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Abstract 
In this paper a life table for the Roman population is constructed using Ulpian’s table. 
This table can be regarded as a tool to compute the value of an annuity taking into 
account the age of the beneficiary. The Gompertz distribution and some of its extensions 
are applied for the life table construction. It is shown that the Roman life table can be 
represented by a five-parameter formula, which consists of three terms. Since the life 
expectancy at birth depends on the unknown infant mortality, different assumptions are 
made. Simulations show that a range of the life expectancy between 20 and 30 years is 
quite possible. Finally, it is discussed whether Ulpian´s table represents annuities or life 
expectancies. It cannot be excluded that the values in Ulpian’s table represent annuities 
premiums based on an interest rate of about 1.5%. 
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I. Introduction 
 

This paper continues a research on Ulpian´s table of Pflaumer (2014). Ulpian’s scheme 
can be summarized as a table which illustrates the relation between age and the present 
value of a life-time annuity of 1. If the interest rate is zero, which is in general assumed, 
the present value corresponds to the life expectancy at age x  (see Table 1). 

Table 1: Ulpian’s table 
Age x [0,20) [20,25) [25,30) [30,35) [35,40) [40,50) [50,55) [55,60) 60+ 
Life 
expectancy 
at age x 

30 28 25 22 20 59 - x 9 7 5 

Pflaumer (2014) found that Ulpian´s table between the ages 20 and 70 can be approxi-

mated quite well by a Gompertz distribution ( ) exp
    
 

A A k xl x e
k k

 with A=0.002410 and 

k=0.058923, assuming that the figures are median life expectancies. 
  

2. Lazarus Distribution 
 

The Gompertz and Makeham laws are partial, because they do not apply to life tables 
with high mortality at young ages. We now turn to a life table distribution which was first 
proposed by Lazarus (1867). Wilhelm Lazarus (1825-1890) was an actuary in Hamburg 
and Trieste (see, e.g., Pitacco 2009, p. 410 or Loewy 1930). It is a general law of 
mortality that applies to all ages. The force of mortality function is defined by: 

g x k x(x) B e C A e
         with B>0, g>0, C>0, k>A>0. 
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Lazarus’ law has three terms and five parameters, and covers the whole of the age range. 
The first term represents infant mortality, which declines steeply after birth; the second 
term represents age-independent mortality, and the third term is the Gompertz law with 
increasing mortality. This model has also been proposed and applied to primates by Siler 
(1979). An extension can be found in Thiele (1871), where C is replaced by an age-
dependent function C(x). Special cases of the Lazarus model are the Gompertz formula 
(C=0, B=0), the Makeham formula (B=0), and the Gauss Mortality Formula (C=0, cf., 
Loewy 1906 or Pflaumer 2013). This particular form of the force of mortality function is 
called a bathtub curve in reliability engineering, because it is comprised of three parts: 
decreasing, constant, and increasing failure rates (Hjorth, 1980). The name is derived 
from the cross-sectional shape of a bathtub. 

Since 

x
(u)du

0l(x) e

 
 , we get: A A B Bkx gxl(x) exp e e C x

k k g g

         
 

. 

If the force of mortality decreases sharply after birth, then B gxe 0
g

  for ages Ax x . 

The remaining part of the survivor function can be represented by: 
A B A B A Akx kxl (x) exp e C x exp exp e C xA k g k g k k

                      
    

    for x xA , 

or simply by:  B
l (x) exp l (x)A Mg

 
   

 
, where l (x)M  is the Makeham survivor function. 

In this special case, we can estimate the modal value of the Lazarus distribution by: 
k·(k - 4·C)) - 2·C + k

ln
2 A

m
k

 
    for   k 4 C  . 

The maximum age can be estimated from the Lazarus model as the age of the last and 

single survivor of a population of size N. Solving
1

l( )
N

   yields an implicit equation:  

A g B gk
A e C k k ln N 0

g

           . If C k 0    , we can find an approximation 

formula for the maximum life span: 

g k ln N A g B k
ln

A g

k

      
    . 

