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Abstract

As a stochastic dependence modeling tool beyond the classical normal distribution model, Copula

is widely used in Economics, Finance, and Engineering. A Copula density estimation method that

is based on finite mixture of parametric Copula densities is proposed here. More specifically, one

component of the mixture model is the mixture of Gaussian, Clayton and Gumbel Copulas (termed

GCG component) which are capable of capturing symmetrical, lower, and upper tail dependence, re-

spectively. The entire copula density is a mixture of k GCG components. The model parameters are

estimated by interior-point algorithm for the resulting constrained maximum likelihood estimation

problem, where the gradient of the objective function is not required. The interior-point algorithm is

compared with the commonly used expectation-maximization (EM) algorithm in mixture models.

Mixture components with small weights can be removed by a thresholding rule. The number of

components k is selected by the model selection criterion AIC. Simulation and real data application

show the effectiveness of the proposed approach.

Key Words: Copula, dependence modeling, mixture model, maximum likelihood estimation,

interior-point algorithm

1. Introduction

Dependence modeling consists of finding a model that describes dependencies between

variables, which is a fundamental task of multivariate statistics (Cox and Wermuth (1996)).

Statistical approaches to dependence modeling describes an underlying random process

in terms of a multivariate distribution. Multivariate probability density estimation based

on observed data from a random process is a long standing and active research area in

statistics (Scott (1992)). In a linear, Gaussian world stochastic dependencies are captured

by correlations. In more general settings, copula (otherwise known as dependence function)

has emerged as a useful tool for modeling stochastic dependence. In essence, a copula is a

multivariate probability distribution with uniform marginals. One of the main advantages

of copula over full probability function is that copula allows the separation of dependence

modeling from the marginal distributions.

The copula density estimation can be categorized into parametric, semiparametric, and

nonparametric methods. A parametric estimation method assumes copula density belongs

to a copula family determined by a few parameters (for example, Shih and Louis (1995)).

The parametric copula density estimation problem is then essentially reduced to estimate

the few parameters that determine the copula.

Nonparametric estimation of copula density does not assume a specific parametric form

for the copula and the marginals and thus provides great flexibility and generality.

Semiparametric copula density estimation method assumes part of the data distribution

- such as copula density - follows a parametric model, while the rest - such as the univari-

ate marginal distributions - follow nonparametric models. This includes the following two

stage estimation method (Genest et al. (1995)): in the first stage, the univariate marginal

distributions are estimated nonparametrically, e.g., by the n/(n + 1) times the empirical
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marginal distributions. In the second stage, the copula parameters are estimated by maxi-

mizing the pseudo log-likelihood using the data generated in the first stage. The resulting

semi-parametric estimator of the dependence parameter is consistent and asymptotically

normal under suitable regularity conditions. Genest et al. (1995) proposed a consistent

estimator of the limiting variance-covariance matrix of the estimator.

Choros et al. (2010) provided a brief survey of parametric, semiparametric and non-

parametric estimation procedures for copula models.

We propose here to estimate a bivariate copula density by finite mixture of parametric

copulas. Mixture models provide an interesting alternative to non-parametric modeling,

while being less restrictive as opposed to standard parametric distributional assumption

(Diebolt and Robert (1994)). We estimate the marginals by their empirical distributions in

the first stage. Hence our approach is semiparametric in nature.

Hu (2006) uses a mixture of three copulas to capture various symmetric and asymmet-

ric dependence structures in financial markets. The mixture is composed of a Gaussian

copula, a Gumbel copula and a Gumbel survival copula. The Gaussian copula in the mix-

ture relates to traditional approaches based on the Gaussian assumption. Gumbel copula

and its survival copula model extreme co-movements in market returns. The former models

positive right tail dependence while the latter is its mirror image and models left tail de-

pendence. In Hu (2006), the mixture model is estimated using a two-stage semi-parametric

procedure, i.e. the marginals are estimated by the empirical distributions. EM algorithm

is used to maximize the pseudo log-likelihood. Kauermann and Meyer (2014) proposes

finite mixtures of different Archimedean copula families as a flexible tool for modeling the

dependence structure in multivariate data. The parameters in this mixture model are es-

timated by maximizing the penalized marginal likelihood via iterative quadratic program-

ming. Arakelian and Karlis (2014) uses finite mixture of different copulas for clustering

purposes, with parametric marginal distributions. The model parameters are estimated by

an EM algorithm based on the standard approach for mixture models.

