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Abstract 

The PAM50 intrinsic subtypes are prognostic subtypes in breast cancer based on the 
expression profile of a set of 50 genes.  To classify new breast tumors, the data for these 
genes are median centered, and subtypes are called according to the nearest centroid 
using the published PAM50 data. To build risk prediction models using over 1,700 breast 
tumor samples in the WHEL study, we used Nanostring technology to profile the PAM50 
geneset. A platform adjustment is needed to translate parameter estimates from the 
published gene signatures based on microarray/qPCR into Nanostring. Median centering 
is robust, but it works well only when the underlying subtype distribution in the new set 
of samples is similar to the distribution in the published training data. To avoid this 
caveat, we created a Nanostring-based centroids using paired Nanostring-microarray data 
on a subset (n=97) of the published training data.  We compared several methods of 
platform adjustment, including calibration curves from smoothing splines, and simpler 
more robust approaches.  We applied the platform adjusted centroids to data sets with 
different underlying subtype distributions, and described our recommended approach.  
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1. Introduction 

 
Research has been done to identify risk factors for breast cancer recurrence. 
Clinicopathologic models, such as Adjuvant! [Ravdin, P.M., et al.,2001], Oncotype 
DX[Paik, S., et al., 2004, 2006], and Mammaprint [van't Veer, L.J., et al., 2002; Buyse, 
M., et al., 2006], have been proposed to predict survival and guide cancer treatment. In 
this paper, we focused on PAM50 gene expression signature which has been validated 
and is commercially available to guide treatment decisions [Parker, J.S., et al., 2009; 
Nielsen, T.O., et al., 2010; Prat, A., M.J. Ellis, and C.M. Perou, 2012]. PAM50 signature 
uses the expression of 50 genes to classify breast tumors to five subtypes with different 
risk levels: Luminal A, Luminal B, Basal-like, HER2-enriched and Normal-like. It also 
provides some quantitative measures such as proliferation scores which can also be used 
for risk prediction. Here, we focus on PAM50 subtype calling.  
 
The published PAM50 centroids can be obtained from UNC web site [Parker, J.S., et al., 
2009] along with R code to call the subtypes and a training data set that included 232 
freshly frozen samples. These centroids were developed using qPCR/microarray data. In 
our study, however, gene expression data were produced using nCounter miRGE™ 
Assay developed by NanoString technologies (NanoString Technologies, INC, Seattle 
WA [Geiss, G.K., et al., 2008]). This assay analyzes mRNAs and miRNAs 
simultaneously.  We will use tumor samples from the Women’s Healthy Eating and 
Living (WHEL) study [Pierce, J.P., et al., 2002] to generate data for building own 
prediction models. We have about 1700 primary breast tumor formalin-fixed paraffin 
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embedded (FFPE) samples.  Since we have data from FFPE samples rather than FF 
samples, and we will use NanoString data, platform adjustment is apparently needed for 
subtype calling and the calculation of the prognostic scores. Median centering is a 
straightforward and generally effective way for platform adjustment, proposed by Parker 
and his colleagues [Parker, J.S., et al., 2009].  In their approach, medians are first 
calculated for each of the 50 genes across all the samples, and then, for a data matrix of 
gene by sample, median is subtracted off each row corresponding to a gene, and the new 
matrix is to be used for further calculation. 
 
The published PAM50 centroids are a 50 by 5 matrix where rows correspond to genes 
and columns are for 5 subtypes. To do subtype calls for a new sample, Spearman rank 
correlation is calculated between the new profile of 50 genes and each of the subtype 
centroids, namely, each column, and the subtype that has the greatest correlation is called 
for this new sample. Because the relative ranks among the genes directly affect subtype 
calling, how to do platform adjustment becomes extremely important.  As it has already 
been noted, when median centering is used, the underlying subtype distribution needs to 
be similar to the one from the training data which had about 50% of the ER+ samples. In 
situation such as when almost all the samples are ER+, median centering will assign a 
rather big proportion of the samples into other subtypes anyway; namely, many samples 
will be misclassified. Thus, we need to find a method that will work when the published 
approach works poorly.  
 
 
 

2. Methods and Data 

 
Our goal is to create our own centroids that are good for expression data collected at a 
different platform.  In our case, it was the data collected using NanoString. We used R-
NanoStringNorm package for normalization. We used the same reference genes that were 
also used for deriving published centroids. The analyses below are for the datat that have 
already been normalized.  
 
2.1 Our methods 

We considered two approaches to create new centroids and use them to call subtypes. 
One way was to use samples that have observed data from both platforms; and the other 
way was to use all the samples, and if some data from one of the platforms were missing, 
impute missing values.  
 
2.1.1 Missing data imputation  

Using microarray data on the x-axis and NanoString data on the y-axis, natural splines 
were created for each gene. Missing NanoString data were imputed by obtaining the 
predicted values based on the spline models. R-splines package was used to perform the 
analysis.   
 
2.1.2 Correction factors 

In both approaches, medians across all the samples from these training data are calculated 
by gene and are then used as correction factors. Each row of a new data matrix will be 
subtracted off by the corresponding factor for a specific gene before Spearman rank 
correlations are calculated.   The advantage of using these medians from the training data 
rather than the new data set itself as a correction factor is that not only can they help with 

JSM2015 - Biopharmaceutical Section

2749



platform adjustment, also when they are used for a new data set, the underlying subtype 
distribution will not be easily altered.  
 
