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Abstract
We analyze the daily precipitation time series data at a location in the upper Missouri River Basin

(MRB) with prediction as the objective using two approaches: a. Bayesian estimation of a stan-
dard Tobit state space model and b. a transfer function approach with an Expectation-Maximization
(EM)-like method to “fill in” the zero values (dry days) in the observed series. We use the daily pre-
cipitation data simulated by MIROC5, a Global Climate Model (GCM), as an exogeneous predictor.
The prediction methods based on the two models can predict zero values as valid predictions, which
is desirable for daily precipitation. While the prediction of intensities of precipitation (positive pre-
cipitation on wet days) from both the methods are similar on average, the transfer function method
was more successful at correctly predicting zero precipitation on days when there was no rain (dry
days). A few other relative strengths and weaknesses of the two methods are also discussed.

Key Words: State-space, Bayesian, Tobit, EM, Transfer function, Statistical downscaling, Precip-
itation, MIROC5

1. Introduction

Daily precipitation data is an important variable in hydrological studies to assess the impact
of decadal climate changes on crop and water yields at the regional scale. Since such im-
pact studies are for future periods, the daily precipitation data must be forecasted at regional
resolutions (ex.: 10 km2). A popular method to generate predictions of daily rainfall is to
use the simulated data provided by Global Climate Models (GCMs) (Wood et al. (2004)),
often available at much coarser resolutions (ex.: 150 km2), to build a statistical relationship
with the observed data, and use the model to forecast using the retrospective simulations
(also known as “hindcast data”) from GCMs as covariates. This method of fitting a sta-
tistical model to the GCM simulated data is an example of what is known as “Statistical
downscaling”. Such methods are also known as “bias-correction” methods because hydro-
meteorological data, precipitation in particular, provided by GCMs is often not accurate
enough to be used for applications that work at finer resolutions (Wood et al. (2004)).

In this paper we discuss and share preliminary findings from two statistical downscaling
methods using the daily precipitation data simulated by the GCM MIROC5 (Model of In-
terdisciplinary Research on Climate) (Nozawa et al. (2007)) as the predictor. This research
is part of a bigger project to assess the decadal climate changes on agricultural and water
yields in the Missouri River Basin (MRB) (Mehta et al. (2013)). We use a hydrological
software called Soil Water Assessment Tool (SWAT) (Gassman et al. (2007)) to run impact
∗saiku1@umbc.edu
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Figure 1: Proportion of dry days between 1949 and
2000 Figure 2: Avg. monthly Precipitation over upper MRB

studies on various climate scenarios, derived from forecasted data of various climate vari-
ables, including daily precipitation, at the resolution of 12 km2.

There are several statistical downscaling methods used by researchers to bias-correct the
GCM simulated data. Teutschbein and Seibert (2012) provide a review of some of the pop-
ular methods. We extend the Tobit model used in Popuri et al. (2015) to account for time
dependence. We use a state-space model (see Shumway and Stoffer (2011) for details) with
the standard Tobit model as the observation equation. The Tobit model is similar to a state-
space model with a linear state process with MIROC5 data as the covariate and random
noise, and an observation process of the Tobit form. We describe two methods to fit a Tobit
state space model to the daily precipitation time series. The first method follows a Bayesian
approach to estimate the state process and generates predictions from the predictive pos-
terior distributions using a Gibbs sampling scheme. The second method uses a transfer
function model to fit the observed series to the covariate series. The zero values (dry days)
in the observed series are imputed using an Expectation-Maximization (EM)-like method.

Rest of the paper is organized as follows. In section 2 we describe the data. Section 3
discusses the Tobit state-space model used, the details of the Bayesian implementation,
and the results. In Section 4 we describe the transfer function model with the EM-like
algorithm used to “fill in” the zero observations. We conclude with some discussion in
secion 5.