The rest of the paper is organized as follows: In section 2, we present the finite mixture

of parametric copulas model. In section 3, we discuss the interior point algorithm and

compare it with classical expectation-maximization (EM) algorithm. Section 4 shows the

experimental results. We apply the method to a real data set in section 5. Finally, section 6

concludes the paper.

2. Finite Mixture of Parametric Copulas Model

A bivariate copula density c(u, v), [u, v] ∈ [0, 1]2 can be regarded as the joint probability

density function (PDF) of a bivariate standard uniform random variable (U, V ).
A bivariate copula C(u, v) defined on the unit square [0, 1]2 is a bivariate cumulative

distribution function (CDF) with univariate standard uniform margins:

C(u, v) =

∫ u

0

∫ v

0
c(s, t)dsdt.

Sklar’s Theorem (Sklar (1959)) states that the joint CDF F (x, y) of a bivariate random vari-

able (X,Y ) with marginal CDF FX(x) and FY (y) can be written as F (x, y) = C(FX(x), FY (y)),
where copula C is the joint CDF of (U, V ) = (FX(X), FY (Y )). This indicates a copula

connects the marginal distributions to the joint distribution and justifies the use of copulas

for building bivariate distributions.

Let (X1, Y1), . . . , (Xn, Yn) be a random sample from the unknown distribution F of

(X,Y ). We wish to estimate aspects of the joint distribution of X and Y , in particular, the

copula density function c(u, v).
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When the two marginal distributions are continuous, the copula density c(u, v) is the

unique bivariate density of (U, V ) = (FX(X), FY (Y )) as implied by Sklar’s theorem. As

copulas are not directly observable, a copula density estimator is usually formed in two

stages: obtaining the observations for (U, V ) first and then estimating the copula density

based on these observations.

In the first stage, the original data set (Xi, Yi) for i = 1, . . . , n is converted to (Ûi, V̂i) =
(F̂X(Xi), F̂Y (Yi)), where F̂X and F̂Y are conventional estimators of FX and FY . If mod-

els are available for the marginal distributions of X and Y but not for the joint distribution,

one can use a technique such as maximum likelihood to estimate the marginal distribution

functions. Otherwise, some nonparametric univariate distribution estimation methods or

simply the following empirical CDFs (ECDFs) can be used:

F̂X(x) =
1

n+ 1

n∑

i=1

I(Xi ≤ x), F̂Y (y) =
1

n+ 1

n∑

i=1

I(Yi ≤ y), (1)

where I(·) is the indicator function. Scaling by (n + 1) instead of conventional n avoids

difficulties arising from the potential unboundedness of copula density as some of the Ûi

or V̂i tend to one (Genest et al. (1995)). When ECDFs are used as the marginal CDF

estimators, {(Ûi, V̂i)}
n
i=1 is nothing but the rescaled ranks. In the second stage, we estimate

the copula density c(u, v) based on the observations {(Ûi, V̂i)}
n
i=1.

Gaussian copula can capture symmetrical dependence structure, while Clayton and

Gumbel copula can capture lower and upper tail dependence, respectively. A mixture of

Gaussian, Clayton and Gumbel Copulas is capable of capturing symmetrical, lower, and/or

upper tail dependence. A single component of Gaussian, Clayton and Gumbel Copula mix-

ture - GCG component - may not be flexible enough to capture a complicated dependence

structure, we therefore model a bivariate density c(u, v) as a mixture of a number, say k, of

GCG components in some unknown proportions:

c(u, v; θ) =
k∑

j=1

[pnjcnj(u, v; ρj) + pyjcyj(u, v;αj) + pmjcmj(u, v;βj)] ,

(2)

where pnj , pyj , pmj denotes the proportions; cnj , cyj , cmj denotes the densities; and ρj , αj , βj
denotes the parameters of Gaussian, Clayton, and Gumbel copula respectively. Note that:

−1 ≤ ρj ≤ 1, αj ≥ 0, and βj ≥ 1. Mixture proportions are nonnegative and sum to one.