Other important parameters can only be obtained by numerical integration. 
 

3. A Roman life table over the whole span of life based on Ulpian’s table1 
 

For the complete discrete life table Clx  we first suppose the same survivorship rates F
xl as 

did Frier (1982) for young ages:  C Fl lx x   for x=0,1..20. The basis for adult ages x>20 is 
the Gompertz median model with A=0.002410 and k=0.058923 (see Pflaumer 2014, 
section 4). 

                                                 
1 An alternative approach is suggested by Thieme (2003, pp. 194-195), who fits a rational function 
to Ulpian´s Table and derives the survivor function from a well-known relationship between life 
expectancy at age x and the l(x)-function. His model yields a life expectancy at birth of 30.6 years, 

a survivorship rate l(20) = 0.555, and  unrealistically low infant  mortality, e.g.,  0 0.038  . 
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In order to obtain the complete life table for the remaining ages, the age specific rates of 

Frier F
xl and Gompertz G

xl are concatenated by:  
Gl 0.40385C F Gxl l lx 20 xG 0.9120l20

      x=20,25,….80. 

Table 2: Survivorship rates of Frier’s (1982, p. 245), Gompertz’s (A=0.002410 and 
k=0.058923), and the complete (concatenated) life table 

x F
xl  (Frier) G

xl  (Gompertz) C
xl  (Complete)

0 1  1.0000 
1 0.64178  0.6418 
5 0.48968  0.4897 
10 0.45828  0.4583 
15 0.43618  0.4362 
20 0.40385 0.91210 0.4039 
25 0.37047 0.87150 0.3859 
30 0.33604 0.81982 0.3630 
35 0.30055 0.75522 0.3344 
40 0.26401 0.67642 0.2995 
45 0.22642 0.58339 0.2583 
50 0.18777 0.47829 0.2118 
55 0.14807 0.36632 0.1622 
60 0.11096 0.25606 0.1134 
65 0.07459 0.15833 0.0701 
70 0.04377 0.08303 0.0368 
75 0.02067 0.03490 0.0155 
80 0.00671 0.01090 0.0048 

 
In the next step, Lazarus models were fitted to the observed life table data sets of the lx 

and x values of Table 2, both for Frier’s and the complete life table, using non-linear least 
squares. The results are given in Tables 3 and 4.  
 

Table 3: Estimation Results 
a) Complete life table (Lazarus model based on Gompertz model) 

Dependant variable  C
xl  

Independant variable x=0, 1, 5, 10….,75,80 
                             Lower       Upper  
Parameter    Estimate  Std Error    95% C.I.    95% C.I. 
A 7.72117E-04 1.9454E-04 3.51844E-04 1.19239E-03 
B    0.688977   0.017303    0.651597    0.726357 
k    0.076330 4.3765E-03    0.066875    0.085785 
g    1.008889   0.032522    0.938630    1.079148 
C 8.27207E-03 8.3727E-04 6.46325E-03    0.010081 
Convergence criterion met after 9 iterations. 
Residual SS (SSE) 1.886E-04 
Residual MS (MSE) 1.451E-05 
Standard Deviation 3.809E-03 
Degrees of Freedom        13 
AICc   -186.76 
Pseudo R²    0.9998 
Cases Included 18    Missing Cases 0 
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b) Frier’s life table (Lazarus model) 

Dependant variable  F
xl  

Independant variable x=0, 1, 5, 10….,75,80 
 
Parameter    Estimate  Std Error    95% C.I.    95% C.I. 
A 1.95738E-03 3.2308E-04 1.25941E-03 2.65536E-03 
B    0.705528   0.011452    0.680788    0.730268 
k    0.057015 2.7278E-03    0.051122    0.062908 
g    1.074100   0.022925    1.024573    1.123627 
C 9.15156E-03 8.0287E-04 7.41706E-03    0.010886 
Convergence criterion met after 8 iterations. 
Residual SS (SSE) 7.053E-05 
Residual MS (MSE) 5.426E-06 
Standard Deviation 2.329E-03 
Degrees of Freedom        13 
AICc   -204.46 
Pseudo R²    0.9999 
Cases Included 18    Missing Cases 0 