2. Data Description

The observed daily time series data are provided by Maurer et al. (2002). It has a temporal
coverage of 1949− 2005, and a spatial resolution of 0.125◦(longtitude) ×0.125◦(latitude),
making it 12km×12km gridded data. MIROC5 provides daily simulated precipitation data,
which has a temporal coverage of 1859− 2010, and are at 1.4◦(longtitude) ×1.4◦(latitude)
spatial resolution, which is 150km ×150km gridded data. MIROC5 data is spatially in-
terpolated to match the resolution of the observed data prior to our analysis. The data
between 1949 and 2000 is used for model fitting and between 2001 and 2005 for evalu-
ation. Figure 2 shows the systematic bias between the monthly observed and MIROC5
precipitation between 1949 and 2000 averaged over the upper MRB region. MIROC5
simulated daily data does not contain zero values, and the positive values for wet days
are in general much lower than the observed. On the other hand, for more than 50% of
the number of days on average at each location, observed precipitation is zero. As the
proportion of dry days over the region in Figure 1 indicate, the observed precipitation
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Figure 4: Monthly mean Precipitation at
−109.8125N, 41.4375W Figure 5: Observed daily and smoothed series

Figure 6: Histogram of daily precipitation at a location Figure 7: Sample autocorrelations of monthly mean
series

in the region is heavily censored at zero. MIROC5 follows a 365-day calendar whereas
the observed data follows the regular calendar with leap years. Prior to the analysis,
such differences in calendars are resolved by aligning MIROC5 with the observed data.

Figure 3: Daily and smoothed Precipitation by
MIROC5

Figure 4 shows the monthly mean of observed
and MIROC5 precipitation at −109.8125N,
41.4375W, which is to the west of Rock
Springs, WY and is in the upper MRB region
shown in figure 1. Clearly, on average MIROC5
seems to consistently overestimate precipitation
each month. However, as figures 5, and 3 show,
the large number of zero values in the observed
data make the observed monthly averages lower
than those of MIROC5. The large number of
zero observed precipitation values can also be
seen from the histogram of the observed data in
figure 6. The sample autocorrelation function
of the observed data averaged over each month
in figure 7 indicates a seasonal component with
a period of 1 year, as one would expect. This seasonal behavior can also be seen in the
MIROC5 data as well. Notice the presence of a large number of zero values, which makes
the monthly averages lower than those from MIROC5. In summary, the observed daily pre-
cipitation is heavily censored at zero and shows high volatility. On the other hand, MIROC5
data has low intensity strictly positive values.
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3. The Tobit State-space model

A State-space model consists of two processes: a state process, and an observation process.
The state process is not observable but drives the observation process, which is directly
observed. In general, the observation process is linearly related to the state process, and
both the processes can include covariates (same or different), and noise components. In
the model we use for our analysis, the observation process has the standard Tobit form,
and does not include a noise term. The state process in our model is assumed to follow an
AR(1) process with MIROC5 data as a covariate and a Gaussian white noise term. Brock-
well et al. (2003) have used a similar model to analyze Internet traffic data. We closely
follow their formulation with a few simplifying assumptions.

Let {Yt} be the observed daily precipitation series, and {Xt} denote the unobserved state
process. One could conceptualize {Xt} as the build up of the underlying weather variable,
which results in precipitation upon reaching an ideal condition. Thus, {Yt} can be thought
of as the following hockey stick function of the unobserved {Xt}.

Yt = g(Xt), (1)

where

g(x) =

{
x, if x > 0

0, if x ≤ 0
(2)

The latent process Xt can be modeled as a linear, causal stationary Gaussian time series
satisfying the state equation

Xt+1 = φXt + βMt+1 + Zt, (3)

where φ is the autoregressive parameter, {Mt} is the MIROC5 simulated precipitation on
day t, and {Zt} is Gaussian white noise (Normal with mean 0) with variance σ2.