Copula parameters are restricted within the parameter spaces. It is beneficial to put the

copula parameters of the same copula type in descending order in the model specification

(see section 3.3 for an example).

The maximum pseudo log-likelihood estimator θ̂ in constrained parameter spaces max-
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imizes the pseudo log-likelihood

max
θ

L(θ) =
n∑

i=1

log
{
c(Ûi, V̂i; θ)

}

=
n∑

i=1

log





k∑

j=1

[
pnjcnj(Ûi, V̂i; ρj) + pyjcyj(Ûi, V̂i;αj) + pmjcmj(Ûi, V̂i;βj)

]


 ,

Subject to

pnj ≥ 0, pyj ≥ 0, pmj ≥ 0, for j = 1, . . . , k;

k∑

j=1

(pnj + pyj + pmj) = 1

− 1 ≤ ρj ≤ 1, αj ≥ 0, βj ≥ 1, for j = 1, . . . , k.

ρ1 > ρ2 > . . . > ρk;

α1 > α2 > . . . > αk;

β1 > β2 . . . > βk.

(3)

In the next section, we discuss algorithms for solving this optimization problem.

3. Constrained Maximum Likelihood Estimation by Interior Point Algorithm

We first briefly review the interior point algorithm for solving problems like (3) in this

section, then discuss some specifics when applying this algorithm to our problem (3). There

is a rich body of literature on this topic in mathematical programming (Wright (1992); Byrd

et al. (1999, 2000); Waltz et al. (2006); Wright (1997)). Problem (3) is a special case of the

following constrained nonlinear optimization (or programming) problem:

min
x

f(x),

Subject to

h(x) = 0

g(x) ≤ 0,

(4)

where f : Rn ⇒ R, h : Rn ⇒ Rl and g : Rn ⇒ Rm are twice continuously differentiable

functions (Waltz et al. (2006)).

The interior point approach to this constrained minimization is to replace the inequality

constraints by log barrier (Lagrangian) penalty functions that introduce a smooth contribu-

tion to the objective function. This leads to the replacement of the nonlinear program (4)

by a sequence of approximate barrier subproblems (MATLAB (2014)).

3.1 Initialization Strategy

In practice, the number of mixture components k is unknown. The single GCG component

model with k = 1 is the simplest model, while a dozen GCG component model where k =
12 looks very complex. To choose an appropriate model order k, we start with k = 1, fit the

model with appropriate initial values, then increase K by 1, fit the model with appropriate

initial values again, until a model selection criterion such as AIC no longer improves.
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Choosing appropriate initial or starting values for an algorithm that solves a multivariate

optimization problem is crucial to the success of the algorithm, especially for non-convex

problems. For our problem (3), when k = 1, a natural choice to initialize the proportions

is the equal values:

p
n1 init = p

y1 init = p
m1 init =

1

3
.

The initial value of a copula parameter is chosen as the the maximum likelihood estimate

for the single component model without mixtures. For example, the initial value for Gaus-

sian copula parameter ρ1 init is the maximum likelihood estimate for the Gaussian copula

model, which is simply the sample correlation coefficient.

When k is increased by 1, the initial value for the (k + 1) GCG components model

will use the fitted value for the k GCG components model. For the proportion parameters,

the idea is to keep the sum of initial proportions for (k + 1) GCG components model the

same as the sum of fitted proportions for k components model in the Gaussian, Clayton,

and Gumbel copula components respectively.