 

Table 4: Estimated ( xl̂ ) and original values (lx) 

x F
xl  (Frier) F

xl̂ (Frier)
G
xl  (Complete:  

Lazarus-Gompertz*) 

G
xl̂  (Complete: 

Lazarus-Gompertz) 
0 1 1.0000 1 1 
1 0.64178 0.6417 0.6418 0.6421 
5 0.48968 0.4912 0.4897 0.4845 
10 0.45828 0.4608 0.4583 0.4597 
15 0.43618 0.4315 0.4362 0.4366 
20 0.40385 0.4013 0.4039 0.4128 
25 0.37047 0.3701 0.3859 0.3876 
30 0.33604 0.3372 0.3630 0.3603 
35 0.30055 0.3026 0.3344 0.3300 
40 0.26401 0.2660 0.2995 0.2958 
45 0.22642 0.2274 0.2583 0.2569 
50 0.18777 0.1875 0.2118 0.2131 
55 0.14807 0.1472 0.1622 0.1651 
60 0.11096 0.1084 0.1134 0.1159 
65 0.07459 0.0732 0.0701 0.0703 
70 0.04377 0.0441 0.0368 0.0345 
75 0.02067 0.0228 0.0155 0.0124 
80 0.00671 0.0097 0.0048 0.0028 

 

Both life tables can be fitted well by a Lazarus distribution. With the Lazarus distribution 
it is possible to represent the life tables by a five-parameter model. Life table functions 
and characteristic parameters can easily be calculated (see Table 5). The difference 
between the actual and the estimated survivor rates is small. The main difference between 
Frier’s life table and our life table can clearly be seen in Table 5 and in Figure 1. The 
assumptions mean that the curves are identical up to the age of 20. Between 20 and 55 
Frier’s life table shows a slightly higher mortality. Thus, the modal age for adults and the 
normal age is less (see Table 5). But for older ages Frier’s mortality rates are significantly 
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lower than those of our model. This is difficult to see in the graphs of the survivor 
functions, but is easy to see in the graphs of the force of mortality functions and in 
parameters such as maximum age or old age ratio. Consequently, Frier’s life table 
overestimates life expectancies above the age of around 50 in Ulpian’s table (see Figure 
2). Those old age estimates are better if one uses a model based on a Gompertz 
distribution. Although both models lead to the same life expectancy at birth (about 21 
years), our model predicts higher life expectancies at ages between 1 and 20. A child 
surviving the first few years would have a median life expectancy of more than 40 years 
(see Figure 2). 

Table 5: Characteristic life table parameters1) 

 

Complete 
Life Table 
(Lazarus-

Gompertz)
Frier’s Life 

Table 
Mean life expectancy 21.8 21.1 

Median life expectancy 3.4 4.0 
Modal age for adult ages 56.7 51.3 

Mean of the stationary population 25.7 25.5 
Maximum age (N=105) 90.5 (92.2)2) 99.5 
Maximum age (N=106) 93.2 (94.6) 103.1 
Maximum age (N=107) 95.4 (96.6) 106.1 

Keyfitz entropy3) 1.060 1.109 
Youth ratio (ages 0 to 15) 0.342 0.356 
Old age ratio (ages 65+) 0.019 0.027 

1)
 An overview of the calculation and the interpretation of the parameters can be found in Pflaumer 

(2011). 
2) The figures in parentheses are obtained by the approximation formula. 

3) The Keyfitz entropy H (Keyfitz, 1977) is one of the best-known mortality measures in 
demography. H can be interpreted as follows: if the death rates at all ages increase by 1%, the 

mean expectation of life diminishes by 1.06% or 1.109%. 