For our analysis, we detrend both the observed and MIROC5 series by subtracting monthly
means prior to fitting the model. Averages of monthly means from the last five years of the
test period 1949 − 2000 are used for the corresponding monthly means in the forecasting
period, and to adjust the forecasted state variables to predict daily precipitation for the
period 2001 − 2005. Also, we assume an AR(1) model for the state process, which is
defined as

Xt = φXt−1 + βM∗t + Zt, (4)

where {M∗t } is detrended precipitation provided by MIROC5 on day t = 1, 2, .., n, and
Zt’s are independent zero mean Normal with variance σ2. M∗t is calculated as M∗t =
Mt − µmm(t), where µmm(t) is the mean of precipitation from the (month, year) day t falls
into. In a similar fashion, we detrend the {Yt} series as

Y ∗t = Yt − µm(t), (5)

where µm(t) is the mean of the observed precipitation from the month, year combination
day t falls in. The observation equation after detrending is

Y ∗t =

{
Xt, if Xt > −µm(t)

−µm(t), if Xt ≤ −µm(t),
(6)

JSM2015 - Section on Statistics and the Environment

2696



which is equivalent to
Yt = g(Xt) + µm(t) (7)

In other words, the state process is the latent process driving the detrended observed series
{Y ∗t }. The model is equations (4-7) is akin to the standard Tobit model (Takeshi (1985)).
It’s nonlinear nature complicates the model fitting a little.

3.1 Bayesian Approach

Prior to the analysis, the observed data is adjusted to 365-day calendar followed by MIROC5
for implementation convenience. The model in equations (4-7) has parameters (φ, β, σ2, Xt, Xt+f ),
where t = 1, 2, .., n, f = 1, 2, .., nf , where n = 18980, and nf = 1825, since there are
18980 days in the model testing period 1949 − 2000, and 1825 days in the model evalu-
ation period 2001 − 2005. We use Markov chain Monte Carlo (MCMC) to estimate the
parameters and perform forecasting. Let θ = (φ, β, σ2). Notice that the joint distribution
of Xt and Xt+1 conditional on Xt−1 is(

Xt

Xt+1

)
| Xt−1, θ ∼ N

[(
φXt−1 + βMt−1

φ2Xt−1 + φβMt + βMt+1

)
,

(
σ2 φσ2

φσ2 (φ2 + 1)σ2

)]
Therefore, for t= 2..(n− 1), where n is the number of observations, the marginal distribu-
tion of Xt given Xt+1 and Xt−1 is given by

Xt | Xt+1, Xt−1, θ ∼ N(?,∆), (8)

where ? = φXt−1 + βMt−1 + φ
(φ2+1)

(Xt+1 − φ2Xt−1 − φβMt), ∆ = σ2

(φ2+1)
.

For end points t= 1 and n, we have the following conditional distributions

X1 | X2, θ ∼ N(
X2

φ
− βM2

φ
,
σ2

φ2
) (9)

Xn | Xn−1, θ ∼ N(φXn−1 + βMn, σ
2) (10)

Using a non-informative prior for β as N(µβ = 0, σ2β = 20), we get the full conditional
posterior for β as

β | X, φ, σ2 ∼ N(
B

2A
,

1

2A
), (11)

where X = (X1, .., Xn),A = 1
2σ2

n∑
t=2

M2
t + 1

2σ2
β

,B = 1
σ2

n∑
t=2

MtXt+
µβ
σ2
β
− φ
σ2

n∑
t=2

MtXt−1.

