance in (18) is larger 

than that in (17), *3N  is greater than *2N  even when 02  . The unknown parameters 2  and 
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2  can be estimated using historical data. Rather than using the normal distribution in (18) with 
an unrestricted support ),(  , one can consider using a truncated distribution with a support 

),( *  (where )(*   is a finite value) for power and sample size calculation. Restricting the 

support to ),( *  will result in a sample size smaller than ܰଷ∗. 
 

We compare the required sample size per group for different desired power when estimate of 
treatment effect based on historical data  =0.3,  =1, one-sided significance level  =0.025, 
=0.01, 0.025, 0.05, 0.075 and the sample sizes for 5 historical studies are 113, 143, 163, 191, 235. 
For example, when  =0.05, the required sample sizes for the three approaches for 90% power 
are 234, 263 and 302, respectively; and the difference between ܰଵ∗ and ܰଷ∗ is 68. The sample 

size difference increases with desired power. Taking into account all the variability, *3N  gives us 
the largest sample size. If the estimate of treatment effect based on very limited historical data is 
much better than what we anticipated and populations across studies are different, we may be 

willing to consider a relatively larger sample size *3N  for the new trial.   
 

One issue with a large sample size for a study is the study’s ability to detect a very small 
treatment effect which may not be clinically meaningful. For superiority assessment ( =0), the 
minimum observed treatment effect that will give a significant P-value is  

                                            *
1

* /2ˆ Nz   . 
They are -0.181, -0.171 and -0.160 for the three sample sizes (234, 263 and 302) under the design 
parameters specified above. That is, if sample size is 302, the minimum observed treatment effect 
to be statistically significant at level of 0.025 is -0.160. If -0.16 is a clinically meaningful 
treatment effect, it will be reasonable to consider a trial with a sample size of 302 per group. On 
the other hand, if a clinically meaningful treatment effect is at least -0.181, it will be more 
appropriate to consider 234 per group with the understanding that we will not have a positive trial 
if the observed estimate is larger than -0.181.  
 

4. Discussion 
 

In general, the main purpose of an integrated data analysis is to obtain a more precise estimate of 
the treatment effect. Results from the analysis can be used to generate hypothesis for future 
studies or modify a current development program. They are rarely used for making a regulatory 
claim in efficacy. Integrated data analysis has been regularly applied to safety data to assess 
patients’ adverse reactions to a drug. This is by necessity because the typical studies in a clinical 
development program are rarely designed from the safety perspective. In recent years, integrated 
data analysis has been used to rule out a safety concern based on a formal non-inferiority 
assessment. For example, the guidance for a new diabetes drug issued by the FDA in 2008 
requires the drug sponsor to rule out a 1.8 relative risk for a major cardiovascular adverse event 
(MACE) before the drug could be approved for marketing. The sponsor needs to rule out a 
relative risk of 1.3 post-marketing. The assessment can be done either through a meta-analysis or 
a single CV outcome trial (Marchenko et al, 2015 [24]).  
 

Recently, two major CV outcome trials (EXAMINE and SAVOR [25-26]) of two DPP-4 
inhibitors for type 2 diabetes (alogliptin and saxagliptin) successfully ruled out a 1.3 relative risk 
for MACE for these two drugs. Detailed trial results were discussed at an FDA Endocrinologic 
and Metabolic Drug Advisory Committee meeting on April 14 2015. In addition to EXAMINE 
and SAVOR, another CV outcome trial (TECOS) of a different DPP-4 inhibitor (sitagliptin) was 
recently completed and found to meet the primary objective of ruling out a 1.3 relative CV risk 
for MACE also [27]. Since a long term and large CV outcome trial demands a great amount of 
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resources, a series of positive CV outcome trials have prompted the question of how we could 
learn from completed CV outcome trials to help assess CV risk of new type 2 diabetes drugs in a 
more efficient manner. For example, can a future drug borrow information on CV risk from 
previous drugs? In addition, if several drugs are developed concurrently, can we include all these 
drugs and one control in one trial since recent CV outcome trials share much similarity in 
inclusion/exclusion criteria, primary endpoints, endpoint adjudication and analysis strategy. 
Including several drugs in one trial saves on control subjects and allows for head-to-head 
comparisons between drugs.  
 

The demand of personalized medicines also needs more data for subgroup and biomarker analysis. 
Since individual studies are usually not designed to have sufficient power for subgroup analyses, 
it will be beneficial to combine data from multiple studies, and at the same time to borrow 
information from different subgroup by using methods described in this paper. Health economics 
assessment may be another area that relies on integrated analysis to quantify country or region 
specific benefit and cost ratio to compare the utility of a new drug to existing ones. 
 

As data become more readily available through various data transparency initiatives, we can 
expect greater access to patient level data for researchers. Data could come from very different 
sources including randomized clinical trials and observational studies. In this paper, we focus on 
analytical approaches for integrated data analysis. An important question is the appropriateness of 
combining data from very different sources. We did not address this question in this paper. We 
refer readers to a paper by Chuang-Stein et al (2016) [28] on how to use data from different 
sources to enable benefit-risk assessment. We hope to address questions related to data sources 
for integrated data analysis in a future paper.  
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