 

4. Sensitivity analyses 
 

According to our model results, the mean life expectancy at birth is between 21 and 22 
years (see Table 5). This depends on the assumption of the mortality between 0 and 20. 
Since Ulpian’s table did not reveal realistic assumptions in this age class, we used the 
mortality pattern of Model West, level 2. As Frier (1982, p. 246) pointed out, this is the 
weakest point in the life table, since very little is known about the exact pattern of 
juvenile mortality. In order to analyze the uncertainty about this point, we make different 
assumptions about juvenile mortality. 
A proportional change of the force of mortality function in the age class 0 to 20 is 
assumed: 

     * g x k xx f x f B e C A e              0 x 20;f 0   . 
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Figure 1: Survivor and force of mortality functions 
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Figure 2: Median life expectancies  
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Mortality increases if the factor f is greater than one, and decreases if the factor is less 
than one. The assumption of a proportional change in the force of mortality functions 
implies the following relationship between the original and the new survivor function: 

    f*l x l x0 20    0 x 20;f 0   .  

At the age of 20 the original survivor function for ages > 20 is concatenated with the new 

survivorship function  *
0 20 xl  . Thus, the new survivor function over the whole span of 

life is  

 
  

    

f
l x 0 x 20

*l x f
l 20

l x x 20
l(20)

  
  

. 

The life expectancy after the mortality change is: 

   
200 * * *e(x) l x dx l x dx
0 20


   . 

In Figure 3 the effects of a proportional change in the force of mortality function are 
shown. The left part of Figure 3 relates the change factor f to the survivorship rate l(20), 
whereas the right part shows the relation between the survivorship rate l(20) and the 
mean life expectancy at birth. If, for example, f=0.8, then there is a decrease in the force 
of mortality of 20% in the age class from 0 to 20. The force of mortality at ages x>20 
remains unchanged. A negligible jump discontinuity arises at that age (see Figure 4). As a 

result, all survivorship rates increase, especially  l 20 0.4128  to   0.8
l 20 0.4927 . The 

survivor function is furthermore a continuous function, but is no longer differentiable at 
the point x=20 (see Figure 5). A survivorship rate  l 20 0.4927  implies a growth of the 

life expectancy at birth to 
0 *e(0) 25.7 , which can be seen in the right part of Figure 3. The 

simulated life expectancies have been calculated by numerical integration. If it is 
assumed to be realistic that l(20) ranges between 0.4 and 0.5 (which means that only 40% 
to 50% of all newborns would reach the age of 20), then the life expectancy at birth 
would be between 21 and 26 years (see Figure 3). 
 
A comparison of selected historical life tables shows that the survivorship rate l(20) 
ranges roughly between 0.49 and 0.58. The assumed rate of l(20) of Ulpian’s life table, 
based on Model West, level 2, seems very low. If the l(20)-rates of the historical life 
tables were assumed for our complete life table the mean life expectancy would range 
between 25.6 and 30.1 years (see simulated life expectancies in Table 6). They are less 
than the life expectancies of the historical tables because of the very high force of 
mortality of our life table at older ages. 
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Figure 3: Effects of a proportional change in the force of mortality function 
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Figure 4: Proportional change in the force of mortality  
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Figure 5: Effect of a decline in the force of mortality on the survivor function 

 
 

Table 6: Life expectancies and survivorship rates of some historical life tables 

 

Complete
Life 

Table Süssmilch Moser Kerseboom 
l(20) 0.4128 0.491 0.570 0.584 
Mean life expectancy at birth 21.8 29.0 35.6 35.0 
Simulated mean life expectancy at birth 21.8 25.6 29.4 30.1 
Moser, L (1839): Die Gesetze der Lebensdauer, pp. 74 ff., pp. 324 ff.  Moser´s life table is the result of his 
polynomial 5-parameter mortality law (cf. also Forfar (2004, Mortality Laws) based on data for female 
mortality of Brune´s pension fund tables of the Prussian Widows´ Annuity Society (cf. Brune, D (1837): 
Neue Sterblichkeits-Tabellen für Wittwen-Cassen, Journal für reine und angewandte Mathematik, 16: 58-64). 