We use a uniform prior on (−1, 1) for φ in order to ensure causality of the state process
{Xt}. Using this prior, the posterior for φ is given by

φ | X, β, σ2 ∼

N(B, σ2

2∑
t=2

X2
t−1

)I(φ ∈ (−1, 1))

Φ(
(1−B)

√
n∑
t=2

x2t−1

σ )− Φ(
(−1−B)

√
n∑
t=2

x2t−1

σ )

(12)

where I(φ ∈ (−1, 1)) = 1, if φ ∈ (−1, 1) and 0 otherwise. The above closed form of
the posterior is obtained from the conditional form of the autoregressive model where the
first observation is treated as fixed. Considering the large number of data points and the
simplicity this restricted likelihood achieves in terms of the ease of implementation, we
think it is a fair trade-off. Using the full likelihood would result in a complicated posterior,
which would warrant a Metropolis like step to sample.
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For σ2, we use a non-informative prior (conditional on φ) of scaled Inv-χwith hyperparam-
eters 5 for degrees of freedom and Var(Yt) for the scale parameter. This prior, along with
the likelihood (restricted to X2:n = (X2, .., Xn)) described earlier, results in a posterior of
σ2 as

σ2 | X2:n, φ, β ∼ InvGa(
ν0 + n− 1

2
, β1), (13)

where β1 =

n∑
t=2

X2
t+β

2
n∑
t=2

M2
t −2β

n∑
t=2

MtXt−B2
n∑
t=2

X2
t−1+(φ−B)2

n∑
t=2

X2
t−1+ν0σ

2
0

2σ2

and B =

n∑
t=2

XtXt−1−β
n∑
t=2

MtXt−1

n∑
t=2

X2
t−1

3.2 Gibbs Sampling

Since the conditional distributions are fully specified for all the parameters, we estimate
the model parameters using the Gibbs sampling algorithm. The Gibbs sampling algorithm
produces samples that converge in distribution to a draw from the stationary joint distribu-
tion of X, and θ by constructing a Markov chain {X(k), θ(k)} (see Gelman et al. (2003) for
details). Our Gibbs sampling algorithm is given by

Algorithm 1 Gibbs sampler

Set k = 1. Choose some initial values for X(1), φ(1), β(1), and σ2(1) such that Yt =

g(X
(1)
t ) + µm(t). Here X(1) contains states X(1)

t , t = 1, 2, .., n

Step 1: For t = 1, 2, .., n, replace X(k)
t using equations 8-10 using values from the

(k − 1)st step for rest of the parameters, and ensuring that Yt = g(X
(1)
t ) + µm(t). This

is done by setting X(k)
t to Yt − µm(t) if Yt > 0 or to a sample from the corresponding

truncated distribution, truncated at −µm(t) otherwise
Step 2: Update φ(k) by drawing from equation 12
Step 3: Update β(k) by drawing from equation 11
Step 4: Update σ2(k) by drawing from equation 13
Step 5: Go to Step 2

Typically, the algorithm is run long enough ignoring samples for certain number of itera-
tions (burn-in period) to collect samples after the burn-in period. By construction, these
samples are dependent. One way to draw approximately independent samples is to collect
a sample from every lth iteration after the burn-in period. In our implementation, we used
a burn-in period of 1000 iterations and collected every 2nd sample to build 10000 draws for
parameters X, φ, β, and σ2.

3.3 Forecasting

The MCMC scheme is extended to give predictive distributions of Yn+1, Yn+2, ..., given
Y1, Y2, ..., Yn. After the step of drawing samples of X (Step 1 in the algorithm), we simply
calculate the mean of the posteriod predictive distributions for the forecasting period using
the current values of X(k) and θ(k), and MIROC5.
The distrbution of the state process for the forecasting period is given by

Xn+f | θ ∼ N(φE(Xn+f−1 | Xn) + βMn+f , σ
2) (14)

Yn+f = g(Xn+f ) + µ∗m(n+f) (15)
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Figure 8: Monthly mean precipitation for 2001-2005 Figure 9: Predicted daily precipitation for 2001-2005

where f = 1, 2, .., nf , and µ∗m(n+f) is the mean of the observed precipitation from the
month, year combination day n+ f falls into.