For the copula parameters, we set the initial copula parameter values for the first k
components of the (k + 1) GCG components model equal to the fitted copula parameter

values for the k GCG components model, while the initial copula parameter value for the

(k + 1)th component to be a value near the lower bound of the parameter space.

3.2 Thresholding and Model Selection Criterion

A mixture component with small weight such as 0.01 implies small contribution to the

dependence structure, therefore should not be included in the copula model (Cai and Wang

(2014)). We set the threshold for weight at 0.05 due to its good performance in simulation

studies. Any component with its fitted proportion less than or equal to this threshold will

be discarded from the model, leading to reduction of model complexity.

A model selection criterion offers a trade-off between the goodness of fit of the model

and the complexity of the model. We use the AIC as the model selection criterion:

AIC(θ̂k, k) = L(θ̂k)− DF(k),

where L(θ̂k) is the log likelihood evaluated at the fitted θ for the k GCG components model,

and DF(k) is its Degrees of Freedom. The L(θ̂k) measures the goodness of fit of the model,

while DF(k) measures the complexity of the model.

DF(k) = 2
k∑

j=1

[I(p̂nj > 0.05) + I(p̂yj > 0.05) + I(p̂mj > 0.05)]− 1,

where I(·) is an indicator function. Here DF(k) - Degrees of Freedom - equals the number

of effective parameters in the model. Each kept component whose estimated weight is

above the threshold 0.05 has a weight parameter and a copula parameter, hence adding 2 to

DF(k). The term −1 in DF(k) is due to the constraint that all the weights sum to 1.

Another well known model selection criterion BIC performs similarly in our simulation

study.

So our model selection strategy starts with k = 1 with equal weights, fits the model

parameter θ, and evaluates AIC(θ̂k, k). We then increase k by 1, fit the model with ap-

propriate initial values using the initialization strategy, until AIC no longer increases. If

AIC(θ̂k, k) ≥ AIC(θ̂(k+1), k + 1), then k is selected as the number of GCG components.
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Table 1: A mixture of two Gaussian copulas for simulation

Component Proportion ρ

Gaussian 1 0.40 0.3

Gaussian 2 0.60 -0.7

Table 2: Fitted Model with the ordered copula parameter specification for the mixture of

two Gaussian copulas: AIC = 83.74

Component Proportion ρ

Gaussian 1 0.3704 0.3980

Gaussian 2 0.6296 -0.6869

3.3 Ordered vs Unordered Copula Parameters

One obvious benefit of putting the copula parameters of the same copula type in descending

order in the model specification (2) is that we have a naturally good choice for the initial

value of the copula parameter of the newly entered copula component - a value near the

lower bound of the parameter space. Another benefit is that it tends to improve model

fitting. We illustrate this by an example.

We generated n = 1000 observations from a mixture of two Gaussian copula model

with the parameters specified in table 1. We then fit models with the ordered and unordered

copula parameter specifications respectively, starting with k = 1 and using the same initial

values chosen by the initialization strategy.

The fitted model with the ordered copula parameter specification is given in table 2,

where we omitted the components whose weights are below or equal to the threshold 0.05.

The fitted model with the unordered copula parameter specification is given in table 3,

where we included the components whose weights are below or equal to the threshold

0.05.

In this example, the fitted model with the ordered copula parameter specification has a

slightly bigger AIC (83.74 vs 82.39) and identified the correct model.

Table 3: Fitted Model with the unordered copula parameter specification for the mixture

of two Gaussian copulas: AIC = 82.39

Component Proportion Copula Parameter

1 0.4537 -0.7107

Gaussian 2 0.0000 -0.4120

3 0.1138 -0.7107

1 0.1048 1.5585

Clayton 2 0.0000 0.1393

3 0.0000 3.7960

1 0.1296 1.1000

Gumbel 2 0.1981 1.1000

3 0.0000 1.3182
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Table 4: A single GCG component model for simulation