2.1.3 Centroid calculation 

After imputing missing values, if needed, and subtracting off the correction factors, for 
each subtype, centroids were obtained by averaging the expression values by gene for 
each subtype group. Therefore, to apply this step, samples with known subtypes are 
needed.  
 
2.2 Our data  

2.2.1 Training data 

We downloaded microarray/qPCR data from the UNC web site [Parker, J.S., et al., 2009] 
from which the original PAM50 centroids were created. For 173 of them, PAM50 
subtype calls were known to us.  We also obtained NanoString data for 97 of these 173 
samples.  
 
2.2.2 Test data sets 

To test our approaches and compare them to others, three test data sets were used here. 
The first data set had 36 FFPE samples assayed using miRGE; this set came from a 
different platform, but this was a subset of the 97 samples based on which our new 
centroids were developed. The second data set had 97 freshly frozen (FF) samples; these 
came from the same 97 patients, but were FF samples rather than FFPE. The third data 
set came from a totally different source; 416 breast cancer FFPE samples from TAM 
series NanoString data were used [Nielsen, et al., 2010]. The percentages of ER+ samples 
in these three data sets were 47%, 46% and 89%, respectively.  
 
2.3 Measures for method comparisons 

 
We proposed three measures to compare different methods. 
 
2.3.1 Overall misclassification error rate 

Using the known PAM50 subtype calls as gold standard, the percentage of samples that 
were classified differently was used as the overall misclassification error rate. 
 
2.3.2 Overall misclassification error rate when subtypes luminal A and luminal B are 

combined  

 Subtypes luminal A and luminal B have similar clinical characteristics and they are often 
misclassified between each other. Thus, we also combined these two subtypes and re-
calculated the overall misclassification error rate. 
 
2.3.3 Misclassification Her2 error rate 

Using the number of gold standard Her2+ samples as denominator and the Her2+ 
samples that were misclassified into other subtypes as numerator, misclassification Her2 
error rate can then be calculated. We thought this measure was important because Her2+ 
patients are given very different cancer treatments from others.   
 
Classification results from these approaches were compared using these measures. 
 
 

3. Results 
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3.1 Results from first data set 

As shown in Table 1, since the first data set had very similar underlying subtype 
distribution to the training data and it had almost equal numbers of samples for each type, 
using published PAM50 centroids with median centering had the best performance. 
Using our new centroids together with the correction factor was slightly worse.  
 
Table 1. Misclassification error rates for MiRGE data set (n=36). 

  Method 
Misclassification error rate 

Overall Overall (LumA & 
LumB combined) Her2 only 

      PAM50 
Original 

Centroids 

No Median 
Centering      8/36 4/36 4/6 

Median 
Centering 3/36 0/36 0/6 

NanoString 
Centroids + CF 

173 samples 5/36 2/36 0/6 
97 samples 5/36 1/36 0/6 

 

 

3.2 Results from the second data set 

As shown in Table 2, we noticed again that using 173 with imputed NanoString data did 
not improve performance. The centroids derived from the sample set with 97 pairs of data 
from both the platforms worked the best. Since the second data set was the same patients 
on which our new NanoString centroids were developed, here it outperformed the results 
using published PAM50 centroids with median centering.  
 

Table 2. Misclassification error rates for Nanostring FF samples (n=97). 

  Method 
Misclassification error rate 

Overall Overall (LumA & 
LumB combined) Her2 only 

      PAM50 
Original 

Centroids 

No Median 
Centering     38/97 22/97 14/18 

Median 
Centering 25/97 15/97 6/18 

NanoString 
Centroids + CF 

173 samples 28/97 15/97 8/18 
97 samples 23/97 14/97 6/18 

 

 

3.3 Results from the third data set 

Because in this data set, most of the samples were ER+, using published PAM50 
centroids with median centering had the highest error rate. A significant amount of the 
samples were misclassified. It was even worse than using the published PAM50 centroids 
without median centering.  
Again we noticed that using both observed and imputed NanoString data did not help us. 
The centroids derived from the sample set with 97 samples worked the best, much better 
than all other approaches. Thus, before another method of imputing missing values is 
proven to be helpful to this problem, it is better to use observed data only. And also when 
we know that in a data set, some subtypes may dominate, we should avoid using median 
centering.   
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Table 3. Misclassification error rates for TAM series data (n=416). 

  Method 
                 Misclassification error rate 

Overall Overall (LumA & 
LumB combined) Her2 only 

      PAM50 
Original 

Centroids 

No Median 
Centering 110/416 42/416 35/35 

Median 
Centering 196/416 178/416 12/35 

NanoString 
Centroids + CF 

173 samples 107/416 43/416 21/35 
97 samples 101/416 42/416 11/35 

 

 
4. Conclusions 

 
In this paper, we proposed to use new centroids as a way of platform adjustment to do 
PAM50 subtype calling. We compared our approaches to the ones using published 
PAM50 centroids with and without median centering. To use published PAM50 centroids 
to call subtypes, it is the best to use median centering when the underlying subtype 
distribution is similar to the one Parker’s training data. If we know it is not (e.g. almost 
all are ER+), median centering should be avoided. Gold standard samples with known 
subtypes may be needed. When there are available data with known subtypes, it may 
work the best just to derive your own centroids and use medians from the gold samples as 
adjustment parameters. 
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