3.4 Results

Figure 8 shows the monthly mean of predicted daily precipitation for the period 2001−2005
along with the observed and MIROC5 values. Figure 9 shows the histogram of predicted
values for the same period, where the predicted value for the day f is the median of 10000
draws of Yn+f . The rationale behind taking median instead of say, mean is that it can be
interpreted as a consensus of dry/wet day from all the samples. In other words, if more than
50% of the samples are zeros, we can consider it as a dry day. Mean, on the hand, will al-
ways produce a strictly positive prediction (unless all the samples are zeros). Since we want
our model to be able to predict zeros, median seems to be a better alternative. However, a
downside of choosing median (or mean for that matter) is that the resulting predictions are
close to independent whereas the observed values for each day are not. Figure 10 shows
the histogram of the observed data for the period 2001− 2005. As our predictions in figure
9 indicate, our model has not predicted sufficient number of matched dry days. In other
words, for most true dry days, more than 50% of the MCMC samples were strictly posi-
tive. Also, as the range of values in figure 9 show, our model predicted mostly low intensity
positive values. This observation, in conjunction with reasonably good predictions at the
monthly mean levels, implies that for several days (many of which are dry), predictions
from our model are small positive quantities as the range of values in figure 9 shows.

Figures 11, 12, and 13 show histograms of the samples generated from the posteriors of
φ, β, and σ2 respectively. Low posterior mean for φ, and a close to zero estimate for
β also suggest the low number of matched zero values in our predictions. Adding more
auto-regressive terms and other covariate series to the state process could improve our
predictions. We plan to investigate into these in future. We also note that instead of median,
choosing 100pth percentile for a suitable p could improve the predictions.

4. A Transfer Function model

In the Bayesian approach described in Section 3.1, the MIROC5 data is considered fixed,
whereas in reality it is also a time series process. In this section we will discuss a transfer
function model where the MIROC5 series will be used as a covariate in a lagged regression
setting to predict the daily precipitation in two steps. In the first step an Expectation-
Maximization (EM)-like method is used to impute the censored part of the state process,

JSM2015 - Section on Statistics and the Environment

2699



Figure 10: Histogram of daily prediction for
2001-2005 Figure 11: Posterior of the autoregressive parameter

Figure 12: Posterior of the coefficient of MIROC5 Figure 13: Posterior of the variance of error

which is partially observed as positive precipitation. In the second step the complete state
process (with the zero values “filled in”) is used to fit a transfer function model using the
MIROC5 simulated data as the covariate process.

4.1 Step One: An EM-like imputation method

The EM (Expectation-Maximimization) method is an iterative estimation procedure used
when maximizing a likelihood function is difficult. In such a situation, often a latent vari-
able, which is assumed to drive the observed data, is introduced to simplify the likelihood
function. The simplified likelihood function, although often easier to maximize, is not
completely known since the latent variables are not observed. Instead, the conditional ex-
pectation of the new likelihood function given the observed data, and the current value of
the parameter is maximized to obtain an updated estimate of the parameter. These two steps
of calculating conditional expectation of the simplified likelihood and maximizing it over
the parameter space is iterated until the parameter estimate converges.

Following the notation in Hastie et al. (2009), let Z be the observed data and θ be the
parameter to be estimated, with log-likelihood `(θ;Z). Let Zm be the latent (or miss-
ing/censored) data with log-likelihood `1(θ;Zm | Z) based on the conditional density of
Zm | Z, and T = (Z,Zm) be the complete data with log-likelihood `0(θ;T). Applying
the Bayes formula on T | θ, we have

`(θ;Z) = `0(θ;T)− `1(θ;Zm | Z) (16)
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Taking conditional expectations with respect to the distribution of T | Z with a known
parameter θ

′
on both sides of equation 16, we get

`(θ;Z) = E[`0(θ;T) | Z, θ′ ]− E[`1(θ;Z
m | Z) | Z, θ′ ] ≡ Q(θ, θ

′
)−R(θ, θ

′
) (17)

Note that we seek to maximize `(θ;Z) over θ. Since it is assumed to be a difficult function
to maximize, it can be shown that maximizing Q(θ, θ

′
), which is often an easier function

to maximize, will never decrease the likelihood value of `(θ;Z). We show this is indeed
the case in Appendix. Algorithm 2 shows the steps involved in the EM algorithm.