 
There are two reasons for the uncertainty about the Roman life expectancy at birth: first, 
the accuracy or inaccuracy of the life expectancy figures in Ulpian’s table and, second, 
the lack of reliable information on infant and youth mortality. If we accept Ulpian’s 
figure as more or less adequate, then the problem reduces to the mortality at young ages. 
Simulations show that the life expectancy at birth strongly depends on the survivorship 
ratios in young ages, which are not really known. We need more information on mortality 
for this age class in order to make more reliable statements about the life expectancy at 
birth. 

 
5. Is Ulpian’s table an annuity table? 

 
A life annuity consists of periodic (yearly) payments until the end of the recipient’s life. 
Its value or premium depends on the life expectancy of the pensioner and the underlying 
interest rate. We assume that the life annuity is purchased with a one-time payment (e.g., 
the proceeds of a sale of real estate). For a life aged u the actuarial present value of an 
annual life annuity of 1 paid continuously can be determined by: 
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     
 

l xr x ua u e dx
l uu

    , 

where r is the interest rate. If r=0, then the present value equals the life expectancy at age 
u. 

  0
ea u (u) . 

An approximation formula for small values of r is the annuity certain with fixed 

(deterministic) length of time or duration 
0
en (u)  

r nn 1 er xa e dx
r rn 0

 
    .   

A famous actuarial inequality states 

 a a un  , if 
0
en (u) . 

 
Ciecka (2012) considers three possible interpretations of Ulpian’s figures. 

1. The figures are life expectancies. We considered this in the previous sections. 
2. The figures are the duration of an annuity certain. He refers to Hald (2003) and Poitras 
(2000), who write that there was a market for annuities certain in ancient Rome. The 
first and the second interpretations are not necessarily inconsistent. It may be correct 
that Ulpian’s figures are life expectancies, and that they were used as the duration term 
in the annuity certain (Ciecka 2012, p. 10). If this is the case, then we know the life 
expectancies, but not the annuities certain. We only know that the life expectancy is 
greater than the annuity certain, if r>0. If, on the other hand, the figures in Ulpian’s table 
are annuities certain, then we do not know the life expectancies. 

3. Greenwood (1940) argued that Ulpian´s figures were neither life expectancies nor the 
duration terms of annuities certain. They are simply the legal maximum valuations for 
any annuity. For a more detailed discussion of this point see Greenwood (1940), Parkin 
(1992 pp. 34ff.) or Ciecka (2012). 

In the following analysis, we assume that the figures in Ulpian’s table are present values 
of annuities. 

Using the survivor function of the Gompertz distribution  ( ) exp       
 

k m k x ml x e e , we 

obtain the following formula for the value of life annuity: 

   
 

 

k m k x mexp e e
r x ua u e dx

k m k u mexp e eu

        
    
 

 with the modal value 

A
ln

k
m

k

 
 
   . 

In order to estimate the parameters k, m, and r, we use approximation formulae. 
 
a) Pollard (1991, p. 12) provides an approximation formula, which is, with our symbols: 

 

 

    

r
kk u mk e

2r
1 1 k k (u m

k(u m) 2 r kk k e

a u1 r

  
        

     
 

 
        

 . 

 

JSM2015 - Social Statistics Section

2675



b) Since only an approximation formula of the mean life expectancy based on a Taylor 
series exists, we approximate the mean by the median life expectancy for the annuity 
certain. The difference between mean and median life expectancy is not substantial for 
adult ages, especially when the survivor rates from a certain age follow a more or less 
linear pattern (see the Achard-Moivre mortality law in Pflaumer (2014), section 3). 
Therefore, we propose as a second approximation formula for small interest rates r the 
use of the median instead of the mean, that is: 

   e u r e u1 er xa e dx
r re(u) 0

 
   

 

 . 

Considering that:  

ln ln 2
( )

  
 

 
 

k u k me e
e u u

k
, 

we finally get as an approximation for the value of the annuity: 

 

r
r u k u k m ke e e ln 2r n1 e 1

a u a2 r r r re(u)

  
 

    
      

with ( ) n e u and    lim a u e u2r 0



 . 