Component Proportion parameter

Gaussian 0.35 0.5

Clayton 0.40 3

Gumbel 0.25 10

Table 5: Comparison of EM and interior point solutions: Iteration counts, log likelihoods,

and CPU times (in seconds) for three EM variants and the interior point solver

Algorithm EM1 EM2 EM3 IP

Iterations 50 100 500 16

Time 1.07 2.16 11.12 0.30

L(θ)-550 0.8193 0.8987 0.8990 11.3148

3.4 Interior Point Algorithm vs the EM Algorithm

EM algorithm has dominated the literature on maximum likelihood estimation of mixture

models. For the problem of Kiefer-Wolfowitz nonparametric maximum likelihood estima-

tor for mixtures, Koenker and Mizera (2014) compared the modern interior point methods

with EM algorithm. Their experience was that modern interior point methods are vastly

superior, both in terms of accuracy and computational effort.

Here we compare the interior point algorithm with the EM Algorithm for a simulated

data set. We generated n = 1000 observations from a single GCG component model with

the parameters sepcified in table 4.

We used MATLAB optimization toolbox’s fmincon() function for the implementation

of the interior point algorithm (MATLAB (2014)) to solve problem (3). As in Koenker and

Mizera (2014), in Table 5 we report timing information and the values of L(θ) achieved for

the interior point algorithm and EM algorithms with various number of iterations.

The EM algorithm makes little progress from 50 to 500 iterations. By contrast, the

interior point algorithm as implemented in MATLAB is both quicker and more accurate.

Table 6 reports initial values and fitted values of the algorithms for the component

proportion parameters, where the initial values for proportions are all equal. The interior

point algorithm’s fitted proportions are closer to the true proportions than the ones by the

EM algorithms.

Table 7 reports initial values and fitted values of the algorithms for the component cop-

ula parameters, The initial value of a copula parameter is the maximum likelihood estimate

for the single component model without mixtures. The interior point algorithm’s fitted cop-

ula parameters are closer to the true copula parameters than the ones by the EM algorithms.

Table 6: Comparison of EM and interior point solutions: proportion estimates

Component
True Initial Estimated Proportion

Proportion Value EM1 EM2 EM3 IP

Gaussian 0.35 0.3333 0.3367 0.3367 0.3367 0.3717

Clayton 0.40 0.3333 0.3375 0.3375 0.3375 0.3916

Gumbel 0.25 0.3333 0.3259 0.3259 0.3259 0.2367
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Table 7: Comparison of EM and interior point solutions: copula parameter estimates

Component
True Initial Estimated copula parameter

Parameter Value EM1 EM2 EM3 IP

Gaussian 0.5 0.7610 0.5279 0.5284 0.5284 0.5804

Clayton 3 2.0737 3.5718 3.5592 3.5592 3.2684

Gumbel 10 2.1133 6.1807 6.1974 6.1974 10.7149

4. Estimation of Mutual Information Using Copula Density - Simulations

Mutual information (MI) is an information-theoretic quantity that measures the stochastic

dependence between random variables. The mutual information MI(X,Y ) for the random

variables X and Y is the Kullback-Leibler (KL) distance from the joint probability density

f(x, y) to the product of the marginal probability densities fX(x) and fY (y):

MI(X,Y ) ≡ E

[
log

f(X,Y )

fX(X)fY (Y )

]
=

∫∫
f(x, y)log

f(x, y)

fX(x)fY (y)
dxdy.

MI(X,Y ) can be expressed in terms of the copula density c(u, v) as:

MI(X,Y ) = E [log c(U, V )] =

∫∫

[0,1]2

c(u, v) log c(u, v)dudv.