Algorithm 2 The EM Algorithm

Require: Initial estimates θ̂(0)

1: E Step: At the jth step compute E[`0(θ;T) | Z, θ̂(j)] as a function of θ
2: M Step: Maximize E[`0(θ;T) | Z, θ̂(j)] over θ to get the new estimate θ̂(j+1)

3: Iterate steps E and M until convergence

The method we use to estimate the censored observations is different from the EM algo-
rithm described above in two respects. Since we use the Yule-Walker method (Ch. 3-
Shumway and Stoffer (2011)) to estimate the time series model, we do not work with the
likelihood of the observed data and therefore the need to calculate the conditional expec-
tation of `0(θ;T) does not arise. Instead, the E Step in our method involves estimating or
“filling in” the censored observations using the current estimate of θ and the M Step in-
volves the Yule-Walker estimation of θ using the complete data (with the imputed values).
These two steps are iterated with the E Step re-estimating only the censored part. Algo-
rithm 3 shows the steps involved in our method. Similar approaches were used by Miller
and Ferreriro (1984), and Bose and Neerchal (1997).

Algorithm 3 The EM-like Algorithm

Require: Initial Yule-Walker estimates θ̂(0) using Z
1: E Step: At the jth step set Zm = E[Zm | Z, θ̂(j)] to get Ẑm

2: M Step: Update the Yule-Walker estimates using the (Z, Ẑm) to get θ̂(j+1)

3: Iterate steps E and M a few times

Let O be the set of time points when the precipitation is observed and C the set of time
points when it is 0 (censored). Note that the latent state process Xt is same as Yt ∀t ∈ O.
The first step of the method is to fully estimate the state process by imputing the censored
(“missing”) values for t ∈ C. Figure 5 shows no significant time trend and indicates a sea-
sonal pattern, as expected of daily rainfall data. We therefore fit a sinusoidal component as
the mean process to de-seasonalise the observed series. We have used a scaled periodogram
to identify prominent periods of 365 days (yearly), 182 days (half-yearly), 15 days, and 7
days. Therefore, our mean component can be represented as

g(t) =
∑
f∈F

(β1f sin(2πft) + β2f cos(2πft)), (18)

where F = {17 ,
1
15 ,

1
182 ,

1
365.25}. We fit this mean component to only the strictly positive

observed values i.e., Xt, where t ∈ O to get the de-seasonalised process Xe
t , t ∈ O.

We assume that this process is stationary (weakly). Partial auto-correlations of the {Xe}
process in Figure 14 suggests an AR(1) model. Although the auto-correlations (not shown
here) also indicated an MA(1) process, we chose not to use an ARMA(1,1) model for
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Figure 14: Partial Autocorrelations of {Xe} Figure 15: Monthly Observed vs Forecasted

simplicity. The Yule-Walker estimation method is used (M Step in Algorithm 3) as an
initial estimate of the AR(1) model, which is used to “fill in” the values for the censored
Xt, where t ∈ C (E Step). The M Step is repeated, this time using the complete {Xe

t }
series, with the imputed censored part. Note that the observed part is not changed. In the
subsequent E Step, the censored part is re-imputed using the updated AR(1) parameter.
These steps shown in Algorithm 3 are repeated a few times. We have not investigated into
the convergence properties of the Yule-Walker estimates obtained in this fashion but we
believe one or two iterations are sufficient. At the end of this estimation step, we get the
complete latent process {Xt}, part of which is observed and the rest is imputed.