 
We used non-linear least squares to estimate the parameters. The regressands are the 
figures from Ulpian’s table, and the regressors are the ages from 20 to 70. The results are 
given in Tables 7 and 8. 
 

Table 7: Regression results based on Pollard’s approximation formula 

MODEL: a1(x) = (1-((k*exp(k*x-k*m))/(k+(k*exp(k*x-k*m))))^(r/k)*(1+r/2*(r+k)*(k+(k 
           *exp(k*x-k*m)))^-2))/r   for x=20,21,…70 
 
                      Lower    Upper  
Parameter Estimate  Std Error 95% C.I. 95% C.I. 
m 63.86365   0.727126 62.40166 65.32563 
k 0.111613 9.6667E-03 0.092176 0.131049 
r 0.016020 1.7440E-03 0.012513 0.019526 
 
Convergence criterion met after 34 iterations. 
Residual SS (SSE) 55.477 
Residual MS (MSE) 1.1558 
Standard Deviation 1.0751 
Degrees of Freedom     48 
AICc 13.161 
Pseudo R² 0.9837 
Cases Included 51    Missing Cases 0 

 
The estimation results of the two models are similar. They do not exclude the possibility 
that Ulpian’s figures are indeed annuity premiums, which are calculated with an interest 
rate of 1.5% or 1.6%. Figure 6 shows the approximation of the annuity value as a 
function of age x. The two methods yield nearly the same prediction values. The values 
of k and m are higher than in the pure life expectancy models. This result is plausible, 
since the life expectancy is higher than the annuity certain. The modal value m is, as a 
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consequence, higher, and because of the lower force of mortality the slope of k must be 
greater with respect to the age limit of about 70.  
 

Table 8: Regression results based on the median annuity certain approximation formula 

MODEL: a2(x) = 1/r-(exp(r*x)*(exp(k*x)+exp(k*m)*ln(2))^(-r/k))/r for x=20,21,…70 
 
                       Lower    Upper  
Parameter Estimate  Std Error 95% C.I. 95% C.I. 
m 61.94272   0.972953 59.98647 63.89897 
k 0.093136 9.0325E-03 0.074975 0.111297 
r 0.014982 2.0022E-03 0.010956 0.019008 
 
Convergence criterion met after 30 iterations. 
Residual SS (SSE) 58.414 
Residual MS (MSE) 1.2170 
Standard Deviation 1.1032 
Degrees of Freedom     48 
AICc 15.792 
Pseudo R² 0.9828 
Cases Included 51    Missing Cases 0 
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Figure 6: Annuity table functions 

 
If the figures in Ulpian’s table represented annuity premiums calculated with an interest 
rate of about 1.5%, then the median life expectancy at age 20 would be 40 years (see 
Figure 7). This seems very high, if it is compared with life tables from the eighteenth and 
early nineteenth century. On the other hand, Duncan-Jones (1990, p. 94) reports mean life 
expectancies at age 25 ranging between 32 and 34. These life expectancies were 
estimated from a register of town councilors in Canusium in Southern Italy in 223 AD 
(Album of Canusium).  
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Figure 7: Comparison of life expectancy and annuity (k=0.093, m=61.9, r=0.015) 

 
Table 9: Life expectancies and survivorship rates of some historical life tables 

 Suessmilch Kerseboom Moser 
l(20) 0.491 0.584 0.570 
Life expectancy at birth 29.0 35.0 35.6 
Median Life expectancy at age 20 36 37.9 43.2 
Mean  Life expectancy at age 20 35.5 36.8 39.3 

 Moser, L (1839): Die Gesetze der Lebensdauer, pp. 74 ff., pp. 324 ff. 
 