Therefore a byproduct of a copula density estimator ĉ(u, v) is a MI estimator given by:

M̂I(X,Y )c =

∫∫

[0,1]2

ĉ(u, v) log ĉ(u, v)dudv. (5)

A high quality copula density estimator ĉ(u, v) will lead to a high quality MI estimator

M̂I(X,Y )c.
There exists numerous methods for MI estimation, see Wang et al. (2009) for a detailed

review. The classical histogram method (Moddemeijer (1989b)) estimates a continuous

density by a histogram with fixed bin size. Recently, MLMI - maximum likelihood mutual

information (Suzuki et al. (2009d)) method is proposed as an estimator of MI based on

the density-ratio estimation method KLIEP. Kullback-Leibler Importance Estimation Pro-

cedure (KLIEP) (Sugiyama et al. (2008)) is an algorithm to directly estimate the ratio of

two density functions without going through density estimation. The optimization problem

involved with KLIEP is convex so the unique global optimal solution can be obtained effi-

ciently. Furthermore, the KLIEP solution tends to be sparse, which contributes to reducing

the computational time. The default basis functions are chosen as Gaussian kernels and

the Gaussian width is chosen by cross-validation (CV). In a numerical experiment, MLMI

with CV performs well. Squared-loss Mutual Information (SMI) is a squared-loss variant

of mutual information (Sakai and Sugiyama (2014)). Therefore a byproduct of a copula

density estimator ĉ(u, v) is a SMI estimator given by:

ŜMI(X,Y )c =
1

2

∫∫

[0,1]2

[ĉ(u, v)− 1]2 dudv. (6)

LSMI - Least-Squares Mutual Information (Sakai and Sugiyama (2014)) - is an estima-

tor of SMI based on the density-ratio estimation method uLSIF. Good SMI estimator was
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Table 8: Copula Models for Simulation

Model Component Proportion Parameter

1
Gaussian 0.6 [−0.75,−0.5,−0.25, 0, 0.25, 0.5, 0.75]
Gaussian 0.4 0.5

2
Gaussian 0.6 [−0.75,−0.5,−0.25, 0, 0.25, 0.5, 0.75]
Clayton 0.4 2

3
Clayton 0.6 [0.22, 0.67, 1.33, 2, 3, 6, 18]
Gumbel 0.4 4

demonstrated to be useful in performing various machine learning tasks such as dimension

reduction, clustering, and causal inference Suzuki et al. (2009c).

The MATLAB code for mutual information estimation by histogram is publicly avail-

able (Moddemeijer (1989a)). The MATLAB implementation of MLMI and LSMI for mul-

tiplicative kernel models are publicly available (Suzuki et al. (2009b,a)) - which is the main

reason that we choose them for comparison.

We compare the estimator M̂I(X,Y )c in (5) with MI by histogram and MLMI, and

compare ŜMI(X,Y )c in (6) with LSMI in terms of the root mean squared error(RMSE)

between the estimator and the true value of the parameter MI(X,Y ) or SMI(X,Y )
through Monte Carlo simulation. Three different copula models are used for the simulation

with their parameters given in Table 8.

In model 1 and 2, the correlation coefficient ρ for the Gaussian Copula was -0.75, -0.5, -

0.25, 0, 0.25, 0.5, 0.75. In model 3, the parameter θ for the Clayton copula was chosen to be

0.22, 0.67, 1.33, 2, 3, 6, 18, corresponding to bivariate Kendall’s τ being equal to 0.1, 0.25,

0.4, 0.5, 0.6, 0.75, 0.9, respectively. The correct values of MI(X,Y ) and SMI(X,Y )
were computed by numerical approximation for the given copula density function c(u, v).
The sample size n was set to 500 and 1000 with 100 Monte Carol replication each.

For each copula model, independent and identically distributed (i.i.d.) standard uniform

bivariate random variables {(Ui, Vi)}
n
i=1 were generated from the specified mixture copula

model. That was, {Ui}
n
i=1 was a sample from a Uniform(0,1) distribution, and so was

the {Vi}
n
i=1. The joint density of (U, V ) was the specified copula density c(u, v). In the

simulation, the marginal distributions were both standard Gaussian distributions. But this

knowledge of marginal distributions is not used for copula density estimation, because they

were estimated by ECDFs (1).

RMSEs of M̂I(X,Y )c vs. Histogram and MLMI, and ŜMI(X,Y )c vs LSMI for

Model 1 through 3 are presented in Figures 1 through 3, respectively.