4.2 Step Two: Lagged Regression

Using the procedure described in Section 4.1, we have the complete detrended observed
series {Xe

t }, t = 1, 2, .., n. In the second step of our method, we treat MIROC5 provided
data as a time series process and use it as a covariate in a lagged regression setting. In
a transfer function model we assume that the observed process can be explained by an
exogenous time series process and it’s own lagged values. Consider the lagged regression
model of the form

Xe
t = T (B)M e

t + ηt, (19)

where {Xe
t } is the complete detrended observed series, {M e

t } the detrended MIROC5 se-

ries, {ηt} is the noise series, and T (B) =
∞∑
j=0

tjB
j . Here, {M e

t }, and {ηt} are assumed

stationary and mutually independent.

Estimating a transfer function model is usually done in a sequential manner (see Shumway
and Stoffer (2011) for details) with the first step being fitting an ARIMA model to the de-
trended input {Mt} series. Figure 3 indicates a seasonal pattern but no clear trend in the
daily and smoothed series by MIROC5. Based on a scaled periodogram, we fit a sinusoidal
component at one year time period to get the process {M e

t }, which is assumed stationary.
Based on ACF and PACF plots (not shown) from this series, an AR(9) model is fitted to
{M e

t }. The fitted AR(9) operator is used to transform the output series {Xe
t } to get {X̃e

t },
whose cross-correlation with the residual process from the AR(9) model for {M e

t } is used
to suggest the regression form T (B).

The operator T in equation 19 can be represented as the ratio of polynomial operators of the

form γ(B)
ω(B)B

d, where γ(B) =
s∑
i=0

γiB
i, and ω(B) =

r∑
i=0

ωBi. The number of parameters s,
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and r, and the delay parameter d can be infered from the cross-correlation plot mentioned
above between the whitened {M e

t } and the transformed output processes. Using the ratio
representation of T , equation 19 can be written as

Xe
t =

r∑
i=1

ωiX
e
t−i +

s∑
j=1

γjM
e
t−d−j + et, (20)

where et = ω(B)ηt A regression is performed using equation 20 to get the estimates of
ω1, .., ωr, γ1, .., γs, and the residuals êt, to which the estimated operator ω̂(B) is applied
to get the estimated noise η̂t. The last step involves fitting an ARMA(pη, qη) model to η̂t.
These steps are shown in Algorithm 4.

Forecasting is done by first forecasting η̂n+f using the estimated ARMA(pη, qη), followed
by plugging in the MIROC5 values from the prediction period and the lagged values of Xe

t

into the estimated equation 20 as

Xe
n+f =

r∑
i=1

ω̂iX
e
n+f−i +

s∑
j=1

γ̂jM
e
n+f−d−j + ω̂(B)η̂n+f (21)

Algorithm 4 Fitting a transfer function

1: Step 1: Fit an ARMA model to the stationary {M e
t }.

2: Step 2: Transform the output series {Xe
t } using the fitted ARMA operator from Step 1

to get {X̃e
t }.

3: Step 3: Using cross-correlation values between {X̃e
t }, and the whitened process (resid-

uals) from Step 1, infer a form for the operator T in equation 19.
4: Step 4: Fit the multiple linear regression model in equation 20 to get the residuals ût.
5: Step 5: Transform the residuals ût using the estimated MA operator ω̂(B) in Step 4 to

get the estimated noise process {η̂t}.
6: Step 6: Fit an ARMA model to {η̂t}.

4.3 Results

Figure 16 shows the time plot of the observed precipitation with the forecasts superim-
posed. Clearly, the predictions seem to underestimate the intensity of precipitation. Figure
17 shows the histogram of predictions from the transfer function method. The method is
able to successfully predict zero values with around 52% matches in dry days, an overall
50% censoring at zero when the observed data has 62% zero values. The predicted intensity
has an overall mean value of 0.38 mm/day, whereas the observed intensity has an average
value of 0.82 mm/day.