But could the creators of Ulpian’s table have had the profound knowledge to calculate the 
value of annuities? Certainly they did not use our approximation formulae, and they did 
not know how to calculate the value for life annuities with actuarial methods. It was not 
until the seventeenth century that Jan de Witt (1625-1672) and Edmond Halley (1656-
1742) calculated the correct premiums for life annuities for the first time. However, 
according to Kopf (1926, pp. 231ff.) there is much evidence that the Romans had the 
statistical material and the required arithmetical skill to construct crude annuity tables. 
Maybe the creators could calculate a discrete version of the annuity certain. It is more 
probable that they would use an approximation formula if they calculated the value of an 
annuity. The present value of a payment of 1 in m years and an interest rate of r, using 

simple interest, can be calculated by    1
1 r m

1 r m
  

 
 .  If r m is small  

 
n

1 r m
m 1

 


 is therefore an approximation for the annuity certain under the condition that 

the interest rates are low, and is easy to calculate. Since:  
2 2r mr me 1 r m ....

2
       1 r m    
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the simple interest rate model yields similar results to the annuity certain model, when the 

interest rate is low. Using  
n r r21 r m n n n

2 2m 1
      


and n e(u)   

it follows for the annuity value using simple interest 

 

k u k m k u k mln e e ln 2 ln e e ln 2
x u r r 2

k k
r n1 e

a u3 r r 2

                     
            

    
    

 
     

   lim a u e u3r 0



 . 

The regression results are shown in Table 10. The results do not differ much from the 
previous results (Tables 7 and 8).  
 

Table 10: Regression results based on simple interest rate approximation 

MODEL: a3(x)= -(LN(exp(k*x)+exp(k*m)*LN(2))/k-x)*((LN(exp(k*x)+exp(k*m)*LN(2))/k- 
            x)*r+r-2)/2 for x=20,21,…70 
                          Lower    Upper  
Parameter Estimate  Std Error    95% C.I. 95% C.I. 
m 61.75774   0.845832    60.05708 63.45840 
k 0.092273 8.1099E-03    0.075967 0.108579 
r 0.012235 1.2199E-03 9.78170E-03 0.014687 
Convergence criterion met after 34 iterations. 

Residual SS (SSE) 57.036 
Residual MS (MSE) 1.1883 
Standard Deviation 1.0901 
Degrees of Freedom     48 
AICc 14.575 
Pseudo R² 0.9832 
Cases Included 51    Missing Cases 0 

 
 

6. Conclusion 
 

When constructing a life table using Ulpian’s table we mainly have to deal with three 
types of uncertainty: 

1. Are the figures mean or median life expectancies? 
2. Are the figures life expectancies or annuity premiums? 
3. How high is infant and youth mortality? 

Since for adult ages the difference between median and mean life expectancy is small, the 
two assumptions yield similar results: the modal adult age or normal age of death is 
around 57 years. After that age the death probability sharply increases. If the values of 
Ulpian’s table represented annuities calculated with an interest rate of about 1.5%, then 
mortality would be much lower than supposed, with a modal value of about 60 years. 
There is controversy in the literature about whether the Romans had the data and the 
methods to calculate even approximate values for annuities. Not only the relatively high 
median life expectancies at younger ages but also the low interest rate of only 1.5%, 
which results from the proposed models, speak against the annuity hypothesis. Why did 
they use only 1.5% and not a higher rate? In the Roman Empire the rate of interest varied 
in the range of 4% to 12% (see, e.g., Homer & Sylla 2005 p. 52). Ulpian’s table is not 
suitable for calculating life expectancy at birth. We have to make additional assumptions 
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on infant and youth mortality. Frier (1982) sees these last assumptions as the weakest 
point in the life table construction. Our simulations show that life expectancy at birth 
strongly depends on infant and youth mortality. A range between slightly less than 20 
years and slightly more than 30 years is quite possible, if only 40% to 60% of the 
newborns survived to the age of 20 years. An alternative to simulation is the usage of 
other high mortality model life tables. Further research is needed, as suggested by Woods 
(2007, p. 395), who states that more experimentation with low life expectancy models is 
required. However, these models should reflect the steep increase of the force of 
mortality, or rather the steep decline in the life expectancy function, at older ages in order 
to be suitable for a Roman life table which is based on Ulpian’s table. 
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