The simulation results show that the MI estimator based on copula density estimator

outperforms those by histogram based and MLMI for the simulated data in most cases.

The SMI estimator based on copula outperforms the LSMI for the simulated data in most

cases as well. Only in a few cases of the Gaussian-Gaussian copula model with mod-

erate correlation coefficients, copula based estimator slightly under-performs. It appears

that both histogram based and MLMI estimators have difficulties when the data is highly

dependent in the tails.

5. Application to real data

We apply our GCG components mixture model to a subset of the Framingham Heart study

data (http://www.framingham.com/heart/). We focus on the dependence struc-

ture underlying the diastolic (DBP) and the systolic (SBP) blood pressures (in mmHg)
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Figure 1: RMSE of M̂I(X,Y )c vs. Histogram and MLMI, ŜMI(X,Y )c vs. LSMI for

the Gaussian-Gaussian copula mixture model. Computations are based on sample size

n = 500, 1000 and 100 Monte Carlo repetitions.

measured on 663 male subjects at their first visit. The scatter plot of the log-blood pres-

sures and the scatter plot of the standardized ranks of the log-blood pressures can be found

in Fig. 4. It is evident that there is a strong positive dependence between the two responses.

Lambert (2007) analyzed this data set assuming the copula density of the log-blood pres-

sures was a sub-family of copulas named Archimedean with unknown (strict) generator.

Lambert (2007) proposed a ratio approximation of the Archimedean copula generator and

of its first derivative using B-splines, estimated the associated parameters using Markov

chains Monte Carlo methods, and found that Gumbel copula was appropriate for this data

without being fully satisfactory.

We applied our estimation procedure to this data set. For comparison, we also es-

timated parametric copula densities by assuming Gaussian, Clayton and Gumbel copula

respectively for the data. Table 9 lists AICc along with the fitted parameters for these mod-

els. We found that Gaussian-Gumbel mixture copula model selected by our model fitting

procedure slightly outperformed the Gumbel copula model in terms of AIC. Fig. 5 plots

the fitted Gaussian-Gumbel copula density on the left and Gumbel copula density on the

right panel. They look similar, with small difference in the front and back corners.
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Figure 2: RMSE of ̂MI(X,Y )c vs. Histogram and MLMI, ŜMI(X,Y )c vs. LSMI

for the Gaussian-Clayton copula mixture model. Computations are based on sample size

n = 500, 1000 and 100 Monte Carlo repetitions.

Table 9: AICs of the fitted models for the blood pressures data with n = 663

Model AIC Fitted parameters

Gaussian-Gumbel 289.1358 p̂ = [0.5607, 0.4393], θ̂ = [0.8357, 1.8513]

Gumbel 282.2860 θ̂ = 2.1179
Gaussian 273.3293 ρ̂ = 0.7494

Clayton 176.5958 θ̂ = 1.4467

6. Concluding remarks

We presented a finite mixture of Gaussian, Clayton and Gumbel copula components model

subject to the constraints that the model parameters for the same parametric components are

ordered. The model parameters are estimated by interior-point algorithm for the resulting

constrained maximum likelihood estimation problem, where the gradient of the objective

function is not required.

The extension of our method to trivariate or higher dimensional copula density estima-

tion is possible but requires more considerations on dealing with the multiple parameters of

a copula model. For example, the parameter of a trivariate Gaussian copula is a 3×3 corre-

lation matrix. The ordering of such correlation matrices is not a straight forward extension
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Figure 3: RMSE of ̂MI(X,Y )c vs. Histogram and MLMI, ŜMI(X,Y )c vs. LSMI for

the Gaussian-Clayton-Gumbel copula mixture model. Computations are based on sample

size n = 500, 1000 and 100 Monte Carlo repetitions.
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Figure 4: Left: log(DBP) vs. log(SBP); Right: standardized ranks of log(DBP) vs. those

of log(SBP)

of the ordering of scalars.
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model fitting procedure; Right: Gumbel copula density with θ̂ = 2.1179
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