5. Discussion

We have described two methods to predict daily precipitation at a location using the daily
MIROC5 simulated data as the exogenous series. The first method uses the Bayesian ap-
proach to estimate a standard Tobit state space model, where the observation equation takes
the Tobit form and the state process has MIROC5 data as the covariate. Since predictions
are read off from the posterior predictive distributions as median values from the MCMC
iterations, this method in principle can predict zero values. This is a natural attribute to

JSM2015 - Section on Statistics and the Environment

2703



Figure 16: Observed vs Forecasted Figure 17: Forecasts from the Transfer function
method

require of a prediction method for daily rainfall. The results however suggest several im-
provements to the state process. For example, including more auto-regressive terms and
additional climate variables as covariates could be investigated into. As for implementa-
tion, since all the conditional distributions of parameters are fully specified, implementing
a Gibbs scheme is straight-forward. However, including additional covariates could com-
plicate implementing MCMC. Another downside of this method is the run time to fit the
model. For a modest number of iterations in the Gibbs algorithm, the model has taken
around 30 minutes. If the research problem demands fitting this model at several locations,
the large run time might render the model infeasible to implement. However, in those situ-
ations, spatial dependence could be incorporated, possibly in a Hierarchical fashion, which
would significantly alter the model described here.

The second method discussed in this paper is a transfer function model with the zero values
in the output series imputed using an EM-like method prior to model fitting. This method
too by design can predict zero values. Results indicate that the matched proportion of dry
days is signficantly improved compared to the Bayesian method. However, intensities still
seem to be underestimated. A possible reason for this could be a missing time dependence
component in the residual process, which needs to be investigated closely. In future, we
would like to improve these models by incorporating more covariates, and compare their
predictive performance with the models from Teutschbein and Seibert (2012), Popuri et al.
(2015), and SWAT’s own Weather Generator.
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Appendix

Below we show that maximizing Q(θ, θ
′
) in Section 4.1 over θ never decreases the log

likelihood `(θ;Z).
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We reproduce the equation 17 below

`(θ;Z) = E[`0(θ;T) | Z, θ′ ]− E[`1(θ;Z
m | Z) | Z, θ′ ] ≡ Q(θ, θ

′
)−R(θ, θ

′
) (22)

Note that the Expectations in the above equation is with respect to T | Z, θ′ , whose distri-
bution is same as Zm | Z, θ′ . Therefore,

E[`1(θ;Z
m | Z) | Z, θ′ ] = EZm|Z,θ′ [`1(θ;Z

m | Z)] = EZm|Z,θ′ [logPrθ(Z
m | Z)]

Since Pr(Zm | Z) > 0, logPrθ(Zm | Z) is a strictly concave function. Therefore by
Jensen’s Inequality,

EZm|Z,θ′ [logPrθ(Z
m | Z)] ≤ log(EZm|Z,θ′ [Prθ(Z

m | Z)])

Therefore, R(θ, θ
′
) in equation 27 is maximized when θ = θ

′
.

Let θ(j) is the estimate of θ at the M Step of jth iteration in 2, and θ(j+1) the argmax of Q
over θ at the (j + 1)st step. Substituting θ(j) for θ in equation 27, we get

`(θ(j);Z) = Q(θ(j), θ
′
)−R(θ(j), θ

′
)∀θ′ (23)

Substituting θ(j) for θ
′

in equation 23, we get

`(θ(j);Z) = Q(θ(j), θ(j))−R(θ(j), θ(j)) (24)

Substituting θ(j+1) for θ in equation 27, we get

`(θ(j+1);Z) = Q(θ(j+1), θ
′
)−R(θ(j+1), θ

′
)∀θ′ (25)

In particular, at θ(j) for θ
′
, we get

`(θ(j+1);Z) = Q(θ(j+1), θ(j))−R(θ(j+1), θ(j))∀θ′ (26)

Subtracting equation 24 from equation 26, we get

`(θ(j+1);Z)−`(θ(j);Z) = Q(θ(j+1), θj)−Q(θ(j), θ(j))+R(θ(j), θ(j))−R(θ(j), θ(j+1)) ≥ 0
(